Myiasis in Humans—A Global Case Report Evaluation and Literature Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Myiasis in Humans—A Global Case Report Evaluation and Literature Analysis Parasitology Research (2019) 118:389–397 https://doi.org/10.1007/s00436-018-6145-7 ARTHROPODS AND MEDICAL ENTOMOLOGY - REVIEW Myiasis in humans—a global case report evaluation and literature analysis Victoria Bernhardt1 & Fabian Finkelmeier2 & Marcel A. Verhoff1 & Jens Amendt1 Received: 9 October 2018 /Accepted: 12 November 2018 /Published online: 19 November 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Myiasis refers to the infestation of living humans and vertebrates with fly larvae that feed on necrotic or vital tissue of the host. Since the invasion of new fly species in Europe is currently being observed, which live obligatorily parasitically or are close relatives of such species, the aim of this study is to obtain a global overview of the distribution of myiasis-causing fly species in times of climate change and to assess the possible consequences for Western Europe. A systematic literature search was conducted using Pubmed/Medline for the years 1997 to 2017 and a total of 464 international case reports from 79 countries were evaluated. The described cases were caused by 41 different species. In 99.4% of the cases, it was a colonization by just one species, a maximum of three species were detected in a human. Casuistics from Western Europe mostly describe myiasis as a Bholiday souvenir^ from tropical regions. Reports of autochthonous cases are rare in comparison to other regions. With regard to rising temperatures and the invasion of new fly species, a noticeable increase in the number of cases in Western Europe is to be assumed, which could be an increasing problem in the clinical area and in care, which is why thorough monitoring for profes- sional identification and treatment seems important in the future. Keywords Parasitism . Neglect . Climate change . Global warming . Flies Introduction achieve the therapeutic result (Grassberger and Fleischmann 2002;Sherman2009). However, if an unwanted colonization The medical application of maggots in a therapeutic sense is by fly larvae occurs, this is called myiasis and can not only an effective method for the treatment of chronic wounds and have tissue-destroying consequences for humans, but can also the removal of necrotic tissue with joint wound disinfection cause additional infections or psychosocial problems (Zumpt (Morgan 1995; Bonn 2000; Sherman et al. 2005, 2013; 1965; Hall and Smith 1993;HallandWall1995;Grassberger Čeřovský 2011). For maggot therapy, a controlled number of 2002; Sherman et al. 2005; Hogsette and Amendt 2008; sterile fly larvae, which are often fixed in a so-called biobag, Francesconi and Lupi 2012; Hall et al. 2016). In times of are placed on a wound for a defined period of time in order to global warming, not only the invasion of new fly species in Western Europe is to be expected, but also the risk of an increasing number of cases, as a warmer climate leads to an Handling Editor: Julia Walochnik increase of fly generations and thus also to an increasing num- ber of myiasis pathogens (Morgan and Wall 2009). Myiasis Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00436-018-6145-7) contains supplementary can be divided into two categories according to the anatomical material, which is available to authorized users. region as provided by the WHO ICD-10 classification (Table 1) and according to the biology of the parasitic species * Victoria Bernhardt (Zumpt 1965;Zielke1992;HallandWall1995; Hogsette and [email protected] Amendt 2008). Biological classification distinguishes between obligatory 1 Institute of Legal Medicine, University Hospital Frankfurt, and facultative parasitic species. The former, e.g., bot flies Goethe-University, Frankfurt, Main, Germany (Diptera: Oestridae), develop exclusively in living organisms. 