Model Metadata Report for North Kent 3D Geological Model

Total Page:16

File Type:pdf, Size:1020Kb

Model Metadata Report for North Kent 3D Geological Model Model metadata report for North Kent 3D geological model Geology and Landscape England Programme Open Report OR/15/031 BRITISH GEOLOGICAL SURVEY Geology and Landscape England PROGRAMME OPEN REPORT OR/15/031 Model metadata report for North Kent 3D geological model The National Grid and other Ordnance Survey data are used with the permission of the Controller of Her Majesty’s Stationery Office. Licence No: 100017897/2015. J Thompson Keywords Report; North Kent, Chalk. Contributor/editor S Thorpe and A Farrant National Grid Reference SW corner 569722,154087 NE corner 592411,171763 Map Sheet 272 and 288, 1:50 000 scale, Chatham and Maidstone Front cover Bibliographical reference J THOMPSON. 2015. Model metadata report for North Kent 3D geological model. British Geological Survey Open Report, OR/15/031. 15pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. 3D images BGS © NERC 2014 using GSI3D methodology and software. Maps and diagrams in this book use topography based on Ordnance Survey mapping. © NERC 2015. All rights reserved Keyworth, Nottingham British Geological Survey 2015 BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS shops at British Geological Survey offices Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or shop online at www.geologyshop.com BGS Central Enquiries Desk Tel 0115 936 3143 Fax 0115 936 3276 The London Information Office also maintains a reference collection of BGS publications, including maps, for consultation. email [email protected] We publish an annual catalogue of our maps and other publications; this catalogue is available online or from any of the Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG BGS shops. Tel 0115 936 3241 Fax 0115 936 3488 email [email protected] The British Geological Survey carries out the geological survey of Great Britain and Northern Ireland (the latter as an agency service for the government of Northern Ireland), and of the Murchison House, West Mains Road, Edinburgh EH9 3LA surrounding continental shelf, as well as basic research projects. Tel 0131 667 1000 Fax 0131 668 2683 It also undertakes programmes of technical aid in geology in email [email protected] developing countries. The British Geological Survey is a component body of the Natural Environment Research Council. Natural History Museum, Cromwell Road, London SW7 5BD Tel 020 7589 4090 Fax 020 7584 8270 Tel 020 7942 5344/45 email [email protected] Columbus House, Greenmeadow Springs, Tongwynlais, Cardiff CF15 7NE Tel 029 2052 1962 Fax 029 2052 1963 Maclean Building, Crowmarsh Gifford, Wallingford OX10 8BB Tel 01491 838800 Fax 01491 692345 Geological Survey of Northern Ireland, Colby House, Stranmillis Court, Belfast BT9 5BF Tel 028 9038 8462 Fax 028 9038 8461 www.bgs.ac.uk/gsni/ Parent Body Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU Tel 01793 411500 Fax 01793 411501 www.nerc.ac.uk Website www.bgs.ac.uk Shop online at www.geologyshop.com Foreword This report accompanies the North Kent Maidstone-Chatham Revision model which was created by the British Geological Survey (BGS) under commission by the Environment Agency. OR/15/031 Acknowledgements The author of this report wishes to thank Nigel Hoad of the Environment Agency for commissioning this work. Contents Foreword ........................................................................................................................................ 5 Acknowledgements ........................................................................................................................ 2 Contents .......................................................................................................................................... 2 Summary ........................................................................................................................................ 3 1 Modelled volume, purpose and scale .................................................................................... 3 2 Modelled faults ....................................................................................................................... 6 3 Model datasets ........................................................................................................................ 6 4 Model development log .......................................................................................................... 6 5 Model workflow ...................................................................................................................... 7 6 Model assumptions, geological rules used ............................................................................ 7 6.1 Thicknesses ..................................................................................................................... 7 7 Model limitations .................................................................................................................... 8 8 Model images .......................................................................................................................... 9 9 Model uncertainty ................................................................................................................ 10 References .................................................................................................................................... 10 FIGURES Figure 1 Distribution of borehole records used to constrain the cross-sections constructed in the model. ....................................................................................................................................... 