New Scientist, Have Changed Little Since the Ice Age

Total Page:16

File Type:pdf, Size:1020Kb

New Scientist, Have Changed Little Since the Ice Age COVER STORY Adapt first, mutate later Evolution is meant to start with random mutations. But we may have things the wrong way round, reports Colin Barras 26 | NewScientist | 17 January 2015 150117_F_Evolving.indd 26 2015-01-12 11:00 “ O BE honest, I was intrigued to see their fins closer to their bodies, lifted their biologists think this kind of plasticity may if they’d even survive on land,” says heads higher off the ground and slipped also play a key role in evolution. Instead of TEmily Standen. Her plan was to drain an less than fish raised in water. Even more mutating first and adapting later, they argue, aquarium of nearly all the water and see how remarkably, their skeletons changed too. animals often adapt first and mutate later. the fish coped. The fish in question were bichir Their “shoulder” bones lengthened and Experiments like Standen’s suggest this fish that can breathe air and haul themselves developed stronger contacts with the fin process could even play a role in major over land when they have to, so it’s not as far- bones, making the fish better at press-ups. evolutionary transitions such as fish taking fetched as it sounds. The bone attachments to the skull also to land and apes starting to walk upright. What was perhaps more questionable weakened, allowing the head to move more. The idea that plasticity plays a role in was Standen’s rationale. Two years earlier, These features are uncannily reminiscent evolution goes back more than a century. in 2006, Tiktaalik had become a global of those that occurred as our four-legged Some early biologists thought that sensation. This 360-million-year-old fossil ancestors evolved from Tiktaalik-like forebears. characteristics acquired during an animal’s provides a snapshot of the moment our fishy What is really amazing about this lifetime could be inherited by their offspring: ancestors hauled themselves out of the water experiment is that these changes did not come giraffes got their long necks by stretching to and began trading fins for limbs. Standen about after raising generations of fish on land eat leaves, and so on. The French naturalist thought forcing bichir fish to live almost and allowing only the best walkers to breed. Jean-Baptiste Lamarck is the best-known entirely on land could reveal more about Instead, it happened within the lifetime of advocate of this idea, but Darwin believed this crucial step in our evolution. Even individual fish. Simply forcing young fish to something similar. He even proposed if you were being kind, you might have live on land for eight months was all it took an elaborate mechanism to explain how described this notion as a little bit fanciful. to produce these quite dramatic changes. information about changes in the body Today, it seems positively inspired. The We have long known that our muscles, could reach eggs and sperm, and therefore bichirs did far more than just survive. They sinews and bones adapt to cope with whatever be passed on to offspring. In this way, Darwin MORGAN SCHWEITZER MORGAN became better at “walking”. They planted we make them do. A growing number of suggested, plasticity produces the heritable > 17 January 2015 | NewScientist | 27 150117_F_Evolving.indd 27 2015-01-12 11:00 variations on which natural selection can Evolving without evolving work its magic. With the rise of modern genetics, such notions were dismissed. It became clear Standard model: mutate frst, adapt later that there is no way for information about Mutation in egg or sperm Mutation produces physical Mutation spreads if advantageous what animals do during their lifetime to changes in ofspring be passed on to their offspring (although a few exceptions have emerged since). And it was thought this meant plasticity has no role in evolution. Instead, the focus shifted to mutations. By the 1940s, the standard thinking was that animals mutate first and adapt later. A mutation in a sperm cell, say, might produce a physical change in the bodies of Genetic assimilation: adapt frst, mutate later some offspring. If the change is beneficial, No mutation at frst Physical changes are a plastic Only later do mutations “fx” the mutation will spread through the response to a diferent the physical changes population. In other words, random genetic environment mutations generate the variation on which natural selection acts. This remains the dominant view of evolution today. The dramatic effects of plasticity were not entirely ignored. In the 1940s, for instance, the Dutch zoologist Everhard Johannes Slijper studied a goat that had been born without forelegs and learned to hop around, kangaroo-like, on its rear legs. of heritable changes. “You can plastically When Slijper examined the goat after its induce generation after generation,” says death, he discovered that the shape of its Standen, who is now at the University of muscles and skeleton looked more like Ottawa in Ontario, Canada. “At some point, those of a biped than a quadruped. can you remove the environmental Few biologists considered such findings conditions that induced the change and relevant to the evolutionary process. The have the organisms remain changed?” fact that changes acquired during an animal’s The answer, surprisingly, seems to be yes. lifetime are transient seemed to rule out that In the 1950s, British biologist Conrad Hal No coincidence possibility. If Standen’s better-at-walking fish Waddington showed that it is feasible in an Can plasticity explain why were bred and the offspring raised in a normal experiment involving fruit flies. Waddington evolution repeats itself? aquarium, for instance, they should look and found that when pupa are briefly heated, behave like