An Investigation of Tactile Localization and Skin-Based Maps

Total Page:16

File Type:pdf, Size:1020Kb

An Investigation of Tactile Localization and Skin-Based Maps Where was I touched? – An investigation of tactile localization and skin-based maps Jack Brooks Doctor of Philosophy Neuroscience Research Australia School of Medical Sciences, Faculty of Medicine University of New South Wales November 2017 ii Preface The coding of the position of touch on the skin and of the size and shape of the body are both fundamental for interacting with our surrounds. The aim of this thesis was to learn more about the mechanisms of tactile localization and to characterize the principles by which skin-based representations of the body update. It is commonly accepted that skin-based representations of the body are generated from the statistics of touch and other inputs. My studies required skin stimulation customised to account for inter-individual differences in touch sensitivity and forearm shape. Within the constraints of these methodological challenges, the central questions of this thesis were addressed by performing multiple behavioural experiments. In my first study, I tested how touch intensity and history influence touch localization. The study showed that reducing touch intensity increases the variability of pointing responses to touch and results in spatial biases to the middle of the recent history of touch. Thus, I showed that when uncertain about perceived touch location, a strategy is used that minimises localization errors over time. This error minimisation mechanism stabilises our perception of events on the skin and their sensory features. Next, I investigated uncertainty in a motion stimulus by fragmenting it. Studies in vision suggest that missing sensory inputs are filled-in from the surrounds, while previous tactile studies suggest fragmented motion could influence skin-based representations. In my second study, I used a motion stimulus which instantly skipped a spatial gap on the forearm, as if the skin surface had been rearranged. As expected I observed mislocalization toward the spatial gap, consistent with changes to receptive fields of neurons corresponding to the skipped patch. The results of my third study were discordant with expectations about the perceived extent of fragmented motion. However, I identified a novel judgment-dependent perceived shortening of a tactile motion stimulus. My final study found that this judgment contingent effect was accompanied by a perceived shortening of the forearm. Future studies might further explore this linkage between skin-based and higher-order representations of the limbs. The findings from this thesis may be clinically relevant for correcting disordered representations. iii Contents Commitment to open science .......................................................................................... ix Originality statement ........................................................................................................ x Copyright statement ........................................................................................................ xi Authenticity statement .................................................................................................... xi Acknowledgements ........................................................................................................ xii Publications from this thesis ......................................................................................... xiii Selected presentations from this thesis ......................................................................... xiv Selected other publications during this candidature ...................................................... xv Abbreviations ............................................................................................................... xvii Chapter 1: General Introduction ............................................... 1 1.1 Overview .................................................................................................................... 1 1.2 Touch localization ...................................................................................................... 2 1.2.1 Body representations .................................................................................. 4 1.2.2 Touch detection and localization ............................................................... 6 1.2.3 Touch localization: Acuity is better than predicted ................................... 8 1.2.4 Uncertainty about touch location ............................................................... 9 1.2.5 Localization tasks .................................................................................... 12 1.2.6 Localization in external space .................................................................. 12 1.2.7 Tactile extent ............................................................................................ 14 1.2.8 Extent reporting methods ......................................................................... 17 iv 1.3 Contextual influences on touch localization ............................................................ 19 1.3.1 Filling-in: Vision ...................................................................................... 19 1.3.2 Filling-in: Skin-based maps ..................................................................... 22 1.3.3 Filling-in: On the body............................................................................. 24 1.3.4 Spatiotemporal context modulates localization ....................................... 25 1.3.5 The spatiotemporal conditions of the CRE .............................................. 26 1.3.6 Saltation: Models ..................................................................................... 