2 Department of Medicine I, Gastroenterology, University Hospital But also in blow flies (Diptera: Calliphoridae) and flesh flies Frankfurt, Goethe-University, Frankfurt, Main, Germany (Diptera: Sarcophagidae) (Fig. 1), there are obligatory 390 Parasitol Res (2019) 118:389–397 Table 1 WHO ICD10 classifications of myiasis and its specific forms Methods ICD10-classification Type of myiasis A systematic literature search using Pubmed/Medline with the B87.0 Cutaneous myiasis (also: furuncular myiasis; search term myiasis and the search settings human, case re- incl. creeping myiasis) port, and full text covered the years 1997 to 2017, resulting in B87.1 Wound myiasis (also: traumatic myiasis) 741 publications. Of these, 464 were available and usable. B87.2 Ocular myiasis (externa or interna) Veterinary cases, reviews, or a lack of information on the type B87.3 Nasopharyngeal myiasis of myiasis, fly family or species led to exclusion. Foreign (incl. laryngeal myiasis) language cases (except German and English) were translated B87.4 Aural myiasis by means of DeepL online translator. The year of publication, B87.8 Myiasis of other sites the patient’s age and sex, the country in which the infection (incl. intestinal or genitourinary myiasis) was suspected to have occurred, the fly species, the type of B87.9 Myiasis, unspecified myiasis, the body region, the type of treatment, and any un- derlying diseases were recorded. The online available hospital parasitic species, like Chrysomya bezziana or Wohlfahrtia statistics of the Federal Statistical Office (Germany) were also magnifica for example (Zumpt 1965;Halletal.2016). evaluated according to ICD-10 B87. A descriptive evaluation Facultative parasitic species, which also occur in the families of the data was carried out using SPSS 23.0 (IBM, Ehingen, of blow flies, flesh flies, or house flies (Diptera: Muscidae), nor- Germany). mally develop on rotting organic material (carrion or faces). The colonization of living persons is rather accidental, as flies are Results & discussion attracted by the smell of necrotic tissue, but also by blood, urine, or feces (Grassberger 2002). Facultative parasitic fly species are laying their eggs or larvae on open or necrotic skin areas; inflam- Of at least 12 known fly families that can cause myiasis matory areas of the oral cavity, but also of the throat or nose, can (Zumpt 1965), only three to four families seem to be of higher be affected. Obligatory parasitic fly species, on the other hand, importance according to our analysis. These include blow flies also place their offspring onto the intact mucous membranes (38.8%; Tables 2 and 3), bot flies (41.2% of the cases studied; (Zumpt 1965). Table 4), flesh flies (10.3%; Table 5), and house flies (3.0%). The aim of the present work is to get a global overview of However, the results of the present study are limited by the myiasis-causing species and their distribution in order to as- species identification of the used case reports. In some cases, a sess possible consequences for (Western) Europe in times of correct species identification is at least very doubtful: Pinos climate change. A secondary goal is to detect possible basic or et al. (2014) described a traumatic myiasis with Dermatobia pre-existing diseases that promote colonization by flies and to hominis larvae. But this species only causes furuncular myia- recommend treatment measures. sis with single larvae. Another example can be illustrated by a case report of Smadi et al. (2014). They reported from adhered pupae of Lucilia sericata at the skin of a woman. But this species will not pupariate at the skin of a host. A case report by Shivekar et al. (2008) reports of an intestinal myiasis with Muscina stabulans, but the pictures look more like a flesh fly species. Potential primary diseases and consequences of fly colonization Primary diseases promoting myiasis Traumatic myiasis is often caused by a primary disease or an external injury that promotes colonization by flies (Francesconi and Lupi 2012). A large number of casuistics report of colonizations based on squamous cell carcinoma at different parts of the body (Pessoa and Galvão 2011; Wollina Fig. 1 Flies of the blowfly family: Lucilia spp. (top left) and Calliphora 2015; Hiraoka et al. 2015) (Fig. 2) and other exulcerating spp. (top right) with characteristic green-blue coloring. Flesh flies (be- low), e.g. Sarcophaga spp., show a grayish to black-white coloration. The tumor wounds (Rodrigues et al. 2017). The colonization of abdomen is rather flat to tube-shaped pressure ulcers in the posterior parts of the body is also Parasitol Res (2019) 118:389–397 391 Table 2 Myiasis-causing blow fly species (C., Calliphora;Chr.,Chrysomya; Coch., Cochliomyia;Cor.,Cordylobia;L.,Lucilia) depending on the myiasis category. Species labeled in bold are obligatory parasitic