perfectly ordinary bichirs. some offspring develop without crossveins During the last ice age, great ice in their wings. He then selected and bred those sheets covered much of Eurasia and flies. By the 14th generation, some lacked North America. As they retreated, Transient response crossveins even when their pupa were not they left behind lakes and rivers But what if the environmental conditions that heated. A physical feature that began as a with no native fish. induce the plastic response are themselves plastic response to an environmental trigger Marine three-spined sticklebacks permanent? In the wild, this could happen as had become a hereditary feature. were quick to take advantage, a result of alterations in prey animals, or in the How is this possible? Plastic changes occur repeatedly colonising these new climate, for instance. Then all the members because an environmental trigger affects a environments and evolving into the of a population would develop in the same, developmental pathway in some way. More freshwater sticklebacks found today consistent way down the generations. It of a certain hormone may be produced, or (pictured right). What’s extraordinary, would look as if the population had evolved produced at a different time, or genes are though, is that freshwater species in response to an altered environment, but switched on that normally remain inactive, that evolved entirely independently technically it’s not evolution because there and so on. The thing is, random mutations can of each other are often strikingly is no heritable change. The thing is, the only also have similar effects. So in an environment similar in body shape, and so on. way to tell would be to “test” individuals by in which a particular plastic response is crucial This is far from the only example. raising them in different circumstances. for survival, only mutations that reinforce The cichlid fish of Africa’s lakes, for In this way at least, plasticity can allow this response, or at least do not impede it, instance, have also evolved along animals to “evolve” without evolving. The can spread through a population. Eventually, parallel lines in many cases. crucial question, of course, is whether it the altered developmental pathway will The standard explanation for this can lead to actual evolution, in the sense become so firmly stabilised by a genetic is convergent evolution: even though 28 | NewScientist | 17 January 2015 scaffolding that it will occur even without rethink (Nature, vol 514, p 161). Most biologists University in Durham, North Carolina. the environmental trigger, making it a have yet to be convinced. “But there is unfortunately very little support permanent hereditary feature. The sceptics point out that genetic for its role in nature.” This is what makes Waddington called this process genetic assimilation does not overturn any Standen’s work on the bichir so significant. assimilation. It may sound like Lamarckism, fundamental principles of evolution – in It implicates plasticity in a major evolutionary but it is not. The acquired characteristics the long run, evolution is all about the spread transition: fish turning into four-legged land don’t shape the genetic changes directly as of mutations, whether or not plasticity is animals (Nature, vol 513, p 54). Darwin proposed, they merely allow animals involved. Yes, say the proponents of plasticity, Plasticity will soon be implicated in another to thrive in environments that favour certain major transition too – the one our ancestors mutations when they occur by chance. “ The ‘bipedal’ mice had made from four legs to two about 7 million Waddington’s findings have been regarded years ago. Adam Foster, now at the Northeast as a curiosity rather than a crucial insight. But features like those in our Ohio Medical University in Rootstown, has in the past decade or two, attitudes have begun hominin ancestors” been making mice walk on a treadmill. “I had a to change. One reason for this is a growing custom harness system built so I could modify appreciation of the flexibility of genes.
Recommended publications
  • Present Status of Fish Biodiversity and Abundance in Shiba River, Bangladesh
    Univ. J. zool. Rajshahi. Univ. Vol. 35, 2016, pp. 7-15 ISSN 1023-6104 http://journals.sfu.ca/bd/index.php/UJZRU © Rajshahi University Zoological Society Present status of fish biodiversity and abundance in Shiba river, Bangladesh D.A. Khanom, T Khatun, M.A.S. Jewel*, M.D. Hossain and M.M. Rahman Department of Fisheries, University of Rajshahi, Rajshahi 6205, Bangladesh Abstract: The study was conducted to investigate the abundance and present status of fish biodiversity in the Shiba river at Tanore Upazila of Rajshahi district, Bangladesh. The study was conducted from November, 2016 to February, 2017. A total of 30 species of fishes were recorded belonging to nine orders, 15 families and 26 genera. Cypriniformes and Siluriformes were the most diversified groups in terms of species. Among 30 species, nine species under the order Cypriniformes, nine species of Siluriformes, five species of Perciformes, two species of Channiformes, two species of Mastacembeliformes, one species of Beloniformes, one species of Clupeiformes, one species of Osteoglossiformes and one species of Decapoda, Crustacea were found. Machrobrachium lamarrei of the family Palaemonidae under Decapoda order was the most dominant species contributing 26.29% of the total catch. In the Shiba river only 6.65% threatened fish species were found, and among them 1.57% were endangered and 4.96% were vulnerable. The mean values of Shannon-Weaver diversity (H), Margalef’s richness (D) and Pielou’s (e) evenness were found as 1.86, 2.22 and 0.74, respectively. Relationship between Shannon-Weaver diversity index (H) and pollution indicates the river as light to moderate polluted.
