Integration of Multiple Simultaneous Stimuli Within and Between Somatosensory Sub-Modalities

Total Page:16

File Type:pdf, Size:1020Kb

Integration of Multiple Simultaneous Stimuli Within and Between Somatosensory Sub-Modalities Alma Mater Studiorum – Università di Bologna DOTTORATO DI RICERCA IN Joint International PhD Programme in Cognitive Neuroscience Ciclo XXIX Settore Concorsuale di afferenza: 11/E1 Settore Scientifico disciplinare: M-PSI/02 Integration of multiple simultaneous stimuli within and between somatosensory sub-modalities Presentata da: Dott. Antonio Cataldo Coordinatore Dottorato Relatore Prof.ssa Monica Rubini Prof. Giuseppe di Pellegrino Correlatore Prof. Patrick Haggard Esame finale anno 2017 2 Abstract Psychological characterisation of the somatosensory system often focusses on minimal units of perception, such as detection, localisation, and magnitude estimation of single events. Research on how multiple simultaneous stimuli are aggregated to create integrated, synthetic experiences is rarer. Yet, increasing evidence suggests that the somatosensory integration of composite patterns is regulated by nonlinear mechanisms occurring at different stages of the perceptual processing. As a consequence, the bulk of knowledge concerning the perception of isolated events may be insufficient to grasp the complexity of uni- and cross-modal interactions. This thesis aims to shed a light on the mechanisms underlying the integration of multiple simultaneous stimuli, within and between different sub-modalities of the somatosensory system. First, across several psychophysical experiments, we investigated the ability of healthy individuals to perceive the total intensity of composite somatosensory patterns. We found that the overall intensity of tactile, cold, or warm patterns was systematically overestimated when the multiple simultaneous stimuli had different intensities (Chapter 2). Thus, perception of somatosensory totals is biased towards the most salient element in the pattern. Furthermore, we demonstrated that peak-biased aggregation is a genuine perceptual phenomenon which does not rely on the discrimination of the parts, but is rather based on the salience (i.e. the signal-to-noise ratio) of each stimulus (Chapter 3). Next, we studied a classical thermal illusion to assess participants’ ability to localise thermal stimuli delivered on the fingers either in isolation, or in uniform and non-uniform patterns (Chapter 4). We found that despite a surprisingly high accuracy in reporting the 3 location of a single stimulus, when participants were presented with non-uniform patterns, their ability to identify the thermal state of a specific finger was completely abolished. Lastly, we investigated the perceptual and neural correlates of thermo-nociceptive interaction during the presentation of multiple thermal stimuli (Chapter 5). We replicated the classical suppressive effect of warmth on pain. Crucially, we also found that inhibition of pain was independent from both the position and the number of thermal stimuli administered, providing insights about the level of somatosensory processing at which the interaction takes place. Overall, our results suggest that nonlinear integration of multiple stimuli, within and between somatosensory sub-modalities, may be an efficient way by which the somatosensory system synthesises the complexity of reality, providing us with an extended and coherent perception of the world, in spite of its deep bandwidth limitations. 4 Table of contents Abstract ........................................................................................................ 1 List of Figures .............................................................................................. 9 List of Tables .............................................................................................. 13 Chapter 1. From the perception of single events, to the integration of multiple simultaneous somatosensory stimuli ......................................... 15 1.1 Introduction ...................................................................................................... 15 1.1.1 Somatosensation: the most essential and complex of our senses 16 1.1.2 General purpose and structure of the thesis ................................. 23 1.2 Somatosensory processing of single events ..................................................... 24 1.2.1 Perception of tactile stimuli ........................................................... 27 1.2.2 Perception of thermal stimuli ........................................................ 35 1.2.3 Perception of noxious stimuli ........................................................ 39 1.3 Evidence for nonlinear effects of multiple simultaneous stimulation .............. 45 1.3.1 Detection of multiple somatosensory stimuli and lateral inhibition 46 1.3.2 Mislocalisation of multiple somatosensory stimuli ......................... 50 1.3.3 Spatial summation of thermal stimuli ............................................ 53 1.4 Research questions ........................................................................................... 55 1.4.1 Study 1 and 2: perception of the overall intensity of somatosensory patterns 56 1.4.2 Study 3: mislocalisation of warmth during multiple thermal stimulation 58 1.4.3 Study 4: somatosensory interaction between pain and multiple thermal stimuli 60 5 Chapter 2. Salience-driven overestimation of total somatosensory stimulation 63 2.1 Introduction ...................................................................................................... 63 2.2 Methods ............................................................................................................ 68 2.2.1 Experiment 1 ................................................................................ 