28 1.3.7 Saltation: Neural mechanisms .................................................................. 29 1.4 Tactile perception of objects and the body .............................................................. 31 1.4.1 Perceptual binding ................................................................................... 31 1.4.2 Binding: Occluded objects ....................................................................... 32 1.4.3 Space gives to time: The abridging effect ................................................ 34 1.4.4 Cortical reorganization............................................................................. 35 1.4.5 Organizing somatosensation: Analysing the statistics of touch to the skin .......................................................................................................................... 36 1.4.6 Summary .................................................................................................. 37 1.5 Aims of the present studies ...................................................................................... 38 Chapter 2: Perceived Position of Touch on the Skin ............. 40 2.1 Summary .................................................................................................................. 40 2.2 Introduction .............................................................................................................. 41 2.3 Materials and methods ............................................................................................. 44 2.4 Results ...................................................................................................................... 50 2.4.1 Experiment 1: Stimulus distribution centred on forearm ......................... 50 v 2.4.2 Experiment 2: Localization of Strong and Super strong stimuli .............. 51 2.4.3 Experiment 3: Stimulus distribution offset from middle of forearm ....... 52 2.5 Discussion ................................................................................................................ 55 Chapter 3: Artificial Tactile Scotoma ...................................... 59 3.1 Summary .................................................................................................................. 59 3.2 Introduction .............................................................................................................. 60 3.3 Materials and methods ............................................................................................. 64 3.4 Results ...................................................................................................................... 71 3.4.1 Preliminary Experiment 1: Effect of nearby pressure on localization ..... 71 3.4.2 Preliminary Experiment 2: Intensity adaptation ...................................... 72 3.4.3 Experiment 1: Artificial tactile scotoma .................................................. 73 3.5 Discussion ................................................................................................................ 78 Chapter 4: Tactile Motion Extent ............................................ 85 4.1 Summary .................................................................................................................. 85 4.2 Introduction .............................................................................................................. 86 4.3 Materials and general methods ................................................................................ 89 4.4 Experimental studies ................................................................................................ 92 4.4.1 Experiment 1: Perceived extent of fragmented tactile motion ................. 92 4.5 Control experiments ................................................................................................. 97 4.5.1 Control experiment 1a: Extent
Recommended publications
  • Somatosensory Processes Subserving Perception and Action
    BEHAVIORAL AND BRAIN SCIENCES (2007) 30, 189–239 Printed in the United States of America DOI: 10.1017/S0140525X07001392 Somatosensory processes subserving perception and action H. Chris Dijkerman Department of Experimental Psychology, Helmholtz Research Institute, Utrecht University, 3584 CS Utrecht, The Netherlands [email protected] Edward H. F. de Haan Department of Experimental Psychology, Helmholtz Research Institute, Utrecht University, 3584 CS Utrecht, The Netherlands [email protected] Abstract: The functions of the somatosensory system are multiple. We use tactile input to localize and experience the various qualities of touch, and proprioceptive information to determine the position of different parts of the body with respect to each other, which provides fundamental information for action. Further, tactile exploration of the characteristics of external objects can result in conscious perceptual experience and stimulus or object recognition. Neuroanatomical studies suggest parallel processing as well as serial processing within the cerebral somatosensory system that reflect these separate functions, with one processing stream terminating in the posterior parietal cortex (PPC), and the other terminating in the insula. We suggest that, analogously to the organisation of the visual system, somatosensory processing for the guidance of action can be dissociated from the processing that leads to perception and memory. In addition, we find a second division between tactile information processing about external targets in service of object recognition and tactile information processing related to the body itself. We suggest the posterior parietal cortex subserves both perception and action, whereas the insula principally subserves perceptual recognition and learning. Keywords: body image; body schema; crossmodal; insula; parietal; proprioception; tactile object recognition 1.
