Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 137: 2149–2156, October 2011 B Intensity forecast experiment of hurricane Rita (2005) with a cloud-resolving, coupled hurricane–ocean modelling system Xin Qiu,a,b Qingnong Xiao,b,c Zhe-Min Tana* and John Michalakesb aKey Laboratory of Mesoscale Severe Weather/MOE, and School of Atmospheric Sciences, Nanjing University, China bMesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA cCollege of Marine Science, University of South Florida, St Petersburg, Florida, USA *Correspondence to: Z.-M. Tan, School of Atmospheric Sciences, Nanjing University, Nanjing 210093, China. E-mail:
[email protected] A cloud-resolving, coupled hurricane-ocean modelling system is developed under the Earth System Modeling Framework using state-of-the-art numerical forecasting models of the atmosphere and the ocean. With this system, the importance of coupling to an eddy-resolving ocean model and the high resolution of the atmospheric model for the prediction of intensity change of hurricane Rita (2005) is demonstrated through a set of numerical experiments. The erroneous intensification in the uncoupled experiments could be eliminated when taking account of the negative feedback of sea-surface temperature cooling. Moreover, the deepening rate of Rita becomes larger with higher resolution of the atmospheric model. Nevertheless, the horizontal resolution of the atmospheric model with grid spacing at least less than ∼4 km is required in order to predict the rapid intensity changes of hurricane Rita in the fully coupled experiment. This strong dependence is found to arise from the potential interaction between the ocean coupling and internal processes of Rita, thus indicating that both high resolution and the ocean coupling are indispensable for the future improvement of hurricane intensity prediction.