Thesis Rests with the Author

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Rests with the Author University of Bath PHD Characterisation of two mouse mutant lines generated by transgene insertional mutagenesis Paisley, Derek John Award date: 2000 Awarding institution: University of Bath Link to publication Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 10. Oct. 2021 CHARACTERISATION OF TWO MOUSE MUTANT LINES GENERATED BY TRANSGENE INSERTIONAL MUTAGENESIS Submitted by Derek John Paisley for the degree of PhD of the University of Bath 2000 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with the author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the thesis and no information derived from it may be published without the prior written consent of the author. This thesis may be made available for consultation within the University Library and may be photocopied or lent to other libraries for the purposes of consultation. Signed UMI Number: U601901 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U601901 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 UNIVERSITY OF BATH LIBRARY - 3 or.T 2001 R-V. 1 Characterisation of Two Mouse Mutant Lines Generated By Transgene Insertional Mutagenesis Derek John Paisley, PhD University of Bath, 2000 ABSTRACT Some 74 lines of transgenic mice were screened for insertional mutant phenotypes using a two-step breeding strategy. A number of interesting developmental mutations were identifed and confirmed as resulting from transgene insertional mutagenesis. The further characterisation of two of these lines is described. The Ann line displayed a severe ataxic phenotype, leading to death at an early age. Histological analysis of the brains of these mice revealed abnormal neuronal patterning in the cerebellum, cerebral cortex and hippocampus. The site of transgene insertion was mapped on Chromsome 4 by a combination of Fluorescence In-Situ Hybridisation (FISH) and backcross linkage mapping. The expression of several candidate genes mapping close to the transgene was tested. Expression of the mouse disabled ( mdabl) gene was completely ablated in the brains of Ann mutants. Several mutant alleles of this gene have already been described that result in a phenotype indistinguishable from that seen in Ann mutants. The Ann mutant thus represents a new member of a pre-existing allelic series at this locus. 2 Male homozygotes of the Ob transgenic line have never been identified. That a significant proportion of Ob transgenic males did not breed strongly suggested that this line was affected by male sterility. Non-breeding males were confirmed as homozygous transgenics by FISH on interphase chromosome spreads. Additionally, histological studies showed abnormalities in testicular morphology as well as a reduction in a subset of spermatogenic cell types. Again the site of transgene insertion was mapped by FISH and linkage mapping. No strong candidate genes are present around the site of transgene integration on chromosome 8 suggesting that a novel mutation could be present in the Ob line. I wish to dedicate this thesis to my parents, Kathleen and Alexander Paisley. 4 ACKNOWLEDGMENTS Firstly, I would like to give my warmest thanks to my supervisor Dr. Andrew Ward. Not just for his excellent supervision but also for taking me on when I most needed a break. The contribution made by Dr. Bill Bennett to my PhD cannot be understated. Bill not only led the way but also set an extremely high standard that I could only hope to live up to. Thanks to everyone else in lab 0.76 and the rest of the Developmental Biology Programme for generating an enjoyable, challenging and often exhilarating atmosphere in which to work. I must also mention the staff of the University of Bath animal facility for their camaraderie. I thank my Mother and Father for their unstinting personal support. I also cannot forget Claire Adams for sharing the mostly good times with me during our tenure in Bath. A special mention must go to Eamon Mallon for putting up with me and still managing to be my favourite ever flatmate/lunchtime companion. More than thanks go to Lucy Allen for providing me with the best ever excuse to take a break from writing-up. Thanks to Benjamin Cravatt for providing the faah cDNA clone and to Chris Walsh and Jonathan Cooper for the mdabl clones. Janet Smith provided guidance for perfusion fixation. Thanks also to Professor Chris Graham who assisted me in re-deriving a number of lines in Bath. Muriel Lee provided technical advice for FISH and G-banding and also an expert opinion on chromosomal assignments. ABBREVIATIONS A adenosine bp base pairs BSA bovine serum albumin, fraction V C cytosine cDNA complimentary DNA CCD centrally conserved