Calliphoridae Aural Cerebral Furuncular Nasal Ophthalmo Ophthalmo Oral Tracheostoma Traumatic Umbilical externa interna C. vicina 1 Chr. bezziana 2127116 Chr. megacephala 2 Chr. rufifacies 1 Coch. hominivorax 1611191272 Cor. 41 anthropophaga Cor. rodhaini 3 L. caesar 1 L. cuprina 3 L. illustris 1 L. sericata 21 82 2 17 frequently reported (Hokelek et al. 2002; Iqbal et al. 2011). But not only skin diseases increase the risk of an infection Other skin diseases such as seborrheic eczema (Kleine et al. by fly larvae, also patients having a peripheral artery occlusive 2014) and psoriasis (Pereyra-Rodríguez et al. 2010) can also disease (PAOD) with further development of a gangrene show promote a colonization. an increased risk. This is mainly due to diabetes (Chan et al. Table 3 Worldwide species distribution of parasitic blow flies causing Caribbean; CAm,
Recommended publications
  • First Case of Furuncular Myiasis Due to Cordylobia Anthropophaga in A
    braz j infect dis 2 0 1 8;2 2(1):70–73 The Brazilian Journal of INFECTIOUS DISEASES www.elsevi er.com/locate/bjid Case report First case of Furuncular Myiasis due to Cordylobia anthropophaga in a Latin American resident returning from Central African Republic a b a c a,∗ Jóse A. Suárez , Argentina Ying , Luis A. Orillac , Israel Cedeno˜ , Néstor Sosa a Gorgas Memorial Institute, City of Panama, Panama b Universidad de Panama, Departamento de Parasitología, City of Panama, Panama c Ministry of Health of Panama, International Health Regulations, Epidemiological Surveillance Points of Entry, City of Panama, Panama a r t i c l e i n f o a b s t r a c t 1 Article history: Myiasis is a temporary infection of the skin or other organs with fly larvae. The lar- Received 7 November 2017 vae develop into boil-like lesions. Creeping sensations and pain are usually described by Accepted 22 December 2017 patients. Following the maturation of the larvae, spontaneous exiting and healing is expe- Available online 2 February 2018 rienced. Herein we present a case of a traveler returning from Central African Republic. She does not recall insect bites. She never took off her clothing for recreational bathing, nor did Keywords: she visit any rural areas. The lesions appeared on unexposed skin. The specific diagnosis was performed by morphologic characterization of the larvae, resulting in Cordylobia anthro- Cordylobia anthropophaga Furuncular myiasis pophaga, the dominant form of myiasis in Africa. To our knowledge, this is the first reported Tumbu-fly case of C.
    [Show full text]
  • Cutaneous Myiasis Associated with Tick Infestations in a Dog
    pISSN 1598-298X / eISSN 2384-0749 J Vet Clin 32(5) : 473-475 (2015) http://dx.doi.org/10.17555/jvc.2015.10.32.5.473 Cutaneous Myiasis Associated with Tick Infestations in a Dog Jungku Choi, Hanjong Kim, Jiwoong Na, Seong-hyun Kim* and Chul Park1 College of Veterinary Medicine, Chonbuk National University, Iksan, Chonbuk 561-756, Republic of Korea *National Academy of Agricultural Science, Jeonbuk 565-851, Republic of Korea (Accepted: October 23, 2015) Abstract : A 12-year-old intact male, Alaskan Malamute dog, which lives in the countryside, was presented with inflammation and pain around perineal areas. Thorough examination revealed maggots and punched-out round holes lesion around the perineal region. Complete blood counts (CBC) and serum biochemical examinations showed no remarkable findings except mild anemia and mild thrombocytosis. The diagnosis was easily done, based on clinical signs and maggots identification. Cleaning with chlorhexidine, povidone-iodine lavage and hair clipping away from the lesions were performed soon after presentation. SNAP 4Dx Test (IDEXX Laboratories, Westbrook, ME, USA) was performed to rule out other vector-borne diseases since the ticks were found on the clipped area and vector-borne pathogens. The test result was negative. The dog in this case was treated with ivermectin (300 mcg/kg SC) one time. Also, treatments with amoxicillin clavulanate (20 mg/kg PO, BID) was established to prevent secondary bacterial infections. Then, myiasis resolved with 2 weeks and the affected area was healed. Key words : Dog, Myiasis, Maggot, Ivermectin, Tick. Introduction Treatment of myiasis should include hair clipping and flushing around the lesions and cleaning with an antibacte- Myiasis is an uncommon parasitic infection of dogs and rial shampoo (10).