    [Show full text]
  • Oscillatory Properties of Functional Connections Between Sensory Areas Mediate Cross-Modal Illusory Perception
    The Journal of Neuroscience, July 17, 2019 • 39(29):5711–5718 • 5711 Systems/Circuits Oscillatory Properties of Functional Connections Between Sensory Areas Mediate Cross-Modal Illusory Perception Jason Cooke,1 Claudia Poch,2 Helge Gillmeister,1 Marcello Costantini,3,4 and XVincenzo Romei1,5 1Centre for Brain Science, Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom, 2Facultad de Lenguas y Educacio´n, Universidad Nebrija, 28015 Madrid, Spain, 3Department of Psychological, Health, and Territorial Sciences, 4Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy, and 5Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Universita’ di Bologna, Campus di Cesena, 47521 Cesena, Italy The presentation of simple auditory stimuli can significantly impact visual processing and even induce visual illusions, such as the auditory-induced double flash illusion (DFI). These cross-modal processes have been shown to be driven by occipital oscillatory activity within the alpha band. Whether this phenomenon is network specific or can be generalized to other sensory interactions remains unknown. The aim of the current study was to test whether cross-modal interactions between somatosensory-to-visual areas leading to the same (but tactile-induced) DFI share similar properties with the auditory DFI. We hypothesized that if the effects are mediated by the oscillatory properties of early visual areas per se, then the two versions of the illusion should be subtended by the same neurophysiolog- ical mechanism (i.e., the speed of the alpha frequency). Alternatively, if the oscillatory activity in visual areas predicting this phenomenon is dependent on the specific neural network involved, then it should reflect network-specific oscillatory properties.
    [Show full text]
  • A Test of an Auditory Motion Hypothesis for Continuous and Discrete Sounds Moving in Pitch Space
    A TEST OF AN AUDITORY MOTION HYPOTHESIS FOR CONTINUOUS AND DISCRETE SOUNDS MOVING IN PITCH SPACE Molly J. Henry A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2011 Committee: J. Devin McAuley, Advisor Rodney M. Gabel Graduate Faculty Representative Jennifer Z. Gillespie Dale S. Klopfer ii ABSTRACT J. Devin McAuley, Advisor Ten experiments tested an auditory motion hypothesis, which proposes that regular pitch- time trajectories facilitate perception of and attention to auditory stimuli; on this view, listeners are assumed to use velocity information (pitch change per unit time) to generate expectations about the future time course of continuous and discrete sounds moving in pitch space. Toward this end, two sets of experiments were conducted. In six experiments reported in Part I of this dissertation, listeners judged the duration or pitch change of a continuous or discrete comparison stimulus relative to a standard, where the comparison’s