3 Figure 6: Exploded view of all calculated units (x5 exaggeration) ................................................. 9 Figure 7: Cross sections used to calculate the model (x5 exaggeration) ...................................... 10 TABLES Table 1 List of geological units modelled, in descending stratigraphical order ............................. 4 2 OR/15/031 Summary This report contains the metadata for the revised 3D geological model of North Kent and is accompanied by the Commissioned Report CR/15/039 (Farrant et al. 2015). 1 Modelled volume, purpose and scale The North Kent 3D geological model was commissioned by the Environment Agency to gain a better understanding of the structure of the bedrock in the area to help understand groundwater movement; this report contains the model metadata, for the full report see Farrant et al. (2015). The GSI3D (Geological Surveying in 3D) software was used to construct the model, following the established workflow described in Kessler et al, (2009). The model comprises 30 correlated cross-sections constrained by 290 boreholes held in the BGS archive. Figure 1 shows the distribution of boreholes and correlated cross-sections. Figure 1 Distribution of borehole records used to constrain the cross-sections constructed in the model. Modelled surfaces/volumes A total of 8 Bedrock units and 9 Superficial units are modelled. The base of the Gault Formation is taken as the base of the model at the client’s request as the Gault forms the base of the Chalk aquifer. The modelled geological units are described in Table 1. 3 OR/15/031 Table 1 List of geological units modelled, in descending stratigraphical order Name in Geological unit Age Description model BTFU-XCZS Beach and Tidal Quaternary Composite of 'Beach deposits': Shingle, Flat Deposits sand, silt and clay; may be bedded or chaotic; beach deposits may be in the form of dunes, sheets or banks, and 'Tidal Flat Deposits': commonly silt and clay with sand and gravel layers; possible peat layers; from the tidal zone. In the model area these are mostly Tidal Flat deposits. ALV-CZPS Alluvium Quaternary Normally soft to firm consolidated, compressible silty clay, but can contain layers of silt, sand, peat and basal gravel. A stronger, desiccated surface zone may be present. HEAD- Head Quaternary Polymict deposit: comprises clay, silt, XCZSV sand and gravel (often flint rich) depending on upslope source and distance from source. Poorly sorted and poorly stratified deposits formed mostly by solifluction and/or hillwash and soil creep. HEAD1- Head 1 Quaternary Polymict deposit: comprises clay, silt, XCZSV sand and flint-rich gravel depending on upslope source and distance from source. Poorly sorted and poorly stratified deposits formed mostly by solifluction and/or hillwash and soil creep. RTD-XSV River Terrace Quaternary Sand and gravel, locally with lenses of Deposits silt, clay or peat. RTD1-XSV River Terrace Quaternary Sand and gravel, locally with lenses of Deposits 1 silt, clay or peat. RTD2-XSV River Terrace Quaternary Sand and gravel, locally with lenses of Deposits 2 silt, clay or peat. RTD3-XSV River Terrace Quaternary Sand and gravel, locally with lenses of Deposits 3 silt, clay or peat. CWF- Clay-with-Flints Quaternary The dominant lithology is orange-brown XCZSV Formation and red-brown sandy, silty clay with abundant nodules and rounded pebbles of flint. The Clay-with-Flints Formation is a residual
Recommended publications
  • 2007 5.2 Billion 109 230 113 35 23.13 17.4
    Sources: CTRL; Guardian graphics; main photograph: Dan Chung A12 Route in greater London BLACKHORSE St Pancras junction RD SNARESBROOK Hornsey WALTHAMSTOW Stratford international CENTRAL NEWBURY Thameslink surface line and domestic station, Chadwell Heath A116 PARK East Coast Main Line HIGHGATE set inside excavated Freight connection at North London Line with connection “box” 1.07km long Wanstead Ripple Lane, Dagenham to East Coast Main Line CHADWELL HTH Connection to West New interchange for LEYTONSTONE GOODMAYES Coast Main Line Eurostar and fast south- SEVEN KINGS Channel Tunnel rail line ARCHWAY Stoke Covered bridge feeds Camden east domestic trains. ILFORD is mainly for passengers Newington Links to: mainLeyton line – but some freight could Channel rail link into St Pancras/King's services, Docklands use new line, with loops twin-bore tunnel Cross interchange GOSPEL Light Railway, and WANSTEAD Ilford where faster trains can Midland Main Line feeds passengers Hackney LEYTON OAK London Underground's PARK Manor overtake Channel onwards via: Jubilee and Central lines Park Tunnel London St Pancras international and domestic station, east side -Midland and East HACKNEY Rail Link Gasworks tunnel Coast Main Lines CANONBURY CENTRAL -New Thameslink hub KENTISH Islington station Camden TOWN Thameslink tunnel HIGHBURY& BARKING -North London Line connection to East ISLINGTON West Ham EAST UPNEY Coast Main Line A12 HAM London tunnel 7.53km London tunnel 9.9km Islington UPTON PLAISTOW PARK East Ham Regent's canal London St Pancras Kings ANGEL international and Cross domestic station Tower WEST DAGENHAM DOCK Hamlets HAM From 2007, Eurostar Newham services arrive at BECKTON New domestic platforms (3): St Pancras – later High-speed Kent commuter City PRINCE ROYAL joined by fast south- CANNING trains will use Channel line The drill head of one of six boring machines used for the London tunnel TOWN REGENT ALBERT eastWestminster commuter trains St Paul's A13 GALLIONS St Pancras roof from 2009 using Channel tunnel CUSTOM BECKTON PARK REACH extension under ROYAL rail tracks.