69 2.2.2 Experiment 2 ................................................................................ 75 2.2.3 Experiment 3 ................................................................................ 77 2.2.4 Experiment 4 ................................................................................ 78 2.3 Results ............................................................................................................... 81 2.3.1 Experiment 1 ................................................................................ 81 2.3.2 Experiment 2 ................................................................................ 83 2.3.3 Experiment 3 ................................................................................ 86 2.3.4 Experiment 4 ................................................................................ 88 2.4 Discussion .......................................................................................................... 90 Chapter 3. When all is more than the sum of its parts: integration of multiple discrepant tactile stimuli ............................................................. 99 3.1 Introduction ...................................................................................................... 99 3.2 Methods .......................................................................................................... 106 3.2.1 Experiment 1 .............................................................................. 106 3.2.2 Experiment 2 .............................................................................. 110 3.2.3 Experiment 3 .............................................................................. 113 3.3 Results ............................................................................................................. 117 3.3.1 Experiment 1 .............................................................................. 117 3.3.2 Experiment 2 .............................................................................. 119 3.3.3 Experiment 3 .............................................................................. 122 3.4 Discussion ........................................................................................................ 123 6 Chapter 4. Thermal referral: evidence for a thermoceptive uniformity illusion without touch ........................................................................................... 141 4.1 Introduction .................................................................................................... 141 4.2 Methods .......................................................................................................... 144 4.2.1 Experiment 1 .............................................................................. 149 4.2.2 Experiment 2 .............................................................................. 151 4.2.3 Experiment 3 .............................................................................. 152 4.3 Results ............................................................................................................. 153 4.3.1 Experiment 1 .............................................................................. 153 4.3.2 Experiment 2 .............................................................................. 157 4.3.3 Experiment 3 .............................................................................. 159 4.4 Discussion ........................................................................................................ 161 Chapter 5. Thermo-nociceptive interaction: inter-channel pain modulation occurs before intra-channel convergence of warmth .......................... 171 5.1 Introduction .................................................................................................... 171 5.2 Methods .......................................................................................................... 179 5.2.1 Experiment
Recommended publications
  • Somatosensory Processes Subserving Perception and Action
    BEHAVIORAL AND BRAIN SCIENCES (2007) 30, 189–239 Printed in the United States of America DOI: 10.1017/S0140525X07001392 Somatosensory processes subserving perception and action H. Chris Dijkerman Department of Experimental Psychology, Helmholtz Research Institute, Utrecht University, 3584 CS Utrecht, The Netherlands [email protected] Edward H. F. de Haan Department of Experimental Psychology, Helmholtz Research Institute, Utrecht University, 3584 CS Utrecht, The Netherlands [email protected] Abstract: The functions of the somatosensory system are multiple. We use tactile input to localize and experience the various qualities of touch, and proprioceptive information to determine the position of different parts of the body with respect to each other, which provides fundamental information for action. Further, tactile exploration of the characteristics of external objects can result in conscious perceptual experience and stimulus or object recognition. Neuroanatomical studies suggest parallel processing as well as serial processing within the cerebral somatosensory system that reflect these separate functions, with one processing stream terminating in the posterior parietal cortex (PPC), and the other terminating in the insula. We suggest that, analogously to the organisation of the visual system, somatosensory processing for the guidance of action can be dissociated from the processing that leads to perception and memory. In addition, we find a second division between tactile information processing about external targets in service of object recognition and tactile information processing related to the body itself. We suggest the posterior parietal cortex subserves both perception and action, whereas the insula principally subserves perceptual recognition and learning. Keywords: body image; body schema; crossmodal; insula; parietal; proprioception; tactile object recognition 1.