    [Show full text]
  • A Role for Genetic Accommodation in Evolution? Christian Braendle1* and Thomas Flatt2
    What the papers say A role for genetic accommodation in evolution? Christian Braendle1* and Thomas Flatt2 Summary lowered. Third, selection in the presence of the environmental Whether evolutionary change can occur by genetic factor enriches the previously cryptic alleles determining assimilation, or more generally by genetic accommoda- tion, remains controversial. Here we examine some of the the trait. Eventually, these alleles become so frequent that experimental evidence for both phenomena. Several the expression of the trait overcomes the higher threshold in experiments in Drosophila suggest that assimilation is the absence of the environmental stimulus.(9,20) Thus, genetic (1) possible, and a new paper shows that a color poly- assimilation transforms an environmentally induced (pheno- phenism in the tobacco hornworm, Manduca sexta, can typically plastic) trait into a phenotype which is stably evolve by genetic accommodation. We argue that genetic accommodation, including assimilation, is a plausible expressed without the eliciting environmental stimulus: the mechanism in evolution; however, more work is required genetically assimilated phenotype is no longer plastic, but to test how this mechanism acts and how often it is exhibits a genetically fixed response independent of the involved in evolutionary change. BioEssays 28:868– environmental conditions,(2,9,14,16) a phenomenon called 873, 2006. ß 2006 Wiley Periodicals, Inc. canalization.(20) Genetic assimilation is a special case of a more general Genetic assimilation and accommodation phenomenon, called genetic accommodation, most promi- (2–9) Whether the processes of genetic assimilation and nently proposed by Mary Jane West-Eberhard in 2003.(10) This (1,10) accommodation can explain evolutionary change and scenario of phenotypic evolution posits that (1) a mutation or phenotypic novelty is a controversial issue among evolutionary environmental change triggers the expression of a novel, herit- biologists (for example Refs 11–16).
    [Show full text]
  • Degeneracy and Genetic Assimilation in RNA Evolution Reza Rezazadegan1* and Christian Reidys1,2
    Rezazadegan and Reidys BMC Bioinformatics (2018) 19:543 https://doi.org/10.1186/s12859-018-2497-3 RESEARCH ARTICLE Open Access Degeneracy and genetic assimilation in RNA evolution Reza Rezazadegan1* and Christian Reidys1,2 Abstract Background: The neutral theory of Motoo Kimura stipulates that evolution is mostly driven by neutral mutations. However adaptive pressure eventually leads to changes in phenotype that involve non-neutral mutations. The relation between neutrality and adaptation has been studied in the context of RNA before and here we further study transitional mutations in the context of degenerate (plastic) RNA sequences and genetic assimilation. We propose quasineutral mutations, i.e. mutations which preserve an element of the phenotype set, as minimal mutations and study their properties. We also propose a general probabilistic interpretation of genetic assimilation and specialize it to the Boltzmann ensemble of RNA sequences. Results: We show that degenerate sequences i.e. sequences with more than one structure at the MFE level have the highest evolvability among all sequences and are central to evolutionary innovation. Degenerate sequences also tend to cluster together in the sequence space. The selective pressure in an evolutionary simulation causes the population to move towards regions with more degenerate sequences, i.e. regions at the intersection of different neutral networks, and this causes the number of such sequences to increase well beyond the average percentage of degenerate sequences in the sequence space. We also observe that evolution by quasineutral mutations tends to conserve the number of base pairs in structures and thereby maintains structural integrity even in the presence of pressure to the contrary.
    [Show full text]
  • Copyright Warning & Restrictions
    Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law. Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty. ABSTRACT THESE FISH WERE MADE FOR WALKING: MORPHOLOGY AND WALKING KINEMATICS IN BALITORID LOACHES by Callie Hendricks Crawford Terrestrial excursions have been observed in multiple lineages of marine and freshwater fishes. These ventures into the terrestrial environment may be used when fish are searching out new habitat during drought, escaping predation, laying eggs, or seeking food sources.