    [Show full text]
  • Ignis (Passive Fire Protection System)
    Case studies North Downs Tunnel, Kent segments at a purpose built factory The 3.2 km North Downs Tunnel forms in Ridham Docks. part of the Channel Tunnel Rail Link running from Folkestone, Kent to De Westerschelde Tunnel, the St. Pancras in London. The primary Netherlands tunnel lining was made up of sprayed The client Maafroute BV instructed concrete. 1 kg of Ignis PP monofilament the precast contractors to add 1 kg fibres were added to the 60 N/mm2 of Ignis to the C40 concrete. The fibre concrete secondary lining. The lining was included in the concrete sections was constructed insitu, forming a forming the security exits, safety sacrificial layer. barriers and connection tunnels. T5, Heathrow Airport Dublin Port Tunnel, Ireland Ignis has been added to Grade C60 This 4 lane underground highway is concrete on various contracts within this designed to take heavy vehicle traffic prestigious project. The Ignis enhanced off the streets of Dublin. A 275 mm concrete has been used on site in thick lining over the tunnels arch is a sprayed concrete applications and it non-load bearing sacrificial concrete has also been added to precast ring containing 1-2 kg of Ignis. IGNIS® Monofilament Fibre PASSIVE FIRE PROTECTION North Downs Tunnel, Kent T5, Heathrow Airport, London Belgium T +32 52 457 413 Disclaimer All information and product specifications provided in this document are accurate at the time of publication. We follow a policy of India T +91 8527625678 Avoids explosive spalling in concrete continuous development. The provided information and product specifications may change at any time without notice and must not United Kingdom T +44 1482 863777 be relied upon unless expressly confirmed by us upon request.
    [Show full text]
  • Asset Protection the Developers Handbook
    The Developers Handbook Approval and Authorisation Prepared by Date Signed Paul Milgate August 2020 Asset Protection Project Manager Approved by Date Signed Gavin Baecke August 2020 Head of Civils and Environment Authorised by Date Signed Mike Essex August 2020 Head of Infrastructure Issue No. Date Comments 1 August 2020 First Issue after document revised from L2 standard to document. C-05-OP-32-3001 This procedure will be reviewed at least annually and be revised as required. Printed copies of this document are uncontrolled. For the latest version click here: https://www.networkrail.co.uk/running-the-railway/looking-after-the-railway/asset-protection-and-optimisation/ or contact: Asset Protection Coordinator, Network Rail (High Speed), Singlewell Infrastructure Maintenance Depot, Henhurst Road, Cobham, Gravesend, Kent DA12 3AN Tel: 01474 563 554 Email: [email protected] Note that hyperlinks to internal Network Rail documents will not work for external users. In this case contact your Asset Protection Engineer. Photos: These are of generic sites around the High Speed 1 infrastructure taken by the author and other NR employees. Acknowledgements With Thanks to: Debra Iveson Asset Protection Coordinator Vital Communications by Office Depot for design, editing and publishing services 2 The Developers Handbook 3 Contents 1 Introduction 6 4 Developments above tunnels 28 6 Access 40 8 Lifting 54 1.1 Purpose 6 4.1 Construction 28 6.1 General 40 8.1 Types of plant 54 1.2 Scope 6 4.2 High Speed 1 subsoil acquisition 28
    [Show full text]
  • Channel Tunnel Rail Link Risk Transfer and Innovation in Project Delivery
    Harvard Design School Version October 2008 Prof. Spiro N. Pollalis Dr. Andreas Georgoulias Channel Tunnel Rail Link Risk Transfer and Innovation in Project Delivery “Will this be the project that restores our belief that Britain can build a railway?” the Guardian asked in May 27, 2005, referring to the Channel Tunnel Rail Link (CTRL) project. The article added that although “it is one of the biggest engineering projects in the UK and the country’s first new train line in a century, few of us know the real success story.”1 At the same time, the CTRL team was looking forward to the next challenge in the infrastructure field: to transfer the significant experience gained from CTRL in UK to other parts of the globe. A major focus was on risk management and the need for new modes of cooperation and collaboration between all parties involved in a project, issues that had been dealt with successfully in the CTRL project. There were still issues to be addressed like the similarities and differences in the relationships between designers, contractors, government officials, and the public in each part of the world, and the identification, measurement, transfer, and handling of risk. CTRL provided lessons for all of the above. 1 Jonathan Glancey, "Tunnel vision," The Guardian, May 27, 2005. Dr. Andreas Georgoulias prepared this case under the supervision of Professor Spiro N. Pollalis as the basis for class discussion rather than to illustrate either effective or ineffective handling of an administrative situation. Copyright © 2006 by the President and Fellows of Harvard College. To order copies, visit http://www.gsd.harvard.edu/~pollalis, call (617) 495-9939 or write to Prof.