domain (Igf2/H19 intergenic region) CCD charge-coupled device (camera) Chr chromosome cM centimorgan(s) CNS central nervous system DEPC diethylpyrocarbonate DMR Igf2 5' differentially methylated region DNA deoxyribonucleic acid EDTA ethylene diamine tetra-acetic acid, sodium salt ENU ethylnitrosourea ES cells embryonic stem cells EtBr ethidium bromide EtOH ethanol FITC fluorescein isothiocyanate H&E haematoxylin and eosin IAP intracistemal A particle m gene encoding insulin-like growth factor-II IMS industrial methylated spirit kb kilobase(s) LB Luria-Bertani medium Luc luciferase coding region M molar MOPS 3-[N-Morpholino]propanesulfonic acid mRNA messanger ribonucleic acid nt mucleotide(s) NTD neural tube defect OD optical density PAC phage (PI) artificial chromosome PBS phosphate buffered saline PCR polymerase chain reaction QTL quantitative trait locus RFLP restriction fragment length polymorphism RI recombinant inbred rpm revolutions per minute Rnase ribonuclease RT reverse transcriptase SDS sodium dodecyl sulfate SSC 150mM NaCl, 15mM Na citrate SSCT 4xSSC containing 0.05% Tween-20 SSCTM SSCT + 5% non-fat milk SSPE 20mM NaHjPO^ 0.3M NaCl, 2mM EDTA SV40 simian virus 40 TBE tris/boric acid/EDTA TE lOmM Tris.HCl pH 8.0, ImM EDTA YAC yeast artificial chromosome 7 TABLE OF CONTENTS ABSTRACT......................................................................................................................................... 1 ACKNOWLEDGMENTS................................................................................................................... 4 ABBREVIATIONS.............................................................................................................................. 5 TABLE OF CONTENTS....................................................................................................................7 LIST OF TABLES............................................................................................................................ 15 LIST OF FIGURES.......................................................................................................................... 16 CHAPTER 1: INTRODUCTION ........................................................................................................................... 18 1.1 T he L a b o r a t o r y M o u se A s A M o del S y s t e m ................................................................................... 19 1.2 T ools Fo r st u d y in g Th e M o u se Gen o m e - Gen o ty pe b a s e d A n a l y s is ...............................20 1.2.1 Gene targeting ........................................................................................................................20 1.2.2 CreAox P technology .............................................................................................................23 1.3 T ools F o r St u d y in g T h e M o u se Gen o m e - P h eno ty pe B a s e d A n a l y sis ............................ 25 1.3.1 Gene traps .............................................................................................................................. 25 1.3.2 Transgene insertional mutagenesis ..................................................................................... 26 1.3.3 Mutagenic agents ...................................................................................................................2
Recommended publications
  • Determining the Role of P53 Mutation in Human Breast
    Determining the Role of p53 Mutation in Human Breast Cancer Progression Using Recombinant Mutant/Wild-Type p53 Heterozygous Human Mammary Epithelial Cell Culture Models Item Type text; Electronic Dissertation Authors Junk, Damian Jerome Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 18:36:12 Link to Item http://hdl.handle.net/10150/193600 DETERMINING THE ROLE OF P53 MUTATION IN HUMAN BREAST CANCER PROGRESSION USING RECOMBINANT MUTANT/WILD-TYPE P53 HETEROZYGOUS HUMAN MAMMARY EPITHELIAL CELL CULTURE MODELS by Damian Jerome Junk _________________________ A Dissertation Submitted to the Faculty of the GRADUATE INTERDISCIPLINARY PROGRAM IN CANCER BIOLOGY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2008 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Damian Jerome Junk entitled Determining the Role of p53 Mutation in Human Breast Cancer Progression Using Recombinant Mutant/Wild-Type p53 Heterozygous Human Mammary Epithelial Cell Culture Models and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: 4/18/08 Bernard W. Futscher, Ph.D. _______________________________________________________________________ Date: 4/18/08 Anne E. Cress, Ph.D. _______________________________________________________________________ Date: 4/18/08 Jesse D.