    [Show full text]
  • Medical and Veterinary Entomology (2009) 23 (Suppl
    Medical and Veterinary Entomology (2009) 23 (Suppl. 1), 1–7 Enabling technologies to improve area-wide integrated pest management programmes for the control of screwworms A. S. ROBINSON , M. J. B. VREYSEN , J. HENDRICHS and U. FELDMANN Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency (FAO/IAEA) Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria Abstract . The economic devastation caused in the past by the New World screwworm fly Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae) to the livestock indus- try in the U.S.A., Mexico and the rest of Central America was staggering. The eradication of this major livestock pest from North and Central America using the sterile insect tech- nique (SIT) as part of an area-wide integrated pest management (AW-IPM) programme was a phenomenal technical and managerial accomplishment with enormous economic implications. The area is maintained screwworm-free by the weekly release of 40 million sterile flies in the Darien Gap in Panama, which prevents migration from screwworm- infested areas in Columbia. However, the species is still a major pest in many areas of the Caribbean and South America and there is considerable interest in extending the eradica- tion programme to these countries. Understanding New World screwworm fly popula- tions in the Caribbean and South America, which represent a continuous threat to the screwworm-free areas of Central America and the U.S.A., is a prerequisite to any future eradication campaigns. The Old World screwworm fly Chrysomya bezziana Villeneuve (Diptera: Calliphoridae) has a very wide distribution ranging from Southern Africa to Papua New Guinea and, although its economic importance is assumed to be less than that of its New World counterpart, it is a serious pest in extensive livestock production and a constant threat to pest-free areas such as Australia.
    [Show full text]
  • Genus Sarcophaga
    Genus Sarcophaga Key to UK species adapted and updated from van Emden (1954) Handbooks for the Identification of British Insects Vol X, Part 4(a), Diptera Cyclorrhapha Calyptrata (1) Since the publication, various species have changed their names and three further species have been added to the British list. Sarcophaga compactilobata Wyatt and Sarcophaga portschinskyi (Rohdendorf) were both added by Wyatt (1991). Sarcophaga discifera has been added to the British list but is only recorded from Ireland. Sarcophaga carnaria has been revised and split into two species. Note on the nomenclature of the tergites. The tergites are parts of the segments of the abdomen visible from above. The first and second tergites are fused together. In the original paper this first segment was referred to as the “first tergite”. This has been changed here to T1+2 and subsequent tergites becoming a number one more than they were in the original. The four large tergites are thus T1+2, T3, T4 and T5. In females T6 which appears to protrude a little below T5 is actually two tergites fused together and is referred to here as T6+7. In males there are two small segments visible beyond T5 and these are called the first and second genital segments. 1 Vein r1 usually setulose on the dorsal surface, sometimes with 1-2 setulae only. T3 with marginals. Three almost equal strong postsutural dorsocentrals, the first of them closer to the suture than to the second. Prescutellars present. Presutural acrostichals rarely distinct. ...............................................2 Marginals are bristles towards the middle of the segment on the hind edge.
