What Is Inversive Geometry?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Special Isocubics in the Triangle Plane
Special Isocubics in the Triangle Plane Jean-Pierre Ehrmann and Bernard Gibert June 19, 2015 Special Isocubics in the Triangle Plane This paper is organized into five main parts : a reminder of poles and polars with respect to a cubic. • a study on central, oblique, axial isocubics i.e. invariant under a central, oblique, • axial (orthogonal) symmetry followed by a generalization with harmonic homolo- gies. a study on circular isocubics i.e. cubics passing through the circular points at • infinity. a study on equilateral isocubics i.e. cubics denoted 60 with three real distinct • K asymptotes making 60◦ angles with one another. a study on conico-pivotal isocubics i.e. such that the line through two isoconjugate • points envelopes a conic. A number of practical constructions is provided and many examples of “unusual” cubics appear. Most of these cubics (and many other) can be seen on the web-site : http://bernard.gibert.pagesperso-orange.fr where they are detailed and referenced under a catalogue number of the form Knnn. We sincerely thank Edward Brisse, Fred Lang, Wilson Stothers and Paul Yiu for their friendly support and help. Chapter 1 Preliminaries and definitions 1.1 Notations We will denote by the cubic curve with barycentric equation • K F (x,y,z) = 0 where F is a third degree homogeneous polynomial in x,y,z. Its partial derivatives ∂F ∂2F will be noted F ′ for and F ′′ for when no confusion is possible. x ∂x xy ∂x∂y Any cubic with three real distinct asymptotes making 60◦ angles with one another • will be called an equilateral cubic or a 60. -
Delaunay Triangulations of Points on Circles Arxiv:1803.11436V1 [Cs.CG
Delaunay Triangulations of Points on Circles∗ Vincent Despr´e † Olivier Devillers† Hugo Parlier‡ Jean-Marc Schlenker‡ April 2, 2018 Abstract Delaunay triangulations of a point set in the Euclidean plane are ubiq- uitous in a number of computational sciences, including computational geometry. Delaunay triangulations are not well defined as soon as 4 or more points are concyclic but since it is not a generic situation, this difficulty is usually handled by using a (symbolic or explicit) perturbation. As an alter- native, we propose to define a canonical triangulation for a set of concyclic points by using a max-min angle characterization of Delaunay triangulations. This point of view leads to a well defined and unique triangulation as long as there are no symmetric quadruples of points. This unique triangulation can be computed in quasi-linear time by a very simple algorithm. 1 Introduction Let P be a set of points in the Euclidean plane. If we assume that P is in general position and in particular do not contain 4 concyclic points, then the Delaunay triangulation DT (P ) is the unique triangulation over P such that the (open) circumdisk of each triangle is empty. DT (P ) has a number of interesting properties. The one that we focus on is called the max-min angle property. For a given triangulation τ, let A(τ) be the list of all the angles of τ sorted from smallest to largest. DT (P ) is the triangulation which maximizes A(τ) for the lexicographical order [4,7] . In dimension 2 and for points in general position, this max-min angle arXiv:1803.11436v1 [cs.CG] 30 Mar 2018 property characterizes Delaunay triangulations and highlights one of their most ∗This work was supported by the ANR/FNR project SoS, INTER/ANR/16/11554412/SoS, ANR-17-CE40-0033. -
Angles in a Circle and Cyclic Quadrilateral MODULE - 3 Geometry
Angles in a Circle and Cyclic Quadrilateral MODULE - 3 Geometry 16 Notes ANGLES IN A CIRCLE AND CYCLIC QUADRILATERAL You must have measured the angles between two straight lines. Let us now study the angles made by arcs and chords in a circle and a cyclic quadrilateral. OBJECTIVES After studying this lesson, you will be able to • verify that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle; • prove that angles in the same segment of a circle are equal; • cite examples of concyclic points; • define cyclic quadrilterals; • prove that sum of the opposite angles of a cyclic quadrilateral is 180o; • use properties of cyclic qudrilateral; • solve problems based on Theorems (proved) and solve other numerical problems based on verified properties; • use results of other theorems in solving problems. EXPECTED BACKGROUND KNOWLEDGE • Angles of a triangle • Arc, chord and circumference of a circle • Quadrilateral and its types Mathematics Secondary Course 395 MODULE - 3 Angles in a Circle and Cyclic Quadrilateral Geometry 16.1 ANGLES IN A CIRCLE Central Angle. The angle made at the centre of a circle by the radii at the end points of an arc (or Notes a chord) is called the central angle or angle subtended by an arc (or chord) at the centre. In Fig. 16.1, ∠POQ is the central angle made by arc PRQ. Fig. 16.1 The length of an arc is closely associated with the central angle subtended by the arc. Let us define the “degree measure” of an arc in terms of the central angle. -
