Sramsoe295ocr.Pdf
76° 75° 74° 73° ,., .. ~[_ ,I / / / / ()?.~.,.) ·....1 ~ ••..' .,. r"" ("'\ _. .., '-' \ i·.. J -·. \,.•. .. / \ DAVID B. EG LESTON ) I / _.i SEPTE BER 1988 , : -· .~.I' .= 1s• 75° 74° 73° SRAMSOE No. 295 of the Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062. Remote Sensing of Offshore Water Mass Features: Present and Potential Benefits to Virginia's Recreational Fishery for Marlin and Tuna David B. Eggleston Virginia Institute of Marine Science School of Marine Science College of William and Mary Gloucester Point, Virginia 23062 September 1988 SRAMSOE No. 295 of the Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062. 2 INTRODUCTION The distribution, abundance, and catchability of pelagic recreational fishes such as billfishes (Istiophoridae and Xiphidae) and tunas (Scombridae) are markedly influenced by known optimum temperatures and hydrographic frontal zones (Squire, 1962, 1974; Uda, 1973; Mather, et al. 1975; Laurs and Lynn, 1977; Magnuson, et al. 1980, 1981; Rockford, 1981; Shingu, 1981; Sund, et al. 1981; Laurs, et al. 1984). Environmental temperature directly inf·luences fish metabolism which in turn affects life processes such as growth, development, and swimming speed (Laevastu and Hayes, 1983). Temperature effects on the movement, distribution, and nervous system response of fishes are summarized by Sullivan (1954). Sullivan (1954) stated tlhat fish select a certain optimium temperature because of the effect of the same on their movement (activity, sensu Laevastu and Hayes, 1983), and concluded temperature change may act on a fish: 1) as a nervous stimulus, 2) as a modifier of metabolic processes and 3) as a modifier of bodily activity.
[Show full text]