    [Show full text]
  • Artrópodos Como Agentes De Enfermedad
    DEPARTAMENTO DE PARASITOLOGIA Y MICOLOGIA INVERTEBRADOS, CELOMADOS, CON SEGMENTACIÓN EXTERNA, PATAS Y APÉNDICES ARTICULADOS EXOESQUELETO QUITINOSO TUBO DIGESTIVO COMPLETO, APARATO CIRCULATORIO Y EXCRETOR ABIERTO. RESPIRACIÓN TRAQUEAL EL TIPO INTEGRA LAS CLASES DE IMPORTANCIA MÉDICA COMO AGENTES: ARACHNIDA, INSECTA CHILOPODA DIOCOS, CON FRECUENTE DIMORFISMO SEXUAL CICLOS EVOLUTIVOS DE VARIABLE COMPLEJIDAD (HUEVOS, LARVAS, NINFAS, ADULTOS). INSECTA. CARACTERES GENERALES. LA CLASE INTEGRA CON IMPORTANCIA MEDICA COMO AGENTES: PARÁSITOS, MICROPREDADORES E INOCULADORES DE PONZOÑA. CUERPO DIVIDIDO EN CABEZA, TÓRAX Y ABDOMEN APARATO BUCAL DE DIFERENTE TIPO. RESPIRACIÓN TRAQUEAL TRES PARES DE PATAS PRESENCIA DE ALAS Y ANTENAS METAMORFOSIS DE COMPLEJIDAD VARIABLE ARACHNIDA. CARACTERES GENERALES. LA CLASE INTEGRA CON IMPORTANCIA MEDICA COMO AGENTES ARAÑAS, ESCORPIONES, GARRAPATAS Y ÁCAROS. CUERPO DIVIDIDO EN CEFALOTÓRAX Y ABDOMEN. DIFERENTES TIPOS DE APÉNDICES PREORALES RESPIRACIÓN TRAQUEAL EN LA MAYORÍA CUATRO PARES DE PATAS PRESENCIA DE GLÁNDULA VENENOSAS EN MUCHOS. SIN ALAS Y SIN ANTENAS AGENTE CAUSA O ETIOLOGÍA DIRECTA DE UNA AFECCIÓN. ARTRÓPODOS COMO AGENTES DE ENFERMEDAD: *ARÁCNIDOS (ÁCAROS, ARAÑAS, ESCORPIONES) *MIRIÁPODOS (CIEMPIÉS, ESCOLOPENDRAS) *INSECTOS (PIOJOS, LARVAS DE MOSCAS, ABEJAS, ETC.) TIPOS DE AGENTES NOSOLÓGICOS : - PARÁSITOS (LARVAS O ADULTOS) - MICROPREDADORES - PONZOÑOSOS - ALERGENOS DESARROLLO DE PARASITISMO: - ECTOPARÁSITOS - MIASIS INOCULACIÓN O CONTAMINACIÓN CON PONZOÑAS (TÓXICOS ELABORADOS POR SERES VIVOS).