velocity varied on each trial relative to the fixed standard velocity. Results indicate that expectations generated based on velocity information led to distortions in perceived duration and pitch change of continuous stimuli that were consistent with the auditory motion hypothesis; specifically, when comparison velocity was relatively fast, duration was overestimated and pitch change was underestimated. Moreover, when comparison velocity was relatively slow, duration was underestimated and pitch change was overestimated. On the other hand, no perceptual distortions were observed for discrete stimuli, consistent with the idea that velocity information is less clearly conveyed, or easier to ignore, for discrete auditory stimuli.
    [Show full text]
  • An Investigation of the Velvet Hand Illusion Using Computational
    ! "#!$#%&'()*+(),#!,-!(.&!/&0%&(!1+#2! $003'),#!4')#*!5,673(+(),#+0! 8&9.+#)9'!+#2!:';9.,7.;')9'! ! A doctoral thesis presented by Abdullah Chami 550804013 to Department of Complex Systems Science Graduate School of Information Science Nagoya University Japan ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! k]PRyƛ) į¿6Ĕƞį¿r$ē=ƎŪ:4(*ƴyƛ )xð(ļÚ:ņ)LlG= :èŮ :ƵƆÔÂ8ğĺ; # :Xen_UASmk]PR=(%:%ƴÉı¢(¬#Ĩ(į¿% yƛ.)øŴ(7 #İ:°Ƭ=ųĝ:%ì¡%;# :Ƶ 2 ƴƓƟûº)k]PR)¾«(5ƴJjnZ%#ē=ƎŪ:k] PR)ēĭ¾6ē)ĖÅ=Ŧ¾ð5 #ûş(ƒ:%èŮ% ;# :Ƶ)7 (ƴƆÔ)k]PRÐÇ( #ŴűLlG%ŴűQ @J[jA.)ŮĜj\iƱ2 # :Ƶ'8ƴƥøŴ=ú% :Űű6Šű%ĵ'9ƴŴűLlG6ŴűQ@J[jA$*ħ6XR. )øŴ=ú%# :4(ƴƥøŴº)LlG6Q@J[jA(ě/# ÐÇĸÉĭ)³ƣƠň # :Ƶ ! ĈŀŇ$*ƴŴűLlG6ŴűQ@J[jA)ŀŇ( #ZjAEJ in=ć4(ƴŴű)ƙűĭƃ(o!$ :\i\PRmVlSmAh enIflƲ Ƴ=ſď#ƴ)ęĕ=ųă:%(7 #Ā Ŵ űLlG6ŴűQ@J[jA=ƚķ:q$)ƕŮ'XlR=ã:%=ą#$% Ŕĺė%# :Ƶ)42ƴĈŴű)ƙű%#ĈŀŇ$¨9q: 8Žă:Ƶ'<ƴ %*só$Ɨř=õ3só=9«< :%ĈċÆ·' \i\PRݸ)7 #$% #$% 'Ñ : *Ď8 ő)7 '5)=ð:ĭƃ$ :ƵĦó$Ɨř=Ŵ #5)7 'ðű*İ' ! ! "! ! ƵÉƠ((Æ·' 5)=ð:% %*ƴţư;# : % %$ :ƵţęŢ=­4ŴűLlHlF)ęĕųă;;+ƴ ĈŀŇ)òč*Ā ŴűLlG)ŸŶëî(ś:%ćà;:Ƶ2ƴ ŴűQ@J[jA(! #*ƴ;ħVlShlF)îĭÉð(7 ı 8;:%8ƴĈŀŇ)òč=79Ļøĸ(ı$:Ƶ'<ƴ îĭÉð$*ţ=ư#(ħ :)7 (ð:%$ ;+ò$ 9ƴ )İòęĕųă(7 #ûş(ï)ħ=Ķ Ư:%ªŢ%':%ćà;:Ƶ#$% ! )İòęĕ=ųă:4(ƴ ĈŀŇ$*w!)āĞƀ=÷ı :Ƶ2ƴo#$% !*çĮħĮÉƯĞ$ 9ƴ5 oā*ŶŌÇ$ :Ƶş *ƴ &)7 'Ċ)5%$ VHI ķİ:)ſď:4)5)$ :Ƶð# :ð# ' *yĸƯ$ 9ƴoŨ(Â8ùƖ :%*³ƣ$ :Ƶ$ƴĈŀŇ$*Ĥ)ħĮƖ%çĸÁ¢=Ɯƌ| :4)ÉƯóĞ%#ş=÷ı:Ƶ2ƴŴű*Ĺť( 8;: ÇĸĤ(79ęđ©Ë±éŋ:%(7 #İ:4(ƴáş) ŶŌÇ*Ĺť)ÁÛųČ=ÉĂ:%(7 #ęđ©Ë¤)éŋ=ù Ģ:q$Ć(ı;:Ƶ)4ƴæÎƤĔ=:%(7 # ęđ©Ë±)éŋ=ſď:% æÎńŖƤµĞ(}< #ƴŶŌÇ= ÷ı:Ƶ Ĉƀý*ƴ5 ʼn8ĕò;:Ƶ2 1 ʼn$*ƴƈ)ĈŀŇ)šĄ% ĺĸ=ƈ/# :Ƶ2ƴİħ(XlR=ã#ŀŇ=ƍ4:İħĘ)Ş ā=Ġı:4(ƴk]PR~Â)yÐħ)ŸŶ()Ş ā=ı ! ! ""! ! ŀŇƚķ(! #ÕGn\A:Ƶ)á(ƴĈŀŇ(ġƜƌ:Ŵ ű(Ɯ#İħĘ)Ş
    [Show full text]
  • Space and Time in Perception and Action Edited by Romi Nijhawan and Beena Khurana Index More Information
    Cambridge University Press 978-0-521-86318-6 - Space and Time in Perception and Action Edited by Romi Nijhawan and Beena Khurana Index More information Index absolute time, 1, 232 effect on perceived speed, 233 acceleration, 99, 118, 124, 133, 177, 287, 342, 366, 449, effect on time perception, 269, 272 545 endogenous, 269–271, 532, 543 acuity, visual, 102, 105, 449 exogenous, 269–271 adaptation, 43, 44, 48, 63, 64, 68, 78, 97, 124, 128, 202, 209, in flash-lag effect, 396–403, 414, 423, 479, 487, 493–495 212, 236, 243, 245, 248, 284, 288, 295, 345, 351, 352, in Frohlich¨ effect, 321, 328–331, 334 359, 489, 531, 532 and motion information, 521, 524–526, 528–532 Adelson, E. H., 126, 137, 281, 392, 418, 525, 530 and perceptual asynchrony, 269–271, 516, 517 afference, 13, 57, 95, 97, 211, 423–428, 431, 435, 436, 438, in representational momentum, 343, 348, 358, 367 543–545, 548, 551 and salience, 284, 294 after-image, 13, 33, 95–97, 100 shifts in, 203, 243, 256 aim, target, 109, 110, 113, 118 in temporal order, 170, 174, 272, 286 Alais, D., 233, 240, 272, 273, 402, 479, 481, 482, 493, 546 audiovisual interaction, 236, 243, 245, 247, 278, 279, 284, algorithm, 278, 282, 284, 295, 350, 357, 358 286, 293–295, 303, 546 aliasing. See temporal aliasing audition, 3, 73, 74, 80, 152, 159, 160, 166, 169, 182, 217, 228, allocentric location. See also exocentric location 247, 254, 271, 278, 283, 288, 290, 303, 342, 397, 479, amodal 481, 550 representation, 284 and simultaneity, 232–235, 238, 240, 241, 243, 245, 279, tokens, 278, 279 284, 286, 293–295 Andersen, R.
    [Show full text]
  • TRF1: It Was the Best of Time(S)…
    Timing & Time Perception 6 (2018) 231–414 brill.com/time TRF1: It Was the Best of Time(s)… Anne Giersch1 and Jennifer T. Coull2 1INSERM, France 2Laboratoire des Neurosciences Cognitives (UMR 7291), Aix-Marseille University & CNRS, Marseille, France The Timing Research Forum (TRF; http://timingforum.org/) is an interna- tional (Fig. 1), gender-inclusive, and open academic society for timing re- search, founded in 2016 by Argiro Vatakis and Sundeep Teki (Teki, 2016). Following a call to its Committee members in May 2016, we agreed to host the 1st Conference of the Timing Research Forum in Strasbourg, France (TRF1; http://trf-strasbourg.sciencesconf.org). First on the agenda was to decide on eminent keynote speakers to lend credibility to this very first TRF conference. We wanted one talk from the field of psychology and the other from the neurosciences, and so were delighted that both Lera Boro- ditsky and Warren Meck accepted our invitations immediately. Lera kicked off the conference for us, with an extremely entertaining talk about the spatial representation of time in different societies and cultures and how the linguistic metaphors we use to describe time influence our conception of time. Warren highlighted the key role of the striatal dopaminergic sys- tem for timing, illustrating his talk with data from an impressive variety of methodological techniques from the clinical level (performance in patients with Parkinson’s Disease) right down to the cellular (optogenetic studies in mice). Coincidentally, the role of dopamine in timing was also the subject of our third keynote talk. One of the mission statements of TRF is to pro- mote the work of young researchers, and Argiro and Sundeep had the great idea to invite an early-career researcher to give a keynote talk.
    [Show full text]
  • The Kappa Effect in Pitch/Time Context Dissertation
    THE KAPPA EFFECT IN PITCH/TIME CONTEXT DISSERTATION Presented in Partial Fulfillment of the Requirements for the degree Doctor of Philosophy in the Graduate School of The Ohio State University By Noah MacKenzie, M.A. ***** The Ohio State University 2007 Dissertation Committee: Professor Mari Jones, Adviser Professor Mark Pitt Approved by Professor James Todd Adviser Psychology Graduate Program ABSTRACT The kappa effect, an effect of spatial extent on the perception of time, is, relatively speaking, poorly understood, especially in the auditory domain. Five experiments demonstrate the kappa effect in the auditory domain by instructing listeners to judge the timing of a tone (Tone X) in relation to a tone immediately preceding it (Tone A) and immediately following it (Tone B). These three tones, together, are referred to as a kappa cell. Experiments 3, 4, and 5 illustrate how the serial context of kappa judgments can influence the strength of the effect. Experiment 1 served as a control experiment to demonstrate the effectiveness of the independent variables. Experiment 2 replicated Shigeno (1986), perhaps the clearest presentation to date of the auditory kappa effect, yet used pitch (frequency on a logarithmic scale) rather than frequency (on a linear scale) as an independent variable. Experiment 3 added a three-tone serial context to the kappa cell. Experiment 4 added a serial context to the kappa cell that strongly conflicted with its pitch trajectory. Experiment 5 examined kappa cells with larger pitch motion (or change in pitch per unit time). Results are discussed in terms of auditory motion and the assumption of constant velocity.
    [Show full text]
  • Book XVII License and the Law Editor: Ramon F
    8 88 8 8nd 8 8888on.com 8888 Basic Photography in 180 Days Book XVII License and the Law Editor: Ramon F. aeroramon.com Contents 1 Day 1 1 1.1 Photography and the law ....................................... 1 1.1.1 United Kingdom ....................................... 2 1.1.2 United States ......................................... 6 1.1.3 Hong Kong .......................................... 8 1.1.4 Hungary ............................................ 8 1.1.5 Macau ............................................. 8 1.1.6 South Africa ......................................... 8 1.1.7 Sudan and South Sudan .................................... 9 1.1.8 India .............................................. 10 1.1.9 Iceland ............................................ 10 1.1.10 Spain ............................................. 10 1.1.11 Mexico ............................................ 10 1.1.12 See also ............................................ 10 1.1.13 Notes ............................................. 10 1.1.14 References .......................................... 10 1.1.15 External links ......................................... 12 2 Day 2 13 2.1 Observation .............................................. 13 2.1.1 Observation in science .................................... 14 2.1.2 Observational paradoxes ................................... 14 2.1.3 Biases ............................................. 15 2.1.4 Observations in philosophy .................................. 16 2.1.5 See also ...........................................
    [Show full text]
  • (EEG) Profile and Sense of Body Ownership: a Study of Signal Processing, Proprioception and Tactile Illusion
    Electroencephalography (EEG) Profile and Sense of Body Ownership: A Study of Signal Processing, Proprioception and Tactile Illusion Finding a link in neural correlates of human’s perceptual and illusion Sheyda Shahriari A thesis submitted for the degree of Doctor of Philosophy School of Engineering and Design Brunel University Submission date: March 2018 Deceleration I hereby declare that this Ph.D. thesis entitled “Electroencephalography (EEG) Profile and Sense of Body Ownership: A Study of Signal Processing, Proprioception and Tactile Illusion” I have submitted to the office of Engineering and Design department, Brunel university London, is entirely my original work prepared under the supervision of Prof. Ibrahim Esat. I have duly acknowledged all the sources of information which have been used in the thesis. The results of this dissertation have not been presented or submitted anywhere else for the award of any degree or for other purpose. I shall be solely responsible if any evidence is found against my declaration. …………………. Sheyda Shahriari Brunel University London I Problem Description Loss of limb function affects over 25 million globally, mainly due to cardiovascular and trauma causes. The loss or the genetic absence of an upper limb may seriously compromise the functional independence of a person in his/her daily living. Current prostheses are useful to overcome the restrictions that the lack of a limb implies and to provide the amputee with certain autonomy but due to the complex nature of the upper extremity, the acceptance of current devices is still below 50%. Many of these devices are often extremely expensive in the range from the $3000-$30000 or more and many afflicted persons in developing countries cannot afford to seek this type of treatment.