Application of Nine Point Circle Theorem
Application of Nine Point Circle Theorem Submitted by S3 PLMGS(S) Students Bianca Diva Katrina Arifin Kezia Aprilia Sanjaya Paya Lebar Methodist Girls’ School (Secondary) A project presented to the Singapore Mathematical Project Festival 2019 Singapore Mathematic Project Festival 2019 Application of the Nine-Point Circle Abstract In mathematics geometry, a nine-point circle is a circle that can be constructed from any given triangle, which passes through nine significant concyclic points defined from the triangle. These nine points come from the midpoint of each side of the triangle, the foot of each altitude, and the midpoint of the line segment from each vertex of the triangle to the orthocentre, the point where the three altitudes intersect. In this project we carried out last year, we tried to construct nine-point circles from triangulated areas of an n-sided polygon (which we call the “Original Polygon) and create another polygon by connecting the centres of the nine-point circle (which we call the “Image Polygon”). From this, we were able to find the area ratio between the areas of the original polygon and the image polygon. Two equations were found after we collected area ratios from various n-sided regular and irregular polygons. Paya Lebar Methodist Girls’ School (Secondary) 1 Singapore Mathematic Project Festival 2019 Application of the Nine-Point Circle Acknowledgement The students involved in this project would like to thank the school for the opportunity to participate in this competition. They would like to express their gratitude to the project supervisor, Ms Kok Lai Fong for her guidance in the course of preparing this project. -
CIRCLE and SPHERE GEOMETRY. [July
464 CIRCLE AND SPHERE GEOMETRY. [July, CIRCLE AND SPHERE GEOMETRY. A Treatise on the Circle and the Sphere. By JULIAN LOWELL COOLIDGE. Oxford, the Clarendon Press, 1916. 8vo. 603 pp. AN era of systematizing and indexing produces naturally a desire for brevity. The excess of this desire is a disease, and its remedy must be treatises written, without diffuseness indeed, but with the generous temper which will find room and give proper exposition to true works of art. The circle and the sphere have furnished material for hundreds of students and writers, but their work, even the most valuable, has been hitherto too scattered for appraisement by the average student. Cyclopedias, while indispensable, are tan talizing. Circles and spheres have now been rescued from a state of dispersion by Dr. Coolidge's comprehensive lectures. Not a list of results, but a well digested account of theories and methods, sufficiently condensed by judicious choice of position and sequence, is what he has given us for leisurely study and enjoyment. The reader whom the author has in mind might be, well enough, at the outset a college sophomore, or a teacher who has read somewhat beyond the geometry expected for en trance. Beyond the sixth chapter, however, or roughly the middle of the book, he must be ready for persevering study in specialized fields. The part most read is therefore likely to be the first four chapters, and a short survey of these is what we shall venture here. After three pages of definitions and conventions the author calls "A truce to these preliminaries!" and plunges into inversion. -
Notes on Euclidean Geometry Kiran Kedlaya Based
Notes on Euclidean Geometry Kiran Kedlaya based on notes for the Math Olympiad Program (MOP) Version 1.0, last revised August 3, 1999 c Kiran S. Kedlaya. This is an unfinished manuscript distributed for personal use only. In particular, any publication of all or part of this manuscript without prior consent of the author is strictly prohibited. Please send all comments and corrections to the author at [email protected]. Thank you! Contents 1 Tricks of the trade 1 1.1 Slicing and dicing . 1 1.2 Angle chasing . 2 1.3 Sign conventions . 3 1.4 Working backward . 6 2 Concurrence and Collinearity 8 2.1 Concurrent lines: Ceva’s theorem . 8 2.2 Collinear points: Menelaos’ theorem . 10 2.3 Concurrent perpendiculars . 12 2.4 Additional problems . 13 3 Transformations 14 3.1 Rigid motions . 14 3.2 Homothety . 16 3.3 Spiral similarity . 17 3.4 Affine transformations . 19 4 Circular reasoning 21 4.1 Power of a point . 21 4.2 Radical axis . 22 4.3 The Pascal-Brianchon theorems . 24 4.4 Simson line . 25 4.5 Circle of Apollonius . 26 4.6 Additional problems . 27 5 Triangle trivia 28 5.1 Centroid . 28 5.2 Incenter and excenters . 28 5.3 Circumcenter and orthocenter . 30 i 5.4 Gergonne and Nagel points . 32 5.5 Isogonal conjugates . 32 5.6 Brocard points . 33 5.7 Miscellaneous . 34 6 Quadrilaterals 36 6.1 General quadrilaterals . 36 6.2 Cyclic quadrilaterals . 36 6.3 Circumscribed quadrilaterals . 38 6.4 Complete quadrilaterals . 39 7 Inversive Geometry 40 7.1 Inversion . -