    [Show full text]
  • The Arup Journal Ground Engineering 18 Nick O'riordan Marks a Special Moment When Our Creative Capability, Design Flare, and Ability to Deliver Have Become Tangible
    .THEARUP JOURNAL ARUP CLIENT: ................._ ___ .. Jtn..._ Union Railways (wholly-owned subsidiary of l/11/llll London & Continental Railways Ltd) I/Ill/Ill un on RfEl/1/1/l lll DESIGNER AND PROJECT MANAGER: RAILWAYS LCR RAILUNK Rail Link Engineering (Arup, Bechtel, Halcrow, Systra) Published by Arup, 13 Fitzroy Street, London WH 4BQ, UK. Tel: +44 (0)20 7636 1531 Fax: +44 (0)20 7580 3924 e-mail: [email protected] www.arup.com Foreword Contents Foreword Terry Hill 2 Terry Hill Chairman, Arup The CTRL and Arup: Section 1 of the 109km Channel Tunnel Rail Link was opened by the UK 3 Introduction to the history Prime Minister Tony Blair on 28 September 2003 . With this opening came Mike Glover the first and long-awaited benefits of high-speed rail travel in Britain. Involving Safety - an industry-high safety record for construction - has been achieved 6 the communities and now travel will become safer and more convenient. Since the opening, Lisa Doughty the number of passengers using Eurostar, the London to Paris/Brussels Media relations high-speed rail seNice, has increased by 20%, and reliability has soared. 9 Lisa Doughty Paul Ravenscroft This is due to the commitment of a tremendous team of people in Arup and our partners in Rail Link Engineering, and the client's team in Union Rail safety Railways, who have brought a new catch phrase to railway construction - 10 Lorna Small 'on time, on budget'. CTRL and the environment It is also due in no small way to the creativity and innovation of Arup, for it 12 Paul Johnson was our firm that perceived the need for this project, conceived the solution, and has been delivering the result.
    [Show full text]
  • IGNIS® Monofilament Fibre
    Case studies North Downs Tunnel, Kent segments at a purpose built factory in The 3.2 km North Downs Tunnel forms Ridham Docks. part of the Channel Tunnel Rail Link running from Folkestone, Kent to De Westerschelde Tunnel, the St. Pancras in London. The primary Netherlands tunnel lining was made up of sprayed The client Maafroute BV instructed concrete. 1 kg of Ignis PP monofilament the precast contractors to add 1 kg fibres were added to the 60 N/mm2 of Ignis to the C40 concrete. The fibre concrete secondary lining. The lining was included in the concrete sections was constructed insitu, forming a forming the security exits, safety sacrificial layer. barriers and connection tunnels. T5, Heathrow Airport Dublin Port Tunnel, Ireland Ignis has been added to Grade C60 This 4 lane underground highway is concrete on various contracts within this designed to take heavy vehicle traffic prestigious project. The Ignis enhanced off the streets of Dublin. A 275 mm thick concrete has been used on site in lining over the tunnels arch is a non- sprayed concrete applications and it load bearing sacrificial concrete has also been added to precast ring containing 1-2 kg of Ignis. Adfil construction fibres are manufactured by Low & Bonar. materials. These materials contribute to a more The Group is a global leader in high performance sustainable world and higher quality of life. The quality materials selling in more than 60 countries worldwide systems of Low & Bonar facilities have been approved and manufacturing in Europe, North America and China. to the ISO 9001 Quality Management System Standard.