    [Show full text]
  • Manual for Certificate Course on Plant Protection & Pesticide Management
    Manual for Certificate Course on Plant Protection & Pesticide Management (for Pesticide Dealers) For Internal circulation only & has no legal validity Compiled by NIPHM Faculty Department of Agriculture , Cooperation& Farmers Welfare Ministry of Agriculture and Farmers Welfare Government of India National Institute of Plant Health Management Hyderabad-500030 TABLE OF CONTENTS Theory Practical CHAPTER Page No. class hours hours I. General Overview and Classification of Pesticides. 1. Introduction to classification based on use, 1 1 2 toxicity, chemistry 2. Insecticides 5 1 0 3. fungicides 9 1 0 4. Herbicides & Plant growth regulators 11 1 0 5. Other Pesticides (Acaricides, Nematicides & 16 1 0 rodenticides) II. Pesticide Act, Rules and Regulations 1. Introduction to Insecticide Act, 1968 and 19 1 0 Insecticide rules, 1971 2. Registration and Licensing of pesticides 23 1 0 3. Insecticide Inspector 26 2 0 4. Insecticide Analyst 30 1 4 5. Importance of packaging and labelling 35 1 0 6. Role and Responsibilities of Pesticide Dealer 37 1 0 under IA,1968 III. Pesticide Application A. Pesticide Formulation 1. Types of pesticide Formulations 39 3 8 2. Approved uses and Compatibility of pesticides 47 1 0 B. Usage Recommendation 1. Major pest and diseases of crops: identification 50 3 3 2. Principles and Strategies of Integrated Pest 80 2 1 Management & The Concept of Economic Threshold Level 3. Biological control and its Importance in Pest 93 1 2 Management C. Pesticide Application 1. Principles of Pesticide Application 117 1 0 2. Types of Sprayers and Dusters 121 1 4 3. Spray Nozzles and Their Classification 130 1 0 4.
    [Show full text]
  • Myiasis During Adventure Sports Race
    DISPATCHES reexamined 1 day later and was found to be largely healed; Myiasis during the forming scar remained somewhat tender and itchy for 2 months. The maggot was sent to the Finnish Museum of Adventure Natural History, Helsinki, Finland, and identified as a third-stage larva of Cochliomyia hominivorax (Coquerel), Sports Race the New World screwworm fly. In addition to the New World screwworm fly, an important Old World species, Mikko Seppänen,* Anni Virolainen-Julkunen,*† Chrysoimya bezziana, is also found in tropical Africa and Iiro Kakko,‡ Pekka Vilkamaa,§ and Seppo Meri*† Asia. Travelers who have visited tropical areas may exhibit aggressive forms of obligatory myiases, in which the larvae Conclusions (maggots) invasively feed on living tissue. The risk of a Myiasis is the infestation of live humans and vertebrate traveler’s acquiring a screwworm infestation has been con- animals by fly larvae. These feed on a host’s dead or living sidered negligible, but with the increasing popularity of tissue and body fluids or on ingested food. In accidental or adventure sports and wildlife travel, this risk may need to facultative wound myiasis, the larvae feed on decaying tis- be reassessed. sue and do not generally invade the surrounding healthy tissue (1). Sterile facultative Lucilia larvae have even been used for wound debridement as “maggot therapy.” Myiasis Case Report is often perceived as harmless if no secondary infections In November 2001, a 41-year-old Finnish man, who are contracted. However, the obligatory myiases caused by was participating in an international adventure sports race more invasive species, like screwworms, may be fatal (2).
    [Show full text]
  • A Review of the Off-Label Use of Selamectin (Stronghold®/Revolution®) in Dogs and Cats Maggie a Fisher*1 and David J Shanks2
    Acta Veterinaria Scandinavica BioMed Central Review Open Access A review of the off-label use of selamectin (Stronghold®/Revolution®) in dogs and cats Maggie A Fisher*1 and David J Shanks2 Address: 1Shernacre Enterprise, Shernacre Cottage, Lower Howsell Road, Malvern, Worcs WR14 1UX, UK and 2Peuman, 16350 Vieux Ruffec, France Email: Maggie A Fisher* - [email protected]; David J Shanks - [email protected] * Corresponding author Published: 25 November 2008 Received: 7 January 2008 Accepted: 25 November 2008 Acta Veterinaria Scandinavica 2008, 50:46 doi:10.1186/1751-0147-50-46 This article is available from: http://www.actavetscand.com/content/50/1/46 © 2008 Fisher and Shanks; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Since its introduction approximately seven years ago, selamectin (Stronghold®/Revolution®, Pfizer Inc.) has been used off-label to treat a number of ecto- and endoparasite conditions in dogs and cats. It has been used as a successful prophylactic against Dirofilaria repens and as a treatment for Aelurostrongylus abstrusus in cats. It has also been used to treat notoedric mange, infestation with the nasal mite Pneumonyssoides caninum, Cheyletiella spp. and Neotrombicula autumnalis infestations and larval Cordylobia anthropophaga infection. However, to date attempts to treat generalised canine demodicosis have not been successful. In all cases, treatment was apparently well tolerated by the host. Background [3]. Higher doses of ivermectin, which might have pro- Until relatively recently, the antiparasitic products availa- vided a broader spectrum of activity allowing control of ble to the veterinarian were often inadequate [1].