    [Show full text]
  • Predator-Driven Macroevolution in Flyingfishes Inferred from Behavioural Studies 59
    Predator-driven macroevolution in flyingfishes inferred from behavioural studies 59 Predator-driven macroevolution in flyingfishes inferred from behavioural studies: historical controversies and a hypothesis U. Kutschera Abstract Flyingfishes (Exocoetidae) are unique oceanic animals that use their tail and their large, wing-like pectoral fins to launch themselves out of the water and glide through the air. Independent observations document that flyingfishes use their gliding ability to escape from aquatic predators such as dolphins (marine mammals). The fossil record of flyingfishes is very poor. Nevertheless, the evolution of gliding among flyingfishes and their allies (Beloniformes) was analysed and reconstructed by the ethologist Konrad Lorenz (1903 – 1989) and other zoologists. In this article I review the comparative method in evolutionary biology, describe historical controversies concerning the biology and systematics of flyingfishes and present a hypothesis on the phylogenetic development of gliding among these marine vertebrates. This integrative model is based on behavioural studies and has been corroborated by molecular data (evolutionary trees derived from DNA sequences). Introduction Since the publication of Darwin´s classical book (1872, 1st ed. 1859), evolutionary biology has relied primarily upon comparative studies of extant organisms (animals, plants), supplemented whenever possible by information obtained from the fossil record. This interaction between neontological and palaeontological research has greatly enriched our knowledge of the evolutionary history (phylogeny) of a variety of macro- organisms, notably hard-shelled marine invertebrates (molluscs etc.) and vertebrates, for which thousands of well-preserved fossils have been described. Such comparative studies have become considerably more significant with the development of molecular methods for reconstructing DNA-sequence-based phylogenies and with the increased rigour with which the comparative method has been applied.
    [Show full text]
  • Walking Fish by Gyan, Yr 7 Mentor‐ Miss Firth
    Walking fish By Gyan, Yr 7 Mentor‐ Miss Firth What fish can walk/live out of the water and which one is the best walking fish overall? Introduction: A Walking fish is a fish that can walk on land, using its special abilities. It’s a very evolved fish. They make/ find their homes on land and live there until they need to go back in the water for oxygen again. I will now show you four types of Walking fish and some facts about each one. I will then say which one I think is the best Walking fish out of the four. Mudskippers – (Oxudercinae) A mudskipper is a fish with two big eyes on both sides of its head. A mudskipper is a type of walking fish which can walk on land. In fact, the mudskipper can survive up to a large number of days on land; in fact they spend most of their time on land. Although it would then need to look, with its two bulging eyes, out for its predators: the monitor lizard, crocodiles and many more creatures, who love to snack on mudskippers. As you would be able to tell from the mudskippers’ name, the mudskippers live on/in mud and they also eat their mud for food, although, if another mudskipper comes onto the other mudskipper’s mud it will show a sign that it will fight with the other mudskipper if it comes too close to their mud by raising its fin but if the other mudskipper doesn’t listen to the mudskipper, they will definitely fight over their space of mud.
    [Show full text]
  • Pelvic Fin Flexibility in Tree Climbing Fish
    G Model ZOOL-25524; No. of Pages 7 ARTICLE IN PRESS Zoology xxx (2016) xxx–xxx Contents lists available at ScienceDirect Zoology journal homepage: www.elsevier.com/locate/zool The significance of pelvic fin flexibility for tree climbing fish a b a,b c Adhityo Wicaksono , Saifullah Hidayat , Yudithia Damayanti , Desmond Soo Mun Jin , a b,∗ a,∗ Erly Sintya , Bambang Retnoaji , Parvez Alam a Laboratory of Paper Coating and Converting, Centre for Functional Materials, Abo Akademi University, Porthaninkatu 3, 20500 Turku, Finland b Laboratory of Animal Embryology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia c Rapid Gain Global Corporation, Singapore a r t i c l e i n f o a b s t r a c t Article history: In this article, we compare the characteristics of biomechanical attachment exhibited by two morpholog- Received 1 March 2016 ically different mudskipper species, Boleophthalmus boddarti (with fused pelvic fins) and Periophthalmus Received in revised form 14 April 2016 variabilis (with unfused pelvic fins). P. variabilis is a tree and rock climber while B. boddarti dwells in the Accepted 17 June 2016 muddy shallows and is unable to climb. Our aim in this article is to determine whether it is predominantly Available online xxx chemical or morphological properties of the pelvic fins from each species that may allow P. variabilis to climb trees whilst preventing B. boddarti from doing the same. To fulfil our objective we perform friction Keywords: and suction resistance tests, Fourier transform infrared spectroscopy of the mucosal secretions under Mