Thermodynamics of Accelerating Black Holes

Total Page:16

File Type:pdf, Size:1020Kb

Thermodynamics of Accelerating Black Holes Durham E-Theses Thermodynamics of Accelerating Black Holes APPELS, MICHAEL,JOHN How to cite: APPELS, MICHAEL,JOHN (2018) Thermodynamics of Accelerating Black Holes, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/12737/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Thermodynamics of Accelerating Black Holes Three years with the C-metric Michael Appels A thesis presented for the degree of Doctor of Philosophy Centre for Particle Theory Department of Mathematical Sciences Durham University United Kingdom July 2018 Thermodynamics of Accelerating Black Holes Three years with the C-metric Michael Appels Submitted for the degree of Doctor of Philosophy July 2018 Abstract: We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermo- dynamics, with the usual identification of entropy proportional to the area of the event horizon — even though the event horizon contains a conical singularity. We show how to generalise this result, formulating thermodynamics for black holes with varying conical deficits. We derive a new potential for the varying tension defects: the thermodynamic length, both for accelerating and static black holes. We discuss possible physical processes in which the tension of a string ending on a black hole might vary, and also map out the thermodynamic phase space of accelerating black holes and explore their critical phenomena. We then revisit the critical limit in which asymptotically-AdS black holes develop maximal conical deficits, first for a stationary rotating black hole, and then for an accelerated black hole, by taking various upper bounds for the parameters in the spacetimes presented. We explore the thermodynamics of these geometries and evaluate the reverse isoperimetric inequal- ity, and argue that the ultra-spinning black hole only violates this condition when it is nonaccelerating. Finally, we return to some of our earlier findings and adjust them in light of new results; a new expression for the mass is obtained by computing the dual stress-energy tensor for the spacetime and finding that it corresponds to a relativistic fluid with a nontrivial viscous shear tensor. We compare the holographic computation with the method of conformal completion showing it yields the same result for the mass. Declaration The work in this thesis is based on research carried out in the Department of Mathematical Sciences at Durham University. The results presented have in part already appeared in the following publications: • M. Appels, R. Gregory and D. Kubiznak, Thermodynamics of Accelerating Black Holes, Phys. Rev. Lett. 117 (2016) 131303, [1604.08812] • M. Appels, R. Gregory and D. Kubiznak, Black Hole Thermodynamics with Conical Defects, JHEP 05 (2017) 116, [1702.00490] • A. Anabalon, M. Appels, R. Gregory, D. Kubiznak, R. B. Mann and A. Övgün, Holographic Thermodynamics of Accelerating Black Holes, 1805.02687 Any section reproduced from these articles has been done so with the full consent and permission from the relevant collaborators. No part of this thesis has been submitted elsewhere for any degree or qualification. Copyright © 2018 Michael Appels. “The copyright of this thesis rests with the author. No quotation from it should be published without the author’s prior written consent and information derived from it should be acknowledged.” Acknowledgements Completing this PhD has been a long journey, and there are certain people whom I must recognise as being vital parts of that time spent. Furthermore, I would like to also take this opportunity to recognise people who I count as having contributed to this accomplishment either during or prior to my time as a postgraduate. First and foremost, I would like to extend my deepest thanks to Ruth Gregory for her invaluable guidance and supervision throughout the past three years. Ruth has given me the freedom to flourish as a physicist while giving me sound and most welcome advice in unfamiliar situations. My time as a PhD has been thoroughly exciting thanks to her, affording me countless opportunities to work alongside and interact with the brightest minds in the field, as well as providing me with near-VIP treatment at many international airport lounges. I would like to thank my collaborators Andrés Anabalón, Robert Mann, Ali Övgün, Pavel Krtouš and especially David Kubizňák, who has been extremely calm and patient and willing to explain many subtleties I had once failed to grasp. I would like to thank Aristos Donos for being my secondary supervisor and always being willing to have a quick chat. I would also like to thank Nigel Glover and Sebastián Franco for being so encouraging during my years as an undergraduate and providing me with the necessary mentoring in the lead-up to my PhD. Finally, I would like to thank the administrative and support staff both from the department in Durham and at the Perimeter Institute in Canada. On a personal level, I am extremely grateful to have such a supportive family. They have encouraged my curiosity from my earliest years all the way through to this day. I am also very fortunate to have so many kind friends, both back home in Belgium and in England from my time at Durham; thank you to all who have played a part in this journey. Leo, Omar and Akash have been amazing friends to have for the last four years, and I would most certainly not have had nearly as good a time as I have if it were not for the three of them. From Capriccio Mondays to sharing a house, trips to Canada, Denmark and Italy and an innumerable amount of hours spent helping each viii Acknowledgements other understand the minutia of theoretical physics, their collective impact on my PhD cannot be understated. Finally, perhaps the most important person to have helped me through this process, from beginning to end, Lara has been invaluable to me. I thank her for her endless patience and unwavering support, for the many adventures we shared together, but probably above all else for all the little things she probably thought went unnoticed; they didn’t. Thank you to the Science and Technology Facilities Council (STFC) for funding my research. Thank you to the Perimeter Institute for Theoretical Physics for hosting me three times during my PhD. Finally, thank you to the GGI in Florence, the NBI in Copenhagen, the Oviedo University, the FIAS in Frankfurt, the DAMTP in Cambridge and King’s College in London for hosting me at various times during this degree. Dedicated to Mum & Dad, Grandpa Ian & Granny Liz, Grandpa Bob & Granny Anne. Contents Preface 1 Conventions . 2 1 Black hole thermodynamics/mechanics 5 1.1 The laws of black hole mechanics . 5 1.2 The first law . 9 1.3 The Euclidean approach to black hole thermodynamics . 13 1.4 Incorporating Λ .............................................. 15 1.4.1 Thermodynamics of the Kerr-AdS black hole . 15 1.4.2 Pressure and volume of black hole spacetimes . 19 1.4.3 Thermodynamic stability and phase transitions. 21 2 Acceleration and the C-metric 27 2.1 Origins of the C-metric . 27 2.2 The Plebański-Demiański metric . 30 2.2.1 From Plebański-Demiański to the C-metric . 32 2.2.2 From Plebański-Demiański to the Kerr-Newman metric . 33 2.2.3 The factorised C-metric . 33 2.3 Reviewing the C-metric and its features . 36 2.3.1 The nonrotating C-metric . 36 2.3.2 Coordinate ranges and parametric restrictions . 38 2.3.3 The conical defect . 40 2.3.4 The rotating C-metric . 41 xii Contents 3 Thermodynamics of black holes with conical defects 45 3.1 Thermodynamics with conical deficits . 46 3.1.1 A concrete example — capture of a cosmic string . 48 3.2 Thermodynamic length for the rotating black hole . 49 3.3 The thermodynamic length . 52 4 Thermodynamics of accelerating black holes 55 4.1 Thermodynamics of the C-metric . 56 4.1.1 Establishing a first law . 56 4.1.2 Thermodynamics of the charged C-metric . 61 4.2 Critical behaviour of accelerating black holes . 66 4.3 Critical black holes with teardrop-shaped horizons . 72 4.3.1 Critical black hole geometries . 73 4.3.2 Thermodynamics of the critical C-metric . 77 4.3.3 Thermodynamics for the rotating C-metric . 80 5 Holographic thermodynamics of accelerating black holes 87 5.1 Mass of an accelerated black hole . 87 5.1.1 The Ashtekar-Das mass . 90 5.1.2 Holographic derivation of the mass . 91 5.2 Thermodynamics . 93 6 Concluding remarks and outlook 99 6.1 Thermodynamics of the rotating accelerating black hole . 101 Bibliography 103 Preface The 1970s brought in a new era for research into black holes by drawing parallels between the classical theory of thermodynamics and these gravitational solutions. This newly found application for a century old machinery opened many avenues for this research. Indeed, black holes have been discovered to display a wide and diverse variety of phenomena, much of which were made evident from studies into thermodynamics.
Recommended publications
  • Strong Field Dynamics of Bosonic Fields
    Strong field dynamics of bosonic fields: Looking for new particles and modified gravity William East, Perimeter Institute ICERM Workshop October 26, 2020 ... Introduction How can we use gravitational waves to look for new matter? Can we come up with alternative predictions for black holes and/or GR to test against observations? Need understanding of relativistic/nonlinear dynamics for maximum return William East Strong field dynamics of bosonic fields ... Three examples with bosonic fields Black hole superradiance, boson stars, and modified gravity with non-minially coupled scalar fields William East Strong field dynamics of bosonic fields ... Gravitational wave probe of new particles Search new part of parameter space: ultralight particles weakly coupled to standard model William East Strong field dynamics of bosonic fields ... Superradiant instability: realizing the black hole bomb Massive bosons (scalar and vector) can form bound states, when frequency ! < mΩH grow exponentially in time. Search for new ultralight bosonic particles (axions, dark massive “photons," etc.) with Compton wavelength comparable to black hole radius (Arvanitaki et al.) William East Strong field dynamics of bosonic fields ... Boson clouds emit gravitational waves WE (2018) William East Strong field dynamics of bosonic fields ... Boson clouds emit gravitational waves 50 100 500 1000 5000 104 107 Can do targeted 105 1000 searches–e.g. follow-up 10 0.100 black hole merger events, 0.001 1 or “blind" searches 0.8 0.6 Look for either resolved or 0.4 1 stochastic sources with 0.98 0.96 LIGO (Baryakthar+ 2017; 0.94 Zhu+ 2020; Brito+ 2017; 10-12 10-11 10-10 Tsukada+ 2019) Siemonsen & WE (2020) William East Strong field dynamics of bosonic fields ..
    [Show full text]
  • The Superradiant Stability of Kerr-Newman Black Holes
    The superradiant stability of Kerr-Newman black holes Wen-Xiang Chen and Jing-Yi Zhang1∗ Department of Astronomy, School of Physics and Materials Science, GuangZhou University, Guangzhou 510006, China Yi-Xiao Zhang School of Information and Optoelectronic Science and Engineering, South China Normal University In this article, the superradiation stability of Kerr-Newman black holes is discussed by introducing the condition used in Kerr black holes y into them. Moreover, the motion equation of the minimal coupled scalar perturbation in a Kerr-Newman black hole is divided into angular and radial parts. We adopt the findings made by Erhart et al. on uncertainty principle in 2012, and discuss the bounds on y. 1. INTRODUCTION The No Hair Theorem of black holes first proposed in 1971 by Wheeler and proved by Stephen Hawking[1], Brandon Carter, etc, in 1973. In 1970s, the development of black hole thermodynamics applies the basic laws of thermodynamics to the theory of black hole in the field of general relativity, and strongly implies the profound and basic relationship among general relativity, thermodynamics and quantum theory. The stability of black holes is an major topic in black hole physics. Regge and Wheeler[2] have proved that the spherically symmetric Schwarzschild black hole is stable under perturbation. The great impact of superradiance makes the stability of rotating black holes more complicated. Superradiative effects occur in both classical and quantum scattering processes. When a boson wave hits a rotating black hole, chances are that rotating black holes are stable like Schwarzschild black holes, if certain conditions are satisfied[1–9] a ! < mΩH + qΦH ;ΩH = 2 2 (1) r+ + a where q and m are the charge and azimuthal quantum number of the incoming wave, ! denotes the wave frequency, ΩH is the angular velocity of black hole horizon and ΦH is the electromagnetic potential of the black hole horizon.
    [Show full text]
  • The Extremal Black Hole Bomb
    The extremal black hole bomb João G. Rosa Rudolf Peierls Centre for Theoretical Physics University of Oxford arXiv: 0912.1780 [hep‐th] "II Workshop on Black Holes", 22 December 2009, IST Lisbon. Introduction • Superradiant instability: Press & Teukolsky (1972-73) • scattering of waves in Kerr background (ergoregion) • f or modes with , scattered wave is amplified • Black hole bomb: Press & Teukolsky (1972), Cardoso et al. (2004), etc • multiple scatterings induced by mirror around BH • c an extract large amounts of energy and spin from the BH • Natural mirrors: • inner boundary of accretion disks Putten (1999), Aguirre (2000) • massive field bound states 22/12/09 The extremal black hole bomb, J. G. Rosa 2 Introduction • Estimates of superradiant instability growth rate (scalar field): • small mass limit: Detweiller (1980), Furuhashi & Nambu (2004) • lar ge mass limit: Zouros & Eardley (1979) • numeric al: Dolan (2007) 4 orders of magnitude • r ecent analytical: Hod & Hod (2009) discrepancy! 10 • µM 1 µ 10− eV Phenomenology: ∼ ⇒ ! • pions: mechanism effective if instability develops before decay, but only for small primordial black holes • “string axiverse”: Arvanitaki et al. (2009) many pseudomoduli acquire small masses from non‐perturbative string instantons and are much lighter than QCD axion! • Main goals: • c ompute superradiant spectrum of massive scalar states • f ocus on extremal BH and P‐wave modes (l=m=1) maximum growth rate • check discr epancy! 22/12/09 The extremal black hole bomb, J. G. Rosa 3 The massive Klein‐Gordon equation • Massive Klein‐Gordon equation in curved spacetime: • field decomposition: • angular part giv en in terms of spheroidal harmonics • Schrodinger‐like radial eq.
    [Show full text]
  • Schwarzschild Black Hole Can Also Produce Super-Radiation Phenomena
    Schwarzschild black hole can also produce super-radiation phenomena Wen-Xiang Chen∗ Department of Astronomy, School of Physics and Materials Science, GuangZhou University According to traditional theory, the Schwarzschild black hole does not produce super radiation. If the boundary conditions are set in advance, the possibility is combined with the wave function of the coupling of the boson in the Schwarzschild black hole, and the mass of the incident boson acts as a mirror, so even if the Schwarzschild black hole can also produce super-radiation phenomena. Keywords: Schwarzschild black hole, superradiance, Wronskian determinant I. INTRODUCTION In a closely related study in 1962, Roger Penrose proposed a theory that by using point particles, it is possible to extract rotational energy from black holes. The Penrose process describes the fact that the Kerr black hole energy layer region may have negative energy relative to the observer outside the horizon. When a particle falls into the energy layer region, such a process may occur: the particle from the black hole To escape, its energy is greater than the initial state. It can also show that in Reissner-Nordstrom (charged, static) and rotating black holes, a generalized ergoregion and similar energy extraction process is possible. The Penrose process is a process inferred by Roger Penrose that can extract energy from a rotating black hole. Because the rotating energy is at the position of the black hole, not in the event horizon, but in the area called the energy layer in Kerr space-time, where the particles must be like a propelling locomotive, rotating with space-time, so it is possible to extract energy .
    [Show full text]
  • The Weak Cosmic Censorship Conjecture May Be Violated
    The weak cosmic censorship conjecture may be violated Wen-Xiang Chen∗ Department of Astronomy, School of Physics and Materials Science, GuangZhou University According to traditional theory, the Schwarzschild black hole does not produce superradiation. If the boundary conditions are set up in advance, this possibility will be combined with the boson- coupled wave function in the Schwarzschild black hole, where the incident boson will have a mirrored mass, so even the Schwarzschild black hole can generate superradiation phenomena.Recently, an article of mine obtained interesting results about the Schwarzschild black hole can generate super- radiation phenomena. The result contains some conclusions that violate the "no-hair theorem". We know that the phenomenon of black hole superradiation is a process of entropy reduction I found that the weak cosmic censorship conjecture may be violated. Keywords: weak cosmic censorship conjecture, entropy reduction, Schwarzschild-black-hole I. INTRODUCTION Since the physical behavior of the singularity is unknown, if the singularity can be observed from other time and space, the causality may be broken and physics may lose its predictive ability. This problem is unavoidable, because according to the Penrose-Hawking singularity theorem, singularities are unavoidable when physically reasonable. There is no naked singularity, the universe, as described by general relativity, is certain: it can predict the evolution of the entire universe (may not include some singularities hidden in the horizon of limited regional space), only knowing its state at a certain moment Time (more precisely, spacelike three-dimensional hypersurfaces are everywhere, called Cauchy surface). The failure of the cosmic censorship hypothesis leads to the failure of determinism, because it is still impossible to predict the causal future behavior of time and space at singularities.
    [Show full text]
  • Arxiv:1605.04629V2 [Gr-Qc]
    Implementing black hole as efficient power plant Shao-Wen Wei ∗, Yu-Xiao Liu† Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University, Lanzhou 730000, People’s Republic of China Abstract Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature- entropy chart, it is found that the work, heat, and efficiency of the engine are free of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the compact formula for the efficiency is obtained. And the heat, work and efficiency are worked out. The result shows that the black hole engine working along the Rankine cycle with a back pressure mechanism has a higher efficiency. This provides a novel and efficient mechanism to produce the useful mechanical work, and such black hole heat engine may act as a possible energy source for the high energy astrophysical phenomena near the black hole. PACS numbers: 04.70.Dy, 05.70.Ce, 07.20.Pe Keywords: Black hole, heat engine, phase transition arXiv:1605.04629v2 [gr-qc] 7 Jun 2019 ∗ [email protected][email protected] 1 I. INTRODUCTION Black hole has been a fascinating object since general relativity predicted its existence. Compared with other stars, a black hole has sufficient density and a huge amount of energy. Near a black hole, there are many high energy astrophysical phenomena related to the energy flow, such as the power jet and black holes merging.
    [Show full text]
  • Erich Kretschmann As a Proto-Logical-Empiricist: Adventures and Misadventures of the Point-Coincidence Argument
    Erich Kretschmann as a Proto-Logical-Empiricist: Adventures and Misadventures of the Point-Coincidence Argument Marco Giovanelli Abstract The present paper attempts to show that a 1915 article by Erich Kretschmann must be credited not only for being the source of Einstein’s point-coincidence remark, but also for having anticipated the main lines of the logical-empiricist interpretation of general relativity. Whereas Kretschmann was inspired by the work of Mach and Poincaré, Einstein inserted Kretschmann’s point-coincidence parlance into the context of Ricci and Levi-Civita’s absolute differential calculus. Kretschmann himself realized this and turned the point-coincidence ar- gument against Einstein in his second and more famous 1918 paper. While Einstein had taken nothing from Kretschmann but the expression “point-coincidences”, the logical empiricists, however, instinctively dragged along with it the entire apparatus of Kretschmann’s conven- tionalism. Disappointingly, in their interpretation of general relativity, the logical empiricists unwittingly replicated some epistemological remarks Kretschmann had written before General Relativity even existed. Keywords: Erich Kretschmann, Point Coincidence Argument, Moritz Schlick, General Relativity, Logical Empiricism, Conventionalism 1. Introduction In the early 1980s, John Stachel (Stachel, 1980) and John Norton (Norton, 1984) famously shed new light on Einstein’s celebrated, yet somewhat cryptic, claim that all physical measurements amount to a determination of space-time coincidences, such as the matching of a pointer with a scale, or, if the world consisted of nothing but particles in motion, the meetings of their world-lines. In Einstein’s published writings, this remark — which Stachel has success- fully labeled the “point-coincidence argument” — amounts to the requirement of “general covariance”: since all coordinate systems necessarily agree on coin- cidences, that is, in everything observable, there is no reason to privilege one coordinate system over another.
    [Show full text]
  • Thesis by Saul Arno Teukolsky in Partial Fulfillment for the Degree Of
    PERTURBATIONS OF A ROTATING BLACK HOLE Thesis by Saul Arno Teukolsky In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 1974 (Submitted July 19, 1973) -ii- ACKNOWLEDGMENTS I thank my advisor, Kip Thorne, for his continued help and encouragement during the course of this work. Much of my progress was due to his example and teaching. I am especially in­ debted to Bill Press, who collaborated with me on four papers. I thank him not only for his collaboration, but also for innumerable discussions and helpful suggestions. I thank dim Bardeen for a number of useful discussions, and for his collaboration on a paper. For advice, help and discussions at various times, I wish to thank also Brandon Carter, S. Chandrasekhar, Paul Chrzanowski, Doug Eardley, George Fox, Jim Hartle, Steven Hawking, Jim Ipser, Herbert Keller, Sandor Kovacs, David Lee, Alan Lightman, Bonnie Miller, Charles Misner, Richard Price, Larry Smarr and Barbara Zimmerman. To my wife Roselyn go my thanks for moral support and encouragement at all times. I am grateful to the Pretoria Portland Cement Company for a scholarship during 1970 and to the United States Steel Foundation for a fellowship during 1972-73. Part of this research was sup­ ported by the National Science Foundation [GP-28027, GP-27304]. -πι- ABSTRACT Decoupled, separable equations describing perturbations of a Kerr black hole are derived. These equations can be used to study black-hole processes involving scalar, electromagnetic, neutrino or gravitational fields. A number of astrophysical applications are made: Misner's idea that gravitational synchro­ tron radiation might explain Weber's observations is shown to be untenable; rotating black holes are shown to be stable against small perturbations; energy amplification by "superradiant scat­ tering" of waves off a rotating black hole is computed; the "spin down" (loss of angular momentum) of a rotating black hole caused by a stationary non-axisymmetric perturbation is calculated.
    [Show full text]
  • Chronology Protection Conjecture May Not Hold Abstract
    Chronology protection conjecture may not hold Wen-Xiang Chen ∗ Institute of quantum matter, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006,China Abstract The cosmic censorship hypothesis has not been directly verified, and some physicists also question the validity of the cosmological censorship hypothesis. Through theoretical prediction, it pointed out that the existence of naked singularities is possible.This article puts forward a point that, under the quantum gravity equation, although there is no concept of wormholes, the chronology protection conjecture may not be true. Keywords: Chronology protection conjecture, entropy reduction, naked singularity I. INTRODUCTION The Chronology protection conjecture is the first hypothesis proposed by Stephen Hawking that the laws of physics can prevent the propagation of time on a microscopic scale. The admissibility of time travel is mathematically represented by the existence of closed time-like curves in certain solutions of the general relativistic field equations. The time protection conjecture should be different from the time check. Under the time check, each closed time-like curve passes the event range, which may prevent the observer from discovering causal conflicts (also known as time violations). As we all know, in general relativity, in principle, space-time is a possible space-time travel, that is, some trajectories will form a cycle with time, and the observers who follow them can return to their past. These cycles are called closed space-time curves (CTC). There is a close relationship between time travel and the speed at which the speed of light (super speed of light) in vacuum is greater.
    [Show full text]
  • Publications of William H. Press 1. W.H. Press and J.M. Bardeen, “Nonconservation of the Newman-Penrose Conserved Quantities," Phys
    Publications of William H. Press 1. W.H. Press and J.M. Bardeen, “Nonconservation of the Newman-Penrose Conserved Quantities," Phys. Rev. Lett., 27, 1303 (1971). 2. M. Davis, R. Ruffini, W. Press and R. Price, “Gravitational Radiation from a Particle Falling Radially into a Schwarzschild Black Hole," Phys. Rev. Lett., 27,1466 (1971). 3. W.H. Press, “Long Wave-Trains of Gravitational Waves from a Vibrating Black Hole," Astrophysics. J. (Lett.), 170, L105 (1971). 4. W.H. Press, “Time Evolution of a Rotating Black Hole Immersed in a Static Scalar Field," Astrophys. J., 175, 243 (1972). 5. W.H. Press and K.S. Thorne, “Gravitational-Wave Astronomy," Ann. Rev. Astron. Astrophys., 10, 335 (1972). 6. J.M. Bardeen, W.H. Press, and S.A. Teukolsky, “Rotating Black Holes: Locally Non- rotating Frames, Energy Extraction, and Scalar Synchrotron Radiation," Astrophys. J., 178, 347 (1972). 7. W.H. Press and S.A. Teukolsky, “Floating Orbits, Superradiant Scattering and the Black-Hole Bomb," Nature, 238, 211 (1972). 8. J.M. Bardeen and W.H. Press, “Radiation Fields in the Schwarzschild Background," J. Math. Phys., 14, 7 (1973). 9. W.H. Press and S.A. Teukolsky, “On the Evolution of the Secularly Unstable, Viscous Maclaurin Spheroids," Astrophys. J., 181, 513 (1973). 10. W.H. Press, “Black-Hole Perturbations: An Overview," in Proceedings of the Sixth Texas Symposium on Relativistic Astrophysics, Ann. N.Y. Acad. Sci., 224, 272 (1973). 11. W.H.Press and S.A. Teukolsky, “Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric," Astrophys. J. 185, 649 (1973).