    [Show full text]
  • Association of Myianoetus Muscarum (Acari: Histiostomatidae) with Synthesiomyia Nudiseta (Wulp) (Diptera: Muscidae) on Human Remains
    Journal of Medical Entomology Advance Access published January 6, 2016 Journal of Medical Entomology, 2016, 1–6 doi: 10.1093/jme/tjv203 Direct Injury, Myiasis, Forensics Research article Association of Myianoetus muscarum (Acari: Histiostomatidae) With Synthesiomyia nudiseta (Wulp) (Diptera: Muscidae) on Human Remains M. L. Pimsler,1,2,3 C. G. Owings,1,4 M. R. Sanford,5 B. M. OConnor,6 P. D. Teel,1 R. M. Mohr,1,7 and J. K. Tomberlin1 1Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX 77843 ([email protected]; cgowings@- iupui.edu; [email protected]; [email protected]; [email protected]), 2Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35405, 3Corresponding author, e-mail: [email protected], 4Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan St., SL 306, Indianapolis, IN 46202, 5Harris County Institute of 6 Forensic Sciences, Houston, TX 77054 ([email protected]), Department of Ecology and Evolutionary Biology/ Downloaded from Museum of Zoology, The University of Michigan, Ann Arbor, MI 48109 ([email protected]), and 7Department of Forensic and Investigative Science, West Virginia University, 1600 University Ave., Morgantown, WV 26506 Received 26 August 2015; Accepted 24 November 2015 Abstract http://jme.oxfordjournals.org/ Synthesiomyia nudiseta (Wulp) (Diptera: Muscidae) was identified during the course of three indoor medicole- gal forensic entomology investigations in the state of Texas, one in 2011 from Hayes County, TX, and two in 2015 from Harris County, TX. In all cases, mites were found in association with the sample and subsequently identified as Myianoetus muscarum (L., 1758) (Acariformes: Histiostomatidae).
    [Show full text]
  • Human Botfly (Dermatobia Hominis)
    CLOSE ENCOUNTERS WITH THE ENVIRONMENT What’s Eating You? Human Botfly (Dermatobia hominis) Maryann Mikhail, MD; Barry L. Smith, MD Case Report A 12-year-old boy presented to dermatology with boils that had not responded to antibiotic therapy. The boy had been vacationing in Belize with his family and upon return noted 2 boils on his back. His pediatrician prescribed a 1-week course of cephalexin 250 mg 4 times daily. One lesion resolved while the second grew larger and was associated with stinging pain. The patient then went to the emergency depart- ment and was given a 1-week course of dicloxacil- lin 250 mg 4 times daily. Nevertheless, the lesion persisted, prompting the patient to return to the Figure 1. Clinical presentation of a round, nontender, emergency department, at which time the dermatol- 1.0-cm, erythematous furuncular lesion with an overlying ogy service was consulted. On physical examination, 0.5-cm, yellow-red, gelatinous cap with a central pore. there was a round, nontender, 1.0-cm, erythema- tous nodule with an overlying 0.5-cm, yellow-red, gelatinous cap with a central pore (Figure 1). The patient was afebrile and had no detectable lymphad- enopathy. Management consisted of injection of lidocaine with epinephrine around and into the base of the lesion for anesthesia, followed by insertion of a 4-mm tissue punch and gentle withdrawal of a botfly (Dermatobia hominis) larva with forceps through the defect it created (Figure 2). The area was then irri- gated and bandaged without suturing and the larva was sent for histopathologic evaluation (Figure 3).