    [Show full text]
  • On Physical Heat Regulation and the Sense of Temperature In
    ON PHYSICAL HEAT REGULATION AND THE SENSE OF TEMPERA TURE IN MAN BY T. H. BENZINGER NAVAL MEDICAL RESEARCH INSTITUTE, BETHESDA, MARYLAND Communicated by Sterling Hendricks, February 26, 1959 Human physiology has given much of its attention to those systems which control in a multicellular organism the essential internal conditions: to respiration as it provides optimal concentrations of carbon dioxide, hydrogen ions and oxygen, to circulation as it maintains adequate blood flowrates and pressures, and to produc- tion and loss of energy as they are balanced through a regulatory mechanism for the maintenance of optimal body temperature. For the purpose of analysis, three main components may be distinguished with any regulatory system in physiology: 1. Specific sensory-receptor organs register the physical or chemical quantity that is to be regulated. They produce nerve impulses commensurate with the magnitude of this stimulus. 2. One or more effector organs act in response to the stimulus. This results in a return of the physical or chemical quantity registered toward the optimal level whereby the stimulus is reduced or abolished at the site of registration and else- where. 3. A coordinating center in the central nervous system receives the afferent nerve impulses. It produces efferent impulses which initiate or maintain the regulatory action of the effector organs. A physiological control mechanism cannot be considered clarified until its effector organs, center of coordination, and receptor sensory structures have been identified, and until the quantitative relations between causes and effects, that is, between physical or chemical stimuli and physiological responses, have been demonstrated. In this paper an attempt is described to clarify experimentally one of these mecha- nisms: the so-called "physical heat regulation"* of man.
    [Show full text]
  • Meta-Analytic Connectivity Modeling of Brodmann Area 37
    Florida International University FIU Digital Commons Nicole Wertheim College of Nursing and Health Nicole Wertheim College of Nursing and Health Sciences Sciences 12-17-2014 Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37 Alfredo Ardilla Department of Communication Sciences and Disorders, Florida International University, [email protected] Byron Bernal Miami Children's Hospital Monica Rosselli Florida Atlantic University Follow this and additional works at: https://digitalcommons.fiu.edu/cnhs_fac Part of the Physical Sciences and Mathematics Commons Recommended Citation Ardilla, Alfredo; Bernal, Byron; and Rosselli, Monica, "Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37" (2014). Nicole Wertheim College of Nursing and Health Sciences. 1. https://digitalcommons.fiu.edu/cnhs_fac/1 This work is brought to you for free and open access by the Nicole Wertheim College of Nursing and Health Sciences at FIU Digital Commons. It has been accepted for inclusion in Nicole Wertheim College of Nursing and Health Sciences by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. Hindawi Publishing Corporation Behavioural Neurology Volume 2015, Article ID 565871, 14 pages http://dx.doi.org/10.1155/2015/565871 Research Article Language and Visual Perception Associations: Meta-Analytic Connectivity Modeling of Brodmann Area 37 Alfredo Ardila,1 Byron Bernal,2 and Monica Rosselli3 1 Department of Communication Sciences and Disorders, Florida International University, Miami, FL 33199, USA 2Radiology Department and Research Institute, Miami Children’s Hospital, Miami, FL 33155, USA 3Department of Psychology, Florida Atlantic University, Davie, FL 33314, USA Correspondence should be addressed to Alfredo Ardila; [email protected] Received 4 November 2014; Revised 9 December 2014; Accepted 17 December 2014 Academic Editor: Annalena Venneri Copyright © 2015 Alfredo Ardila et al.
    [Show full text]
  • Chemoreception
    Senses 5 SENSES live version • discussion • edit lesson • comment • report an error enses are the physiological methods of perception. The senses and their operation, classification, Sand theory are overlapping topics studied by a variety of fields. Sense is a faculty by which outside stimuli are perceived. We experience reality through our senses. A sense is a faculty by which outside stimuli are perceived. Many neurologists disagree about how many senses there actually are due to a broad interpretation of the definition of a sense. Our senses are split into two different groups. Our Exteroceptors detect stimulation from the outsides of our body. For example smell,taste,and equilibrium. The Interoceptors receive stimulation from the inside of our bodies. For instance, blood pressure dropping, changes in the gluclose and Ph levels. Children are generally taught that there are five senses (sight, hearing, touch, smell, taste). However, it is generally agreed that there are at least seven different senses in humans, and a minimum of two more observed in other organisms. Sense can also differ from one person to the next. Take taste for an example, what may taste great to me will taste awful to someone else. This all has to do with how our brains interpret the stimuli that is given. Chemoreception The senses of Gustation (taste) and Olfaction (smell) fall under the category of Chemoreception. Specialized cells act as receptors for certain chemical compounds. As these compounds react with the receptors, an impulse is sent to the brain and is registered as a certain taste or smell. Gustation and Olfaction are chemical senses because the receptors they contain are sensitive to the molecules in the food we eat, along with the air we breath.
