39 Mars Ice: Intermediate and Distant Past

Total Page:16

File Type:pdf, Size:1020Kb

39 Mars Ice: Intermediate and Distant Past 39 Mars Ice: Intermediate and Distant Past James W. Head Brown University Providence, RI [email protected] 37 Follow the Water on Mars: 1. Introduction: Current Environments and the Traditional View of Mars Climate History. 2. Recent changes in the understanding of Mars climate history: 3. Recent ice ages? The latitude-dependent layer. 4. High latitude ice reservoirs: The record of the north polar cap. 5. Mid-latitude ice deposits: Lobate debris aprons. 6. Mid-latitude ice deposits: Lineated valley fill and valley glaciers? 7. Tropical mountain glaciers: The Tharsis volcanoes. 8. Synthesis: The Amazonian: Climate History, Water, and Lessons for Life? - Heavy impact -Volcanism. - Low impact rates. bombardment. - Outflow - Tharsis volcanism continues. channels. - Valley - Early outflow channels. networks. - Oceans? - Late-stage polar caps. - “Warm/Wet” - South circumpolar - “Cold/Dry” late Mars. early Mars? deposits. The Amazonian Period of Mars History (Present to ~3 Ga) 1. Hydrological cycle: Reservoirs dominantly layered: -Atmosphere, cryosphere (surface and subsurface), groundwater. -Surface migration of volatiles is dominant climate change response. 2. Astronomical cycles are the dominant forcing function in climate change. 3. Present not typical; higher obliquity common. -Mars polar caps may be transient features. 4. More typical conditions might be: -Small to no polar caps, mid-latitude glaciation and ice sheets, tropical mountain glaciation. 5. Biological implications: -Large-scale, short term migration of microenvironments. -Local transient melting possible. -Transport mechanisms: dust/ice transport linked. -Look to Antarctic Dry Valleys for analogs. 39 Mars Ice: Intermediate and Distant Past: 1. Overview of Early Mars: Noachian and Hesperian. 2. Hesperian Mars: Outflow channels: Release, transport, and fate of ground water. 3. Hesperian Mars: Oceans on Mars?: When, where and for how long? 4. Hesperian Mars: South circumpolar ice sheets: Evidence for wet based glaciers and groundwater recharge. 5. Noachian Mars: Warm and wet? The valley networks. 6. Noachian Mars: Crater lakes and the Gusev paradox. 7. Noachian Mars: Warm and wet or cold and dry? 8. Synthesis: Where and how to look for extant and extinct life. - Heavy impact -Volcanism. - Low impact rates. bombardment. - Outflow - Tharsis volcanism continues. channels. - Valley - Early outflow channels. networks. - Oceans? - Late-stage polar caps. - “Warm/Wet” - South circumpolar - “Cold/Dry” late Mars. early Mars? deposits. 39 Mars Ice: Intermediate and Distant Past: 1. Overview of Early Mars: Noachian and Hesperian. 2. Hesperian Mars: Outflow channels: Release, transport, and fate of ground water. 3. Hesperian Mars: Oceans on Mars?: When, where and for how long? 4. Hesperian Mars: South circumpolar ice sheets: Evidence for wet based glaciers and groundwater recharge. 5. Noachian Mars: Warm and wet? The valley networks. 6. Noachian Mars: Crater lakes and the Gusev paradox. 7. Noachian Mars: Warm and wet or cold and dry? 8. Synthesis: Where and how to look for extant and extinct life. Ground Ice: Cryosphere and global aquifer system • Cryosphere is the primary reservoir for water on Mars. • Thickness of cryosphere is limited by internal heat flux. • Liquid water is stable below the cryosphere. • A global aquifer system should exist on Mars; upper boundary is bottom of cryosphere; lower boundary is depth of self compaction (~ 10 km). Outflow Channels • The most spectacular manifestations of fluvial activity on Mars. • Up to a few thousand km long. • Up to a few hundred km wide. • Up to a few km deep. • Start full-size at discrete sources. • Tributaries are rare, anastomosing pattern is common. Outflow channels: Characteristics. • Many outflow channels start at chaotic terrain. • Channels are broad, flat-floored, steep-sided valleys. • Within channels: streamline islands, terraced walls, grooves on floor. • These characteristics indicate that outflow channels were formed due to aqueous flooding events. Outflow channels: Mode of origin. • Outflow channels closely resemble terrestrial flood channels. • Flood channels are formed due to catastrophic release of water. • There are two main causes of martian floods: • Release of groundwater. • Draining of surface lakes. Outflow channels: Distribution. • Four main areas of outflow channel development: Chryse Planitia, Amazonis Planitia, Elysium-Utopia, Hellas Basin. • In Chryse, Amazonis and Hellas, outflow channels are Hesperian in age. In Elysium-Utopia, they are Amazonian. • The most important concentration of outflow channels is around Chryse. 39 Mars Ice: Intermediate and Distant Past: 1. Overview of Early Mars: Noachian and Hesperian. 2. Hesperian Mars: Outflow channels: Release, transport, and fate of ground water. 3. Hesperian Mars: Oceans on Mars?: When, where and for how long? 4. Hesperian Mars: South circumpolar ice sheets: Evidence for wet based glaciers and groundwater recharge. 5. Noachian Mars: Warm and wet? The valley networks. 6. Noachian Mars: Crater lakes and the Gusev paradox. 7. Noachian Mars: Warm and wet or cold and dry? 8. Synthesis: Where and how to look for extant and extinct life. Shorelines and Oceans. • Parker et al. mapped contacts 1 and 2 around northern lowlands. • Evidence for Contacts: – Progressive change in morphology. – Onlapping relationships between units. • Interpretation: – Contacts represented shorelines of ancient standing bodies of water, oceans. • Testing of ocean hypothesis: – Existence of oceans remained untested: 1) poorly known topography, 2) implications for shoreline elevations, water inventory. Shorelines and Oceans: MOLA data. • New MOLA data provide very important evidence to test for Mars oceans: -Elevation of contact 2 is close to an equipotential surface, -Surface below contact 2 is smoother at all scales, -Volume below contact 2 is equivalent to a global layer of water 100 m deep and lies within the range of estimates of available water on Mars. Fate of Outflow Channel Effluent Ponding in Northern Lowlands Under Current Mars Surface Conditions The Vastitas Borealis Formation: Sublimation Residue of an Ancient Ocean? 39 Mars Ice: Intermediate and Distant Past: 1. Overview of Early Mars: Noachian and Hesperian. 2. Hesperian Mars: Outflow channels: Release, transport, and fate of ground water. 3. Hesperian Mars: Oceans on Mars?: When, where and for how long? 4. Hesperian Mars: South circumpolar ice sheets: Evidence for wet based glaciers and groundwater recharge. 5. Noachian Mars: Warm and wet? The valley networks. 6. Noachian Mars: Crater lakes and the Gusev paradox. 7. Noachian Mars: Warm and wet or cold and dry? 8. Synthesis: Where and how to look for extant and extinct life. - Heavy impact -Volcanism. - Low impact rates. bombardment. - Outflow - Tharsis volcanism continues. channels. - Valley - Early outflow channels. networks. - Oceans? - Late-stage polar caps. - “Warm/Wet” - South circumpolar - “Cold/Dry” late Mars. early Mars? deposits. 39 Mars Ice: Intermediate and Distant Past: 1. Overview of Early Mars: Noachian and Hesperian. 2. Hesperian Mars: Outflow channels: Release, transport, and fate of ground water. 3. Hesperian Mars: Oceans on Mars?: When, where and for how long? 4. Hesperian Mars: South circumpolar ice sheets: Evidence for wet based glaciers and groundwater recharge. 5. Noachian Mars: Warm and wet? The valley networks. 6. Noachian Mars: Crater lakes and the Gusev paradox. 7. Noachian Mars: Warm and wet or cold and dry? 8. Synthesis: Where and how to look for extant and extinct life. Valley networks: • Rectangular or U-shaped cross- section. • Widths vary from <1 km to ~ 10 km. • Average length is ~60-70 km. • Occur preferentially in the southern hemisphere. • There are 827 valley networks on Mars. 759 valley networks are Noachian in age. • 34 are Hesperian in age, 34 are Amazonian. • Resemble river valleys on Earth, but not exactly. Valley networks: Planimetric shape and drainage density. • Planimetric shape of martian valley networks is simple. • Drainage density on Earth is about 2-30 km-1. • Drainage density on Mars is about 0.001-0.01 km-1. • Processes creating martian valley networks were far less efficient. Valley networks: Shape. • In many cases, the central valley has only a few tributaries. • Alcove-like terminations of tributaries and central valley suggest groundwater sapping. • When the density of valleys is great, surface runoff may play a role. Valley Network Origin: • Liquid water carves valley networks. • Erosion not sufficiently sustained to: – Develop large drainage basins. – Eliminate local depressions. • Water tended to pool in local depressions: – Soaks into ground. – Sublimates. • Does not keep overcome topography or keep pace. • Therefore, water occurred only sporadically. "Warm, Wet" Scenario Questioned: • Rapid scavenging of carbon dioxide. • Lack of evidence for abundant carbonates. • Lack of extensive weathering products. • Widespread evidence of olivine. • Effect of impact erosion. • Difficulties of climate models to produce rain. • Alternatives to producing water sporadically? Delivering Water Sporadically: • During periods of high obliquity: – Water driven off polar caps. – Deposited as snow at low to mid-latitudes. • Could such snowpacks then be melted by: – Top-down melting: Periodic climate warming. – Bottom-up melting: Enhanced heat flux. – Combination of both? Noachian Valley Networks: Conclusions • More liquid water on the surface in the Noachian. • Valley networks indicate overland flow in equatorial regions. • 1) Warm, wet (“rainy”) early Mars
Recommended publications
  • Design of Low-Altitude Martian Orbits Using Frequency Analysis A
    Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noullez, K. Tsiganis To cite this version: A. Noullez, K. Tsiganis. Design of Low-Altitude Martian Orbits using Frequency Analysis. Advances in Space Research, Elsevier, 2021, 67, pp.477-495. 10.1016/j.asr.2020.10.032. hal-03007909 HAL Id: hal-03007909 https://hal.archives-ouvertes.fr/hal-03007909 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design of Low-Altitude Martian Orbits using Frequency Analysis A. Noulleza,∗, K. Tsiganisb aUniversit´eC^oted'Azur, Observatoire de la C^oted'Azur, CNRS, Laboratoire Lagrange, bd. de l'Observatoire, C.S. 34229, 06304 Nice Cedex 4, France bSection of Astrophysics Astronomy & Mechanics, Department of Physics, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece Abstract Nearly-circular Frozen Orbits (FOs) around axisymmetric bodies | or, quasi-circular Periodic Orbits (POs) around non-axisymmetric bodies | are of primary concern in the design of low-altitude survey missions. Here, we study very low-altitude orbits (down to 50 km) in a high-degree and order model of the Martian gravity field. We apply Prony's Frequency Analysis (FA) to characterize the time variation of their orbital elements by computing accurate quasi-periodic decompositions of the eccentricity and inclination vectors.
    [Show full text]
  • Evidence for Volcanism in and Near the Chaotic Terrains East of Valles Marineris, Mars
    43rd Lunar and Planetary Science Conference (2012) 1057.pdf EVIDENCE FOR VOLCANISM IN AND NEAR THE CHAOTIC TERRAINS EAST OF VALLES MARINERIS, MARS. Tanya N. Harrison, Malin Space Science Systems ([email protected]; P.O. Box 910148, San Diego, CA 92191). Introduction: Martian chaotic terrain was first de- ple chaotic regions are visible in CTX images (Figs. scribed by [1] from Mariner 6 and 7 data as a “rough, 1,2). These fractures have widened since the formation irregular complex of short ridges, knobs, and irregular- of the flows. The flows overtop and/or bank up upon ly shaped troughs and depressions,” attributing this pre-existing topography such as crater ejecta blankets morphology to subsidence and suggesting volcanism (Fig. 2c). Flows are also observed originating from as a possible cause. McCauley et al. [2], who were the fractures within some craters in the vicinity of the cha- first to note the presence of large outflow channels that os regions. Potential lava flows are observed on a por- appeared to originate from the chaotic terrains in Mar- tion of the floor as Hydaspis Chaos, possibly associat- iner 9 data, proposed localized geothermal melting ed with fissures on the chaos floor. As in Hydraotes, followed by catastrophic release as the formation these flows bank up against blocks on the chaos floor, mechanism of chaotic terrain. Variants of this model implying that if the flows are volcanic in origin, the have subsequently been detailed by a number of au- volcanism occurred after the formation of Hydaspis thors [e.g. 3,4,5]. Meresse et al.
    [Show full text]
  • A Future Mars Environment for Science and Exploration
    Planetary Science Vision 2050 Workshop 2017 (LPI Contrib. No. 1989) 8250.pdf A FUTURE MARS ENVIRONMENT FOR SCIENCE AND EXPLORATION. J. L. Green1, J. Hol- lingsworth2, D. Brain3, V. Airapetian4, A. Glocer4, A. Pulkkinen4, C. Dong5 and R. Bamford6 (1NASA HQ, 2ARC, 3U of Colorado, 4GSFC, 5Princeton University, 6Rutherford Appleton Laboratory) Introduction: Today, Mars is an arid and cold world of existing simulation tools that reproduce the physics with a very thin atmosphere that has significant frozen of the processes that model today’s Martian climate. A and underground water resources. The thin atmosphere series of simulations can be used to assess how best to both prevents liquid water from residing permanently largely stop the solar wind stripping of the Martian on its surface and makes it difficult to land missions atmosphere and allow the atmosphere to come to a new since it is not thick enough to completely facilitate a equilibrium. soft landing. In its past, under the influence of a signif- Models hosted at the Coordinated Community icant greenhouse effect, Mars may have had a signifi- Modeling Center (CCMC) are used to simulate a mag- cant water ocean covering perhaps 30% of the northern netic shield, and an artificial magnetosphere, for Mars hemisphere. When Mars lost its protective magneto- by generating a magnetic dipole field at the Mars L1 sphere, three or more billion years ago, the solar wind Lagrange point within an average solar wind environ- was allowed to directly ravish its atmosphere.[1] The ment. The magnetic field will be increased until the lack of a magnetic field, its relatively small mass, and resulting magnetotail of the artificial magnetosphere its atmospheric photochemistry, all would have con- encompasses the entire planet as shown in Figure 1.
    [Show full text]
  • MARS DURING the PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- Boratory, University of Arizona
    Fourth Conference on Early Mars 2017 (LPI Contrib. No. 2014) 3078.pdf MARS DURING THE PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- boratory, University of Arizona, Tucson, AZ 85721, [email protected], 2Southwest Research Institute and NASA’s SSERVI-ISET team, 1050 Walnut St., Suite 300, Boulder, CO 80302. Introduction: The surface geology of Mars appar- ing the pre-Noachian was ~10% of that during the ently dates back to the beginning of the Early Noachi- LHB. Consideration of the sawtooth-shaped exponen- an, at ~4.1 Ga, leaving ~400 Myr of Mars’ earliest tially declining impact fluxes both in the aftermath of evolution effectively unconstrained [1]. However, an planet formation and during the Late Heavy Bom- enduring record of the earlier pre-Noachian conditions bardment [5] suggests that the impact flux during persists in geophysical and mineralogical data. We use much of the pre-Noachian was even lower than indi- geophysical evidence, primarily in the form of the cated above. This bombardment history is consistent preservation of the crustal dichotomy boundary, to- with a late heavy bombardment (LHB) of the inner gether with mineralogical evidence in order to infer the Solar System [6] during which HUIA formed, which prevailing surface conditions during the pre-Noachian. followed the planet formation era impacts during The emerging picture is a pre-Noachian Mars that was which the dichotomy formed. less dynamic than Noachian Mars in terms of impacts, Pre-Noachian Tectonism and Volcanism: The geodynamics, and hydrology. crust within each of the southern highlands and north- Pre-Noachian Impacts: We define the pre- ern lowlands is remarkably uniform in thickness, aside Noachian as the time period bounded by two impacts – from regions in which it has been thickened by volcan- the dichotomy-forming impact and the Hellas-forming ism (e.g., Tharsis, Elysium) or thinned by impacts impact.
    [Show full text]
  • Replace This Sentence with the Title of Your Abstract
    MARS GLOBAL GEOLOGIC MAPPING: ABOUT HALF WAY DONE. K.L. Tanaka1, J.M. Dohm2, R. Ir- win3, E.J. Kolb4, J.A. Skinner, Jr.1, and T.M. Hare1. 1U.S. Geological Survey, Flagstaff, AZ, [email protected], 2U. Arizona, Tucson, AZ, 3Smithsonian Inst., Washington, DC, 4Google, Inc., CA. Introduction: We are in the third year of a five-year face appearance and apparent burial of underlying ma- effort to map the geology of Mars using mainly Mars terials in MOLA altimetry and THEMIS infrared and Global Surveyor, Mars Express, and Mars Odyssey imag- visible image data sets. It appears to be tens of meters ing and altimetry datasets. Previously, we have reported thick, similar in thickness of the pedestals underlying on details of project management, mapping datasets (local pedestal craters in the same region [4-5]. Thus, the unit and regional), initial and anticipated mapping approaches, appears to have retreated from a former extent. Prelimi- and tactics of map unit delineation and description [1-2]. nary analysis of crater counts and stratigraphic relations For example, we have seen how the multiple types and suggests that the unit is long-lived, likely emplaced huge quantity of image data as well as more accurate and over multiple episodes. These and other observations detailed altimetry data now available allow for broader and interpretations are the topic of a paper in prepara- and deeper geologic perspectives, based largely on im- tion by Skinner and Tanaka, to be submitted in summer proved landform perception, characterization, and analy- of 2009. sis. Here, we describe mapping and unit delineation re- Remaining work: Mapping tasks that remain in- sults thus far, a new unit identified in the northern plains, clude: (1) delineating and describing Noachian and and remaining steps to complete the map.
    [Show full text]
  • Review of the MEPAG Report on Mars Special Regions
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/21816 SHARE Review of the MEPAG Report on Mars Special Regions DETAILS 80 pages | 8.5 x 11 | PAPERBACK ISBN 978-0-309-37904-5 | DOI 10.17226/21816 CONTRIBUTORS GET THIS BOOK Committee to Review the MEPAG Report on Mars Special Regions; Space Studies Board; Division on Engineering and Physical Sciences; National Academies of Sciences, Engineering, and Medicine; European Space Sciences Committee; FIND RELATED TITLES European Science Foundation Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions Committee to Review the MEPAG Report on Mars Special Regions Space Studies Board Division on Engineering and Physical Sciences European Space Sciences Committee European Science Foundation Strasbourg, France Copyright National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This study is based on work supported by the Contract NNH11CD57B between the National Academy of Sciences and the National Aeronautics and Space Administration and work supported by the Contract RFP/IPL-PTM/PA/fg/306.2014 between the European Science Foundation and the European Space Agency.
    [Show full text]
  • North Polar Region of Mars: Advances in Stratigraphy, Structure, and Erosional Modification
    Icarus 196 (2008) 318–358 www.elsevier.com/locate/icarus North polar region of Mars: Advances in stratigraphy, structure, and erosional modification Kenneth L. Tanaka a,∗, J. Alexis P. Rodriguez b, James A. Skinner Jr. a,MaryC.Bourkeb, Corey M. Fortezzo a,c, Kenneth E. Herkenhoff a, Eric J. Kolb d, Chris H. Okubo e a US Geological Survey, Flagstaff, AZ 86001, USA b Planetary Science Institute, Tucson, AZ 85719, USA c Northern Arizona University, Flagstaff, AZ 86011, USA d Google, Inc., Mountain View, CA 94043, USA e Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA Received 5 June 2007; revised 24 January 2008 Available online 29 February 2008 Abstract We have remapped the geology of the north polar plateau on Mars, Planum Boreum, and the surrounding plains of Vastitas Borealis using altimetry and image data along with thematic maps resulting from observations made by the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter spacecraft. New and revised geographic and geologic terminologies assist with effectively discussing the various features of this region. We identify 7 geologic units making up Planum Boreum and at least 3 for the circumpolar plains, which collectively span the entire Amazonian Period. The Planum Boreum units resolve at least 6 distinct depositional and 5 erosional episodes. The first major stage of activity includes the Early Amazonian (∼3 to 1 Ga) deposition (and subsequent erosion) of the thick (locally exceeding 1000 m) and evenly- layered Rupes Tenuis unit (ABrt), which ultimately formed approximately half of the base of Planum Boreum. As previously suggested, this unit may be sourced by materials derived from the nearby Scandia region, and we interpret that it may correlate with the deposits that regionally underlie pedestal craters in the surrounding lowland plains.
    [Show full text]
  • Workers' Guide to Health and Safety
    Workers’ Guide to Health and Safety by Todd Jailer Miriam Lara-Meloy and Maggie Robbins health guides Berkeley, California, USA Copyright © 2015 by Hesperian Health Guides. All rights reserved. ISBN: 978-0-942364-71-2 Hesperian encourages you to copy, reproduce, or adapt any or all parts of this book, including the illustrations, provided that you do this for non-commercial purposes, credit Hesperian, and follow the other requirements of Hesperian’s Open Copyright License (see www.hesperian.org/about/open-copyright). For certain kinds of adaptation and distribution, we ask that you first obtain permission from Hesperian. Contact [email protected] to use any part of this book: for commercial purposes; in quantities more than 100 print copies; in any digital format; or with an organizational budget more than US $1 million. We also ask that you contact Hesperian for permission before beginning any translation, to avoid duplication of efforts, and for suggestions about adapting the information in this book. Please send Hesperian a copy of any materials in which text or illustrations from this book have been used. THIS EDITION CAN BE IMPROVED WITH YOUR HELP. If you are a worker health promoter, occupational safety and health professional, community organizer, or anyone with ideas or suggestions for ways this book could be changed to better meet the needs of your community, please write to Hesperian. Thank you for your help. This book has been printed in Canada by Friesens, an employee-owned corporation, on 100% post-consumer, chlorine-free, recycled paper. health guides Hesperian Health Guides 1919 Addison St.
    [Show full text]
  • “Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
    National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target
    [Show full text]
  • Volcanism on Mars
    Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny.
    [Show full text]
  • Environmental Change and the Carbon Balance of Amazonian Forests
    Biol. Rev. (2014), 89, pp. 913–931. 913 doi: 10.1111/brv.12088 Environmental change and the carbon balance of Amazonian forests Luiz E. O. C. Aragao˜ 1,2,∗, Benjamin Poulter3, Jos B. Barlow4,5, Liana O. Anderson2,6, Yadvinder Malhi6, Sassan Saatchi7, Oliver L. Phillips8 and Emanuel Gloor8 1College of Life and Environmental Sciences, Geography University of Exeter, Exeter EX4 4RJ, U.K. 2Remote Sensing Division, National Institute for Space Research, Av. dos Astronautas, 1758, S˜ao Jos´e dos Campos, Sao Paulo 12227-010, Brazil 3Laboratoire des Sciences du Climat et de L’Environment, CEA, UVSQ, CNRS, 91190, Gif-sur Yvette, France 4Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K. 5Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Bel´em, Par´a 66077-830, Brazil 6School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, U.K. 7Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, U.S.A. 8School of Geography, University of Leeds, Leeds LS2 9JT, U.K. ABSTRACT Extreme climatic events and land-use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21st Century.
    [Show full text]
  • Estimating the Volume of Glacial Ice on Mars
    EPSC Abstracts Vol. 8, EPSC2013-111, 2013 European Planetary Science Congress 2013 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2013 Estimating the volume of glacial ice on Mars: Geographic and geometric constraints on concentric crater fill, lineated valley fill, and lobate debris aprons along the Martian dichotomy boundary C. Fassett (1), J. Levy (2) and J. Head (3) (1) Mount Holyoke College, South Hadley, MA, USA (2) University of Texas at Austin, USA (3) Brown University, Providence, RI, USA ([email protected]) Abstract Once the spatial extent of these features was established, we are using geometric tools to infer the Landforms inferred to have formed from volumetric extent of glacial landforms. For example, glacial processes are abundant on Mars and include for CCF, several morphometric properties were features such as concentric crater fill (CCF), lobate extracted from catalogues of northern hemisphere debris aprons (LDA), and lineated valley fill (LVF). crater morphologies [13] including: crater diameter, Here, we present new mapping of the spatial extent d and measured crater depth, Dm. CCF fill radius, rf of these landforms derived from CTX and THEMIS is measured from CTX images of the crater, VIS image data, and new geometric constraints on measured along two orthogonal profiles that span the the volume of glaciogenic fill material present in spatial limit of “brain terrain” surface texture or concentric crater fill deposits. concentric surface lineations. Using these quantities measured from MOLA 1. Introduction and CTX data, relationships between fresh-crater Debris-covered glacial landforms such as depths and diameters on Mars [14], coupled with CCF, LVF, and LDA are widespread on Mars and elementary calculus (solids of rotation), permit us to have been long inferred to represent locations of make quantitative estimates of CCF fill volume (note: abundant ground ice preserved at mid-latitude this method does not distinguish between prior fill locations [1-12].
    [Show full text]