    [Show full text]
  • Flesh Flies (Diptera: Sarcophagidae) of Sandy and Marshy Habitats of the Polish Baltic Coast
    © Entomologica Fennica. 30 March 2009 Flesh flies (Diptera: Sarcophagidae) of sandy and marshy habitats of the Polish Baltic coast Elibieta Kaczorowska Kaczorowska, E. 2009: Flesh flies (Diptera: Sarcophagidae) of sandy and marshy habitats of the Polish Baltic coast. — Entomol. Fennica 20: 61—64. The results ofa seven-year study on flesh flies (Diptera: Sarcophagidae) in sandy and marshy habitats ofthe Polish Baltic coast are presented. During this research, carried out in 20 localities, 25 species of Sarcophagidae were collected, ofwhich 24 were new for the study areas. Based on these results, flesh fly abundance and trophic groups are described. E. Kaczorowska, Department ofInvertebrate Zoology, University ofGdansk, Al. Marszalka Pilsadskiego 46, 81—3 78 Gdynia, Poland; E—mail.‘ saline@ocean. aniv.gda.pl, telephone: 0048 58 5236642 Received 1 1 December 200 7, accepted 19 March 2008 1. Introduction menoptera, while others are predators or para- sitoids on insects and snails (Povolny & Verves Sarcophagidae is a species-rich family, distri- 1997). Therefore, flesh flies occur in various buted worldwide and comprising over 2500 de- kinds of biotopes, including coastal marshy and scribed species. At present more than 150 species sandy habitats. On the Polish Baltic coast, species of flesh flies are known from central Europe of Sarcophagidae have been found in low abun- (Povolny & Verves 1997) and 129 from Poland. dance, and only one species, Sarcophaga (Myo— The Polish fauna of Sarcophagidae is relatively rlzina) nigriventris Meigen, has so far been re- well known, but the state of knowledge about corded (Draber—Monko 1973). Szadziewski these flies is uneven for particular regions of the (1983), carrying out research on Diptera ofthe sa- country.
    [Show full text]
  • Evolutionary Background Entities at the Cellular and Subcellular Levels in Bodies of Invertebrate Animals
    The Journal of Theoretical Fimpology Volume 2, Issue 4: e-20081017-2-4-14 December 28, 2014 www.fimpology.com Evolutionary Background Entities at the Cellular and Subcellular Levels in Bodies of Invertebrate Animals Shu-dong Yin Cory H. E. R. & C. Inc. Burnaby, British Columbia, Canada Email: [email protected] ________________________________________________________________________ Abstract The novel recognition that individual bodies of normal animals are actually inhabited by subcellular viral entities and membrane-enclosed microentities, prokaryotic bacterial and archaeal cells and unicellular eukaryotes such as fungi and protists has been supported by increasing evidences since the emergence of culture-independent approaches. However, how to understand the relationship between animal hosts including human beings and those non-host microentities or microorganisms is challenging our traditional understanding of pathogenic relationship in human medicine and veterinary medicine. In recent novel evolution theories, the relationship between animals and their environments has been deciphered to be the interaction between animals and their environmental evolutionary entities at the same and/or different evolutionary levels;[1-3] and evolutionary entities of the lower evolutionary levels are hypothesized to be the evolutionary background entities of entities at the higher evolutionary levels.[1,2] Therefore, to understand the normal existence of microentities or microorganisms in multicellular animal bodies is becoming the first priority for elucidating the ecological and evolutiological relationships between microorganisms and nonhuman macroorganisms. The evolutionary background entities at the cellular and subcellular levels in bodies of nonhuman vertebrate animals have been summarized recently.[4] In this paper, the author tries to briefly review the evolutionary background entities (EBE) at the cellular and subcellular levels for several selected invertebrate animal species.
    [Show full text]