    [Show full text]
  • The Black Hole Bomb and Superradiant Instabilities
    The black hole bomb and superradiant instabilities Vitor Cardoso∗ Centro de F´ısica Computacional, Universidade de Coimbra, P-3004-516 Coimbra, Portugal Oscar´ J. C. Dias† Centro Multidisciplinar de Astrof´ısica - CENTRA, Departamento de F´ısica, F.C.T., Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal Jos´e P. S. Lemos‡ Centro Multidisciplinar de Astrof´ısica - CENTRA, Departamento de F´ısica, Instituto Superior T´ecnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal Shijun Yoshida§ Centro Multidisciplinar de Astrof´ısica - CENTRA, Departamento de F´ısica, Instituto Superior T´ecnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal ¶ (Dated: February 1, 2008) A wave impinging on a Kerr black hole can be amplified as it scatters off the hole if certain conditions are satisfied giving rise to superradiant scattering. By placing a mirror around the black hole one can make the system unstable. This is the black hole bomb of Press and Teukolsky. We investigate in detail this process and compute the growing timescales and oscillation frequencies as a function of the mirror’s location. It is found that in order for the system black hole plus mirror to become unstable there is a minimum distance at which the mirror must be located. We also give an explicit example showing that such a bomb can be built. In addition, our arguments enable us to justify why large Kerr-AdS black holes are stable and small Kerr-AdS black holes should be unstable. PACS numbers: 04.70.-s I. INTRODUCTION one can extract as much rotational energy as one likes from the black hole.
    [Show full text]
  • A Selected Bibliography of Publications By, and About, Niels Bohr
    A Selected Bibliography of Publications by, and about, Niels Bohr Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 09 June 2021 Version 1.308 Title word cross-reference + [VIR+08]. $1 [Duf46]. $1.00 [N.38, Bal39]. $105.95 [Dor79]. $11.95 [Bus20]. $12.00 [Kra07, Lan08]. $189 [Tan09]. $21.95 [Hub14]. $24.95 [RS07]. $29.95 [Gor17]. $32.00 [RS07]. $35.00 [Par06]. $47.50 [Kri91]. $6.95 [Sha67]. $61 [Kra16b]. $9 [Jam67]. − [VIR+08]. 238 [Tur46a, Tur46b]. ◦ [Fra55]. 2 [Som18]. β [Gau14]. c [Dar92d, Gam39]. G [Gam39]. h [Gam39]. q [Dar92d]. × [wB90]. -numbers [Dar92d]. /Hasse [KZN+88]. /Rath [GRE+01]. 0 [wB90, Hub14, Tur06]. 0-19-852049-2 [Ano93a, Red93, Seg93]. 0-19-853977-0 [Hub14]. 0-521-35366-1 [Kri91]. 0-674-01519-3 [Tur06]. 0-85224-458-4 [Hen86a]. 0-9672617-2-4 [Kra07, Lan08]. 1 2 1.5 [GRE+01]. 100-˚aret [BR+85]. 100th [BR+85, KRW05, Sch13, vM02]. 110th [Rub97a]. 121 [Boh87a]. 153 [MP97]. 16 [SE13]. 17 [Boh55a, KRBR62]. 175 [Bad83]. 18.11.1962 [Hei63a]. 1911 [Meh75]. 1915 [SE13]. 1915/16 [SE13, SE13]. 1918 [Boh21a]. 1920s [PP16]. 1922 [Boh22a]. 1923 [Ros18]. 1925 [Cla13, Bor13, Jan17, Sho13]. 1927 [Ano28]. 1929 [HEB+80, HvMW79, Pye81]. 1930 [Lin81, Whe81]. 1930/41 [Fer68, Fer71]. 1930s [Aas85b, Stu79]. 1933 [CCJ+34].
    [Show full text]