    [Show full text]
  • Channel Tunnel Rail Link Risk Transfer and Innovation in Project Delivery
    Harvard Design School Version November 01, 2006 Prof. Spiro N. Pollalis Channel Tunnel Rail Link Risk Transfer and Innovation in Project Delivery “Will this be the project that restores our belief that Britain can build a railway?” the Guardian asked in May 27, 2005, referring to the Channel Tunnel Rail Link (CTRL) project. The article added that although “it is one of the biggest engineering projects in the UK and the country’s first new train line in a century, few of us know the real success story.”1 At the same time, the CTRL team was looking forward to the next challenge in the infrastructure field: to transfer the significant experience gained from CTRL in UK to other parts of the globe. A major focus was on risk management and the need for new modes of cooperation and collaboration between all parties involved in a project, issues that had been dealt with successfully in the CTRL project. There were still issues to be addressed like the similarities and differences in the relationships between designers, contractors, government officials, and the public in each part of the world, and the identification, measurement, transfer, and handling of risk. CTRL provided lessons for all of the above. 1 Jonathan Glancey, "Tunnel vision," The Guardian, May 27, 2005. Doctor of Design candidate Andreas Georgoulias prepared this case under the supervision of Professor Spiro N. Pollalis as the basis for class discussion rather than to illustrate either effective or ineffective handling of an administrative situation. Copyright © 2006 by the President and Fellows of Harvard College.
    [Show full text]
  • Laying the Groundwork for Britain's First High-Speed Rail Line
    BECHTEL INFRASTRUCTURE AND CONSTRUCTION TheThe needneed forfor Medway bridge under construction speedspeed Laying the groundwork for Britain’s first The team responsible for constructing the Channel Tunnel Rail Link is making engineering high-speed rail line history with the 109 km line that is due to be completed in 2007. Stage 1 has already seen the movement of complete houses in one piece, the planting of 1.2 million trees and the construction of the longest high-speed rail The success of the Channel Tunnel mouth of the Channel Tunnel, the route bridge in Europe … Rail Link (CTRL) will be measured not goes over (and sometimes under) hill only by the technology that underpins it, and dale, traversing farmland and towns, but also by the time it takes to travel then dips through a 3 km tunnel beneath between London and Paris. By that the River Thames. Approaching London, hen the first section of the measure, the first section has it runs along a 1.3 km viaduct under the Channel Tunnel Rail Link succeeded by cutting the nearly three- Queen Elizabeth II Bridge, then plunges W opened for commercial hour trip by 20 minutes. When section 2 into a tunnel near Dagenham and services on 28 September 2003, – from north Kent to central London – continues underground for 10.5 km to a passengers for the most part were is completed in 2007, another 15 new international station at Stratford in unaware of the complex engineering minutes will be shaved off and the east London. It then heads into another required to build the new line.
    [Show full text]
  • Ebbsfleet Style
    Chapter 1 Archaeology and Engineering: High Speed 1 by H J Glass and S Foreman Introduction archive On ADS. A Gazetteer Of individual sites alOng the rOute, illustrated with rOute maps, is prOvided in High Speed 1 (HS1) is the first new railway tO be built in Appendix 1, and a list Of the detailed digital site and Britain fOr Over a century and is the UK’s first high speed specialist repOrts that are available tO dOwnlOad frOm the railway. The cOnstructiOn Of the railway became an ADS website is prOvided in Appendix 2. OppOrtunity tO investigate the rich heritage Of a lOng- inhabited cOrridOr thrOugh Kent frOm LOndOn tO the channel cOast, and the engineering feats required tO The route cOnstruct the rail link are rightly celebrated (Fig. 1.1). We hOpe, thrOugh the publicatiOn Of this vOlume, that the The high-speed line runs fOr 109km (68 miles) in tOtal, scale and impOrtance Of the assOciated archaeOlOgical between St Pancras InternatiOnal in LOndOn and the and histOric building investigatiOns will be becOme Channel Tunnel On the Kent cOast near FOlkestOne, and evident tO thOse with an interest in the heritage Of the cOnnects with the internatiOnal high speed rOutes regiOn. between LOndOn and Paris, and LOndOn and Brussels. Readers shOuld realise frOm the Outset that High HS1 SectiOn 1—the subject Of this bOOk—was the first Speed 1 was built in twO sectiOns, and that this vOlume is 74km sectiOn tO be built and lies entirely within Kent, cOncerned Only with SectiOn 1, which runs frOm the much Of it lies alOngside the rOute Of the M2 and M20 Channel Tunnel POrtal at FOlkestOne tO Fawkham mOtOrways.