Miquel Dynamics for Circle Patterns,” International Mathematics Research Notices, Vol
S. Ramassamy (2020) “Miquel Dynamics for Circle Patterns,” International Mathematics Research Notices, Vol. 2020, No. 3, pp. 813–852 Advance Access Publication March 21, 2018 doi:10.1093/imrn/rny039 Downloaded from https://academic.oup.com/imrn/article-abstract/2020/3/813/4948410 by Indian Institute of Science user on 10 July 2020 Miquel Dynamics for Circle Patterns Sanjay Ramassamy∗ Unité de Mathématiques Pures et Appliquées, École normale supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France ∗ Correspondence to be sent to: e-mail: [email protected] We study a new discrete-time dynamical system on circle patterns with the combina- torics of the square grid. This dynamics, called Miquel dynamics, relies on Miquel’s six circles theorem. We provide a coordinatization of the appropriate space of circle patterns on which the dynamics acts and use it to derive local recurrence formulas. Isoradial circle patterns arise as periodic points of Miquel dynamics. Furthermore, we prove that certain signed sums of intersection angles are preserved by the dynamics. Finally, when the initial circle pattern is spatially biperiodic with a fundamental domain of size two by two, we show that the appropriately normalized motion of intersection points of circles takes place along an explicit quartic curve. 1 Introduction This paper is about a conjecturally integrable discrete-time dynamical system on circle patterns. Circle patterns are configurations of circles on a surface with combinatorially prescribed intersections. They have been actively studied since Thurston conjectured that circle packings (a variant of circle patterns where neighboring circles are tangent) provide discrete approximations of Riemann mappings between two simply connected domains [25]. -
Circle Geometry
Circle Geometry The BEST thing about Circle Geometry is…. you are given the Question and (mostly) the Answer as well. You just need to fill in the gaps in between! Mia David MA BSc Dip Ed UOW 24.06.2016 Topic: Circle Geometry Page 1 There are a number of definitions of the parts of a circle which you must know. 1. A circle consists of points which are equidistant from a fixed point (centre) The circle is often referred to as the circumference. 2. A radius is an interval which joins the centre to a point on the circumference. 3. A chord is an interval which joins two points on the circumference. 4. A diameter is a chord which passes through the centre. 5. An arc is a part of the circumference of a circle. 6. A segment is an area which is bounded by an arc and a chord. (We talk of the ALTERNATE segment, as being a segment on the OTHER side of a chord. We also refer to a MAJOR and a MINOR segment, according to the size.) 7. A semicircle is an area bounded by an arc and a diameter. 8. A sector is an area bounded by an arc and two radii. 9. A secant is an interval which intersects the circumference of a circle twice. 10. A tangent is a secant which intersects the circumference twice at the same point. (Usually we just say that a tangent TOUCHES the circle) 11. Concentric circles are circles which have the same centre. 12. Equal circles are circles which have the same radius. -
On Inversions in Central Conics
INTERNATIONAL JOURNAL OF GEOMETRY Vol. 9 (2020), No. 1, 40 - 51 ON INVERSIONS IN CENTRAL CONICS ROOSEVELT BESSONI AND GUY GREBOT Abstract. We use plain euclidean geometry to analyse the structure of an inversion in an ellipse or in a hyperbola. By this formulation, results on inversions in circles are directly extended to results on inversions in ellipses. 1. Introduction Jacob Steiner is quoted in [5] as the first mathematician to formalize the bases of inversive geometry in a text dated from 1824 and published after his death by B¨utzberger. In 1965, the mathematician Noel Childress [1] extended the concept of circular inversion to central conics, ellipse or hyperbola. In 2014, Ramirez [6][7] showed other properties concerning inversion in ellipses and Neas [4], in 2017, looked at anallagmatic curves under inversion in hyperbolae. Inversion in circles is a geometrical topic which is usually developped without analytic geometry [8]. Strangely enough, we could not find any work concerning inversion in central conics using plain euclidean geometry arguments. In the studied publications the basic framework is analytical geometry. Also, as far as we could reach, the structure of an inversion in a central conic is not mentioned in the cited works and it seems to us that the analytical framework tends to hide this property. In this communication, we use plain euclidean geometry to analyse the structure of an inversion in an ellipse or in a hyperbola. We show that an inversion in a central conic is given by the composition of compressions and an inversion in a circle or in an equilateral hyperbola; in this sense, an inversion in a central conic is just an affine deformation of an inversion in a circle or in an equilateral hyperbola. -