    [Show full text]
  • UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society
    UC Merced Proceedings of the Annual Meeting of the Cognitive Science Society Title Does spatiotemporal integration occur with single empty time intervals instead of two neighboring intervals in the visual modality? Permalink https://escholarship.org/uc/item/3705r7j0 Journal Proceedings of the Annual Meeting of the Cognitive Science Society, 36(36) ISSN 1069-7977 Authors Kuroda, Tsuyoshi Grondin, Simon Tobimatsu, Shozo Publication Date 2014 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Does spatiotemporal integration occur with single empty time intervals instead of two neighboring intervals in the visual modality? Tsuyoshi Kuroda ([email protected]) Department of Clinical Neurophysiology, Neurological Institute, Graduate School of Medical Sciences Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan Simon Grondin ([email protected]) École de psychologie, Université Laval, 2325 rue des Bibliothèques Québec, G1V 0A6 Canada Shozo Tobimatsu ([email protected]) Department of Clinical Neurophysiology, Neurological Institute, Graduate School of Medical Sciences Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan Abstract interpreted as indicating a perceptual tendency to overestimate duration when spatial distance is increased. The kappa effect is an illusion involving spatiotemporal integration in the cognitive process and is demonstrated with The kappa effect is explained by the imputed-velocity three successive signals delimiting two neighboring empty model, positing the constancy of motional speed or velocity time intervals. The present experiment was conducted with (Alards-Tomalin, Leboe-McGowan, & Mondor, 2013; single time intervals delimited by two signals, instead of three, Henry & McAuley, 2009; Jones, & Huang, 1982; ten to examine whether perceived duration would be modulated Hoopen, Miyauchi, & Nakajima, 2008).
    [Show full text]
  • Thermal Perception and Thermal Devices Used on Body Parts Other Than Hand Or Face
    Thermal perception and thermal devices used on body parts other than hand or face Citation for published version (APA): Kappers, A., & Plaisier, M. (2019). Thermal perception and thermal devices used on body parts other than hand or face. IEEE Transactions on Haptics, 12(4), 386-399. [8747382]. https://doi.org/10.1109/TOH.2019.2925339 DOI: 10.1109/TOH.2019.2925339 Document status and date: Published: 01/10/2019 Document Version: Accepted manuscript including changes made at the peer-review stage Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Processing Time Between Visual Events
    Processing time between visual events Processamento temporal entre eventos visuais Simon Grondin ABSTRACT Visual perception is closely related to and associated with the processing of space. Nevertheless, all events occur at some moment in time, and time needs to be processed in the visual mode. After briefly reviewing the many research avenues in which time and vision are linked, this article focuses on the discrimination of visually marked time intervals, emphasizing work from my own laboratory. It presents a theoretical position, that of a single- clock hypothesis, as well as issues and data that show how visual temporal processing can be approached. These issues are partly related to the fact that time is marked by signals from a single source or by signals provided by distanced sources. In the latter case, different questions arise depending on the signals’ exact location. It is known that more distance between flashes can result in longer perceived duration (kappa effect). However, the data reported here, involving signals placed on the same vertical plane, show the opposite effect: briefer perceived duration with more distance between flashes. When flashes are located on the same horizontal plane in different hemi-fields, there is also a lateral effect that may influence time judgments. Keywords: Time perception; Perceived duration; Time markers; Kappa effect From the electrophysiology of retinal or cortical cells to the Gestalt law of organization of visual stimuli, there are a variety of levels for understanding vision and visual perception. In many cases, the visual phenomena to be understood consist of color, form, depth or movement. As can readily be grasped when considering depth or movement, space is often crucial information for the visual system.
    [Show full text]