    [Show full text]
  • Cost Overruns in Tunnelling Projects: Investigating the Impact of Geological and Geotechnical Uncertainty Using Case Studies
    infrastructures Article Cost Overruns in Tunnelling Projects: Investigating the Impact of Geological and Geotechnical Uncertainty Using Case Studies Chrysothemis Paraskevopoulou * and Georgios Boutsis School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK; [email protected] * Correspondence: [email protected] Received: 13 August 2020; Accepted: 7 September 2020; Published: 8 September 2020 Abstract: Tunnelling projects seldom meet the initial budget requirements. Commonly, these types of projects suffer from cost overruns, which subsequently lead to project delivery delays mainly due to unsuccessful ground investigation as specified in the literature. The presented work scrutinises the effect of ground investigation in cost overruns. More specifically, various cost figures (total cost, construction cost, tunnel cost) are analysed for two case studies i) the Channel tunnel in the UK and ii) the Olmos Tunnel in Peru. Clayton’s relation between ground investigation and the construction cost is utilised and further investigated. In the Channel tunnel, the main problems faced led to a cost overrun of 78% for the total cost, 66% for the construction cost and 77% for the tunnelling cost. In the Olmos tunnel, two main geological scenarios are analysed and the construction cost overrun is calculated at 9.6% and 6.7%. Drawing on the conclusions, this research work proves that ground investigation can be one of the major factors influencing the tunnel cost. Keywords: tunnelling cost; tunnel cost overruns; uncertainty; ground investigation 1. Introduction Tunnelling construction is growing worldwide as a result of increasing population requiring a wider use of confined space as well as the upkeep of the existing one resulting in rising cost [1,2].
    [Show full text]
  • Hs1 New Operator Guide
    HS1 NEW OPERATOR GUIDE FEBRUARY 2013 HS1 New Operator Guide - February 2013 Table of Contents 1. Introduction .................................................................................................................................... 3 1.1. HS1 overview .......................................................................................................................... 3 1.2. Benefits of using HS1 .............................................................................................................. 6 1.3. Stations and onward connections......................................................................................... 10 1.4. Key industry relationships ..................................................................................................... 14 1.5. Document structure .............................................................................................................. 15 2. Stakeholders ................................................................................................................................. 16 3. Regulatory bodies and approvals required ................................................................................... 19 3.1. ORR........................................................................................................................................ 20 3.2. Department for Transport (DfT) ........................................................................................... 22 3.3. DfT, Land Transport Security Division (LTSD) .......................................................................
    [Show full text]
  • Tim Smart Smart Director Engineering & Assets
    Tim Smart Director Engineering & Assets HS1 AGENDA • HS1 Overview • Ctti&EiiOiConstruction & Engineering Overview. • Funding • Pt&DliProcurement & Delivery • Operating Railway HS1 Overview: Infrastucture Domestic Temple Mills • 109 km modern, main lines train depot high speed track Ripple Lane freight connection linking London to Europe North Kent line Singlewell • 4i4 in terna tiona l Waterloo connection maintenance depot stations in areas undergoing East Kent major domestic line Channel regeneration and Tunnel St Pancras Stratford Ebbsfleet Ashford boundary growth Int’l Int’l Int’l Int’l • Breadth of Dollands Moor connections to freight terminal classic network HS1 Overview: Key Aspects • UK’s first High Speed Line. – London to Paris 2hr 15 min – London to Brussels 1 hr 51mins – Kent fast domestics service provides under half the journey time • Connects to Europe as part of the TEN’s • 109 Km of high speed track. – Max line speed 300km/h. Freight 140 Km/h • Project included construction of 4 stations; 2 depots. • HS1 as stimulated significant regional growth HS1 Overview: European TEN’s HS1 Overview: Timeline 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 Initial British Rail Route Studies Arup Route Chosen Reference Design Public Consultation CTRL Parliamentary Bill PPP Bidding LCR Awarded PPP Concession Design & Approvals Advanced Construction Works Section 1 Construction & Commissioning Section 2 Construction & Commissioning AGENDA • HS1 Overview • Ctti&EiiOiConstruction & Engineering Overview. • Funding • Procurement & Delivery • Operating Railway Construction & Engineering Overview: Open Line Cross Section UIC Gauge C. Largely TSI compliant 90 Km on ballasted track Construction of the railway also required 65 Km roads Route constructed low and in cutting for environmental reasons Construction & Engineering Overview: Significant Structures.
    [Show full text]