Dan Pedoe, on Geometrical Matters, P 67-74Mathschron009-008.Pdf
ON GEOMETRICAL MATTERS Dan Pedoe Dedicated to H.G. Forder on his 90th birthday (received 29 June, 1979) Geometers are sadly aware of the present depressed state of their art. The "new" math, swept elementary geometry aside, in a frantic effort to keep up with the Russians, who had convinced the Western world of their technological superiority by launching Sputnik. The "educators" who led American mathematics disregarded, or were sublimely unconscious of the fact that Russian high schools, then and now, study geometry intensely. Yaglom's new book [16]reveals the extent to which the best high schools in Russia plumb non-Euclidean geometry. In America, publishers demand an assured sale of at least 50,000 copies for any book on elementary mathematics before they will handle it, and only calculus books and such make the grade. Any book on geometry, inadvertently published, only sells to a limited extent, and if the publisher has "inventory problems", (that is, if he suffers from a lack of warehouse space, and who does not?), books are soon pulped. Fortunately there are still University Presses, and the excellent Chelsea and Dover publishers who keep books in print, and Forder's remarkable Calculus of Extension [4] is still obtainable, although some of his early books on geometry have vanished. One of my pulped books, Circles, has been reprinted, with added problems and solutions, by Dover Books [10]. Those who defend the present state of mathematics are quick to point out that a lot of geometry is still being studied and taught, under chapter headings such as "combinatorics", "tesselations", and so on. -
Rational Distance Sets on Conic Sections
Rational Distance Sets on Conic Sections Megan D. Ly Shawn E. Tsosie Lyda P. Urresta Loyola Marymount UMASS Amherst Union College July 2010 Abstract Leonhard Euler noted that there exists an infinite set of rational points on the unit circle such that the pairwise distance of any two is also rational; the same statement is nearly always true for lines and other circles. In 2004, Garikai Campbell considered the question of a rational distance set consisting of four points on a parabola. We introduce new ideas to discuss a rational distance set of four points on a hyperbola. We will also discuss the issues with generalizing to a rational distance set of five points on an arbitrary conic section. 1 Introduction A rational distance set is a set whose elements are points in R2 which have pairwise rational distance. Finding these sets is a difficult problem, and the search for rational distance sets with rational coordinates is even more difficult. The search for rational distance sets has a long history. Leonard Euler noted that there exists an infinite set of rational points on the unit circle such that the pairwise distance of any two is also rational. In 1945 Stanislaw Ulam posed a question about a rational distance set: is there an everywhere dense rational distance set in the plane [2]? Paul Erd¨osalso considered the problem and he conjectured that the only irreducible algebraic curves which have an infinite rational distance set are the line and the circle [4]. This was later proven to be true by Jozsef Solymosi and Frank de Zeeuw [4]. -
Download Inversive Geometry Free Ebook
INVERSIVE GEOMETRY DOWNLOAD FREE BOOK Frank Morley, F. V. Morley | 288 pages | 15 Jan 2014 | Dover Publications Inc. | 9780486493398 | English | New York, United States Inversive Geometry Fukagawa and D. MR 48, However, inversive geometry is the larger study since it includes the raw inversion in a circle not yet made, with conjugation, into reciprocation. MR 47 MR 19 There may be zero, one, or two points. Selecting the appropriate Inversive Geometry in the Manipulatethe radii are adjusted according to the position of the slanted Inversive Geometry for this third blue circle to exist. It provides an exact solution to the important problem of converting between linear and circular motion. MR 38and 50 Two pairs of inverse points are either collinear with or concyclic on a circle Inversive Geometry to. Help Learn to edit Community portal Recent changes Upload file. Die Inversion und ihre Anwendungen. Magnus, W. Two intersecting circles are orthogonal if they have perpendicular tangents at either point of intersection. New York: Wiley, pp. Courant, R. Has it been superseded by other geometries, i. Webb, C. Home Questions Tags Users Unanswered. In addition, the curve to which a given curve is transformed under inversion is called its inverse curve or more simply, its "inverse". Hence, the angle between two curves in the Inversive Geometry is the same as the angle between two curves in the hyperbolic space. The complex analytic inverse Inversive Geometry is conformal and its conjugate, circle inversion, is anticonformal. Coolidge, J. The two orange disks indicate adjustable tangency points and of the circles and the parallel lines.