    [Show full text]
  • Prosopagnosia by B
    J. Neurol. Neurosurg. Psychiat., 1959, 22, 124. PROSOPAGNOSIA BY B. BORNSTEIN and D. P. KIDRON From the Department of Neurology, Beilinson Hospital, Petah Tiqva, Israel "And what is the nature of this knowledge or recollection? I mean to ask, Whether a person, who having seen or heard or in any way perceived anything, knows not only that, but has a conception of something else which is the subject, not of the same but of some other kind of knowledge, may not be fairly said to recollect that of which he has the conception?" "And when the recollection is derived from like things, then another consideration is sure to arise, which is, Whether the likeness in any degree falls short or not of that which is recollected?" "The Philosophy of Plato " Phaedo (the Jowett translation). Does visual agnosia exist in a partial or isolated bances in sensation time, in adaptation time, in form, in which certain qualities only are affected, visual acuity, and in brightness discrimination. as opposed to generalized visual agnosia? Many Ettlinger (1956) rejected Bay's contentions. After workers cast doubt on this concept, maintaining analysing 30 cases of head injury, he showed that that partial visual agnosia is no more than a com- some patients had neither field nor perceptual bination of defects in vision, memory, and orienta- defects, others had field but not perceptual defects, tion, appearing together. and only in eight of the 30 patients were field and The clinical elucidation of partial visual agnosia perceptual defects found together. It is true that is likely to be affected by the patient's intellectual visual agnosia is frequently associated with homony- capacity, his mental state at the time of examination, mous hemianopsia, but despite this there are cases and his ability to cooperate without being influenced of hemianopsia without gnostic defects.
    [Show full text]
  • Oscillatory Properties of Functional Connections Between Sensory Areas Mediate Cross-Modal Illusory Perception
    The Journal of Neuroscience, July 17, 2019 • 39(29):5711–5718 • 5711 Systems/Circuits Oscillatory Properties of Functional Connections Between Sensory Areas Mediate Cross-Modal Illusory Perception Jason Cooke,1 Claudia Poch,2 Helge Gillmeister,1 Marcello Costantini,3,4 and XVincenzo Romei1,5 1Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom, 2Facultad de Lenguas y Educacio´n, Universidad Nebrija, 28015 Madrid, Spain, 3Department of Psychological, Health, and Territorial Sciences, 4Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy, and 5Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Universita’ di Bologna, Campus di Cesena, 47521 Cesena, Italy The presentation of simple auditory stimuli can significantly impact visual processing and even induce visual illusions, such as the auditory-induced double flash illusion (DFI). These cross-modal processes have been shown to be driven by occipital oscillatory activity within the alpha band. Whether this phenomenon is network specific or can be generalized to other sensory interactions remains unknown. The aim of the current study was to test whether cross-modal interactions between somatosensory-to-visual areas leading to the same (but tactile-induced) DFI share similar properties with the auditory DFI. We hypothesized that if the effects are mediated by the oscillatory properties of early visual areas per se, then the two versions of the illusion should be subtended by the same neurophysiolog- ical mechanism (i.e., the speed of the alpha frequency). Alternatively, if the oscillatory activity in visual areas predicting this phenomenon is dependent on the specific neural network involved, then it should reflect network-specific oscillatory properties.
    [Show full text]
  • Thermoception
    THE FOURTH VIRTUAL DIMENSION Stimulating the Human Senses to Create Virtual Atmospheric Qualities LIAM JORDAN SHEEHAN1, ANDRE BROWN2, MARC AUREL SCHNABEL3 and TANE MOLETA4 1,2,3,4Victoria University of Wellington [email protected] 2,3,4{Andre.Brown|MarcAurel.Schnabel| Tane.Moleta}@vuw.ac.nz Abstract. In a move away from the ubiquitous ocular-centric Virtual Environment, our paper introduces a novel approach to creating other atmospheric qualities within VR scenarios that can address the known shortcoming of the feeling of disembodiment. In particular, we focus on stimulating the human body’s sensory ability to detect temperature changes: thermoception. Currently, users’ perceptions of a 3D virtual environment are often limited by the general focus, in VR development for design, on the two senses of vision and spatialised audio. The processes that we have undertaken include developing individual sensory engagement techniques, refinement of sensory stimuli and the generation of virtual atmospheric qualities. We respond to Pallasmaa’s theoretical stance on the evolution of the human senses, and the western bias of vision in virtual engine development. Consequently, the paper investigates the role our senses, outside of the core ’five senses’, have in creating a ’fourth virtual dimension’. The thermoception dimension is explored in our research. A user can begin to understand and engage with space and the directionality within a virtual scenario, as a bodily response to the stimulation of the body’s thermoception sense. Keywords. Virtual Reality; thermoception; sensory experience; immersion; atmosphere. 1. Introduction Experience, more precisely Human Experience, is set against the backdrop of the perception of space.