    [Show full text]
  • SPATA33 Localizes Calcineurin to the Mitochondria and Regulates Sperm Motility in Mice
    SPATA33 localizes calcineurin to the mitochondria and regulates sperm motility in mice Haruhiko Miyataa, Seiya Ouraa,b, Akane Morohoshia,c, Keisuke Shimadaa, Daisuke Mashikoa,1, Yuki Oyamaa,b, Yuki Kanedaa,b, Takafumi Matsumuraa,2, Ferheen Abbasia,3, and Masahito Ikawaa,b,c,d,4 aResearch Institute for Microbial Diseases, Osaka University, Osaka 5650871, Japan; bGraduate School of Pharmaceutical Sciences, Osaka University, Osaka 5650871, Japan; cGraduate School of Medicine, Osaka University, Osaka 5650871, Japan; and dThe Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan Edited by Mariana F. Wolfner, Cornell University, Ithaca, NY, and approved July 27, 2021 (received for review April 8, 2021) Calcineurin is a calcium-dependent phosphatase that plays roles in calcineurin can be a target for reversible and rapidly acting male a variety of biological processes including immune responses. In sper- contraceptives (5). However, it is challenging to develop molecules matozoa, there is a testis-enriched calcineurin composed of PPP3CC and that specifically inhibit sperm calcineurin and not somatic calci- PPP3R2 (sperm calcineurin) that is essential for sperm motility and male neurin because of sequence similarities (82% amino acid identity fertility. Because sperm calcineurin has been proposed as a target for between human PPP3CA and PPP3CC and 85% amino acid reversible male contraceptives, identifying proteins that interact with identity between human PPP3R1 and PPP3R2). Therefore, identi- sperm calcineurin widens the choice for developing specific inhibitors. fying proteins that interact with sperm calcineurin widens the choice Here, by screening the calcineurin-interacting PxIxIT consensus motif of inhibitors that target the sperm calcineurin pathway. in silico and analyzing the function of candidate proteins through the The PxIxIT motif is a conserved sequence found in generation of gene-modified mice, we discovered that SPATA33 inter- calcineurin-binding proteins (8, 9).
    [Show full text]
  • Structure of the Human Frataxin-Bound Iron-Sulfur Cluster Assembly Complex Provides Insight Into Its Activation Mechanism
    bioRxiv preprint doi: https://doi.org/10.1101/561795; this version posted February 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Structure of the human frataxin-bound iron-sulfur cluster assembly complex provides insight into its activation mechanism Nicholas G. Fox1,4, Xiaodi Yu2,4, Xidong Feng2, Henry J. Bailey1, Alain Martelli3, Joseph F. Nabhan3, Claire Strain-Damerell1, Christine Bulawa3, Wyatt W. Yue1,*, Seungil Han2,* 1Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, UK OX3 7DQ 2Discovery Sciences, Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, CT, 06340, United States 3Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, United States 4These authors contributed equally. *Correspondence should be addressed to Wyatt W. Yue, [email protected] Seungil Han, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/561795; this version posted February 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Iron-sulfur clusters (ISC) are essential in all life forms and carry out many crucial cellular functions. The core machinery for de novo ISC biosynthesis, located in the mitochondria matrix, is a five- protein complex containing the cysteine desulfurase NFS1 that is activated by frataxin (FXN), scaffold protein ISCU, accessory protein ISD11, and acyl-carrier protein ACP.