    [Show full text]
  • “Lacking Warmth” Alexithymia Trait Is Related to Warm-Specific Thermal Somatosensory Processing
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Biological Psychology 128 (2017) 132–140 Contents lists available at ScienceDirect Biological Psychology journal homepage: www.elsevier.com/locate/biopsycho “Lacking warmth”: Alexithymia trait is related to warm-specific thermal MARK somatosensory processing ⁎ Khatereh Borhania,b,c,d, Elisabetta Làdavasb,c, Aikaterini Fotopouloue, Patrick Haggarda, a Institute of Cognitive Neuroscience, University College London, London, UK b Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127 Bologna, Italy c CSRNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Viale Europa 980, 47521 Cesena, Italy d Institute of Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran e Division of Psychology and Language Sciences, University College London, London, UK ARTICLE INFO ABSTRACT Keywords: Alexithymia is a personality trait involving deficits in emotional processing. The personality construct has been Alexithymia extensively validated, but the underlying neural and physiological systems remain controversial. One theory Somatosensory processig suggests that low-level somatosensory mechanisms act as somatic markers of emotion, underpinning cognitive Emotion processing and affective impairments in alexithymia. In two separate samples (total N = 100), we used an established Quantitative sensory testing (QST) Quantitative Sensory Testing (QST) battery to probe multiple neurophysiological submodalities of somato- Thermal perception sensation, and investigated their associations with the widely-used Toronto Alexithymia Scale (TAS-20). Experiment one found reduced sensitivity to warmth in people with higher alexithymia scores, compared to individuals with lower scores, without deficits in other somatosensory submodalities. Experiment two replicated this result in a new group of participants using a full-sample correlation between threshold for warm detection and TAS-20 scores.
    [Show full text]
  • Sensitisation of Nociceptors – What Are Ion Channels Doing?
    82 The Open Pain Journal, 2010, 3, 82-96 Open Access Sensitisation of Nociceptors – What are Ion Channels Doing? Michael J.M. Fischer*, Stephanie W.Y. Mak and Peter A. McNaughton Department of Pharmacology, University of Cambridge, UK Abstract: Nociceptors are peripheral sensory neurones which respond to painful (noxious) stimuli. The terminals of nociceptors, which have a high threshold to stimulation in their native state, undergo a process known as sensitisation, or lowering of threshold, following injury or inflammation. Amongst sensory receptors, sensitisation is a property unique to nociceptors. A shift in the stimulus-response function of nociceptors renders them more sensitive, resulting in both a reduction in the activation threshold, such that previously non-noxious stimuli are perceived as noxious (allodynia) and an increased response to suprathreshold stimuli (hyperalgesia). Sensitisation protects us from harm and is essential for survival, but it can be disabling in conditions of chronic inflammation. This review focuses on three stages in sensitisation: 1) Inflammatory mediators, which are released from damaged resident cells and from others that invade in response to inflammation, and include bradykinin, prostaglandins, serotonin, low pH, ATP, neurotrophins, nitric oxide and cytokines; 2) Intracellular signalling molecules which are important in transmitting the actions of inflammatory mediators and include protein kinase A and C, Src kinase, mitogen-activated protein kinases and the membrane lipid PIP2; and 3) Ion channel targets of intracellular signalling which ultimately cause sensitisation and include the temperature- sensitive transient receptor potential channels, acid-sensitive ion channels, purinoceptor-gated channels, and the voltage- sensitive sodium, potassium, calcium and HCN channels.