    [Show full text]
  • Mammalian Male Germ Cells Are Fertile Ground for Expression Profiling Of
    REPRODUCTIONREVIEW Mammalian male germ cells are fertile ground for expression profiling of sexual reproduction Gunnar Wrobel and Michael Primig Biozentrum and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, 4056 Basel, Switzerland Correspondence should be addressed to Michael Primig; Email: [email protected] Abstract Recent large-scale transcriptional profiling experiments of mammalian spermatogenesis using rodent model systems and different types of microarrays have yielded insight into the expression program of male germ cells. These studies revealed that an astonishingly large number of loci are differentially expressed during spermatogenesis. Among them are several hundred transcripts that appear to be specific for meiotic and post-meiotic germ cells. This group includes many genes that were pre- viously implicated in spermatogenesis and/or fertility and others that are as yet poorly characterized. Profiling experiments thus reveal candidates for regulation of spermatogenesis and fertility as well as targets for innovative contraceptives that act on gene products absent in somatic tissues. In this review, consolidated high density oligonucleotide microarray data from rodent total testis and purified germ cell samples are analyzed and their impact on our understanding of the transcriptional program governing male germ cell differentiation is discussed. Reproduction (2005) 129 1–7 Introduction 2002, Sadate-Ngatchou et al. 2003) and the absence of cAMP responsive-element modulator (Crem) and deleted During mammalian male
    [Show full text]
  • Experimental Validation of the Regulated Expression of Large Numbers of Non-Coding Rnas from the Mouse Genome
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Article Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome Timothy Ravasi,1,4,5 Harukazu Suzuki,2,4 Ken C. Pang,1,3,4 Shintaro Katayama,2,4 Masaaki Furuno,2,4,6 Rie Okunishi,2 Shiro Fukuda,2 Kelin Ru,1 Martin C. Frith,1,2 M. Milena Gongora,1 Sean M. Grimmond,1 David A. Hume,1 Yoshihide Hayashizaki,2 and John S. Mattick1,7 1ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia; 2Laboratory for Genome Exploration Research Group, RIKEN Genomic Science Center, RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan; 3T Cell Laboratory, Ludwig Institute for Cancer Research, Austin & Repatriation Medical Centre, Heidelberg VIC 3084, Australia Recent large-scale analyses of mainly full-length cDNA libraries generated from a variety of mouse tissues indicated that almost half of all representative cloned sequences did not contain an apparent protein-coding sequence, and were putatively derived from non-protein-coding RNA (ncRNA) genes. However, many of these clones were singletons and the majority were unspliced, raising the possibility that they may be derived from genomic DNA or unprocessed pre-mRNA contamination during library construction, or alternatively represent nonspecific “transcriptional noise.” Here we show, using reverse transcriptase-dependent PCR, microarray, and Northern blot analyses, that many of these clones were derived from genuine transcripts of unknown function whose expression appears to be regulated.
    [Show full text]
  • Poorna Roy Phd Dissertation
    ANALYZING AND CLASSIFYING BIMOLECULAR INTERACTIONS: I. EFFECTS OF METAL BINDING ON AN IRON-SULFUR CLUSTER SCAFFOLD PROTEIN II. AUTOMATIC ANNOTATION OF RNA-PROTEIN INTERACTIONS FOR NDB Poorna Roy A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2017 Committee: Neocles Leontis, Committee Co-Chair Andrew Torelli, Committee Co-Chair Vipaporn Phuntumart, Graduate Faculty Representative H. Peter Lu © 2017 Poorna Roy All Rights Reserved iii ABSTRACT Neocles B. Leontis and Andrew T. Torelli, Committee co-chairs This dissertation comprises two distinct parts; however the different research agendas are thematically linked by their complementary approaches to investigate the nature of important intermolecular interactions. The first part is the study of interactions between an iron-sulfur cluster scaffold protein, IscU, and different transition metal ions. Interactions between IscU and specific metal ions are investigated and compared with those of SufU, a homologous Fe-S cluster biosynthesis protein from Gram-positive bacteria whose metal-dependent conformational behavior remains unclear. These studies were extended with additional metal ions selected to determine whether coordination geometry at the active sites of IscU and its homolog influence metal ion selectivity. Comparing the conformational behavior and affinity for different transition metal ions revealed that metal-dependent conformational transitions exhibited by IscU may be a recurring strategy exhibited by U-type proteins involved in Fe-S cluster biosynthesis. The second part of the thesis focuses on automated detection and annotation of specific interactions between nucleotides and amino acid residues in RNA-protein complexes.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Structural Flexibility of Escherichia Coli Iscu, the Iron-Sulfur Cluster Scaffold Protein
    Journal of the Korean Magnetic Resonance Society 2020, 24, 86-90 DOI 10.6564/JKMRS.2020.24.3.086 Structural flexibility of Escherichia coli IscU, the iron-sulfur cluster scaffold protein Bokyung Kim and Jin Hae Kim* Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea Received Sep 15, 2020; Revised Sep 18, 2020; Accepted Sep 18, 2020 Abstract Iron-sulfur (Fe-S) clusters are one of the Introduction most ancient yet essential cofactors mediating various essential biological processes. In prokaryotes, Fe-S Iron-sulfur clusters are essential and ubiquitous clusters are generated via several distinctive cofactors mediating various important biological biogenesis mechanisms, among which the ISC (Iron- activities.1 Owing to superiority of iron ions in Sulfur Cluster) mechanism plays a house-keeping role accepting and donating electrons, an Fe-S cluster is to satisfy cellular needs for Fe-S clusters. The often employed for electron transport and redox Escherichia coli ISC mechanism is maintained by mechanisms, while its usage is not limited to them but several essential protein factors, whose structural extended to cover various indispensable biological characterization has been of great interest to reveal processes, such as iron and sulfur trafficking, enzyme mechanistic details of the Fe-S cluster biogenesis catalysis, and gene regulation.2 mechanisms. In particular, nuclear magnetic In eukaryotes, proteins mediating Fe-S cluster resonance (NMR) spectroscopic approaches have biogenesis reside in mitochondria, where most Fe-S contributed much to elucidate dynamic features not clusters are made and distributed to the entire cell.3 only in the structural states of the protein components Eukaryotic Fe-S cluster biogenesis mechanism is but also in the interaction between them.
    [Show full text]
  • TITLE PAGE Oxidative Stress and Response to Thymidylate Synthase
    Downloaded from molpharm.aspetjournals.org at ASPET Journals on October 2, 2021 -Targeted -Targeted 1 , University of of , University SC K.W.B., South Columbia, (U.O., Carolina, This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Mammalian Target of Rapamycin Coordinates Iron Metabolism with Iron-Sulfur Cluster Assembly Enzyme and Tristetraprolin
    Nutrition 30 (2014) 968–974 Contents lists available at ScienceDirect Nutrition journal homepage: www.nutritionjrnl.com Review Mammalian target of rapamycin coordinates iron metabolism with iron-sulfur cluster assembly enzyme and tristetraprolin Peng Guan Ph.D. a, Na Wang M.D. a,b,* a Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, Hebei Normal University, Hebei Province, China b School of Basic Medical Sciences, Hebei University of Traditional Chinese Medicine, Hebei Province, China article info abstract Article history: Both iron deficiency and excess are relatively common health concerns. Maintaining the body’s Received 18 October 2013 levels of iron within precise boundaries is critical for cell functions. However, the difference Accepted 15 December 2013 between iron deficiency and overload is often a question of a scant few milligrams of iron. The mammalian target of rapamycin (mTOR), an atypical Ser/Thr protein kinase, is attracting significant Keywords: amounts of interest due to its recently described role in iron homeostasis. Despite extensive study, Iron a complete understanding of mTOR function has remained elusive. mTOR can form two multi- Rapamycin protein complexes that consist of mTOR complex 1 (mTORC1) and mTOR complex 2. Recent Iron-sulfur clusters Tristetraprolin advances clearly demonstrate that mTORC1 can phosphorylate iron-sulfur cluster assembly Transferrin receptor enzyme ISCU and affect iron-sulfur clusters assembly. Moreover, mTOR is reported to control iron metabolism through modulation of tristetraprolin expression. It is now well appreciated that the hormonal hepcidin-ferroportin system and the cellular iron-responsive element/iron-regulatory protein regulatory network play important regulatory roles for systemic iron metabolism.
    [Show full text]