    [Show full text]
  • Disorders of the Visual System in Alzheimer's Disease
    © 1990 Raven Press, Ltd.. New York Disorders of the Visual System in Alzheimer's Disease Mario F. Mendez, M.D., Robert L. Tomsak, M.D., Ph.D., and Bernd Remler, M.D. Alzheimer's disease (AD) is associated with distur­ Alzheimer's disease (AD) is the most prevalent bances in basic visual, complex visual, and oculomotor form of dementia affecting greater than 2.5 million functions. The broad range of visual system disorders in AD may result from the concentration of neuropathol­ people in the U.S., with the numbers expected to ogy in visual association cortex and optic nerves in this double by the year 2040 (1). Despite the absence of disease. AD patients and their caregivers frequently re­ a clinical test for AD, the recent establishment of port visuospatial difficulties in these patients. Examina­ highly accurate clinical criteria permit a more pre­ tion of the visual system in AD may reveal visual field cise evaluation of the deficits associated with this deficits, prolonged visual evoked potentials, depressed contrast sensitivities, and abnormal eye movement re­ disorder (2-4) (see Table 1). In addition to the cordings. Complex visual disturbances include construc­ usual memory and other cognitive deficits, AD pa­ tional and visuoperceptual abnormalities, spatial agno­ tients have disturbances in basic visual, complex sia and Balint's syndrome, environmental disorienta­ visual, and oculomotor functions, and AD patients tion, visual agnosia, facial identification problems, and in greater numbers are undergoing more thorough visual hallucinations. The purpose of this article is to review the spectrum of visual system disturbances evaluations of their visual systems (4-8).
    [Show full text]
  • B-Afferents: a Fundamental Division of the Nervous System Mediating Hoxneostasis?
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 1990 Dichotomic classification of sensory neurons: Elegant but problematic Neuhuber, W L DOI: https://doi.org/10.1017/s0140525x00078882 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-154322 Journal Article Published Version Originally published at: Neuhuber, W L (1990). Dichotomic classification of sensory neurons: Elegant but problematic. Behav- ioral and Brain Sciences, 13(02):313-314. DOI: https://doi.org/10.1017/s0140525x00078882 BEHAVIORAL AND BRAIN SCIENCES (1990) 13, 289-331 Printed in the United States of America B-Afferents: A fundamental division of the nervous system mediating hoxneostasis? James C. Prechtl* Terry L* Powley Laboratory of Regulatory Psychobiology, Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907 Electronic mail: [email protected]@brazil.psych.edu *Reprint requests should be addressed to: James C. Prechtl, Department of Neuroscience, A-001, University of California, San Diego, La Jolla, CA 92093 Abstract? The peripheral nervous system (PNS) has classically been separated into a somatic division composed of both afferent and efferent pathways and an autonomic division containing only efferents. J. N. Langley, who codified this asymmetrical plan at the beginning of the twentieth century, considered different afferents, including visceral ones, as candidates for inclusion in his concept of the "autonomic nervous system" (ANS), but he finally excluded all candidates for lack of any distinguishing histological markers. Langley's classification has been enormously influential in shaping modern ideas about both the structure and the function of the PNS.
    [Show full text]
  • An Investigation of Tactile Localization and Skin-Based Maps
    Where was I touched? – An investigation of tactile localization and skin-based maps Jack Brooks Doctor of Philosophy Neuroscience Research Australia School of Medical Sciences, Faculty of Medicine University of New South Wales November 2017 ii Preface The coding of the position of touch on the skin and of the size and shape of the body are both fundamental for interacting with our surrounds. The aim of this thesis was to learn more about the mechanisms of tactile localization and to characterize the principles by which skin-based representations of the body update. It is commonly accepted that skin-based representations of the body are generated from the statistics of touch and other inputs. My studies required skin stimulation customised to account for inter-individual differences in touch sensitivity and forearm shape. Within the constraints of these methodological challenges, the central questions of this thesis were addressed by performing multiple behavioural experiments. In my first study, I tested how touch intensity and history influence touch localization. The study showed that reducing touch intensity increases the variability of pointing responses to touch and results in spatial biases to the middle of the recent history of touch. Thus, I showed that when uncertain about perceived touch location, a strategy is used that minimises localization errors over time. This error minimisation mechanism stabilises our perception of events on the skin and their sensory features. Next, I investigated uncertainty in a motion stimulus by fragmenting it. Studies in vision suggest that missing sensory inputs are filled-in from the surrounds, while previous tactile studies suggest fragmented motion could influence skin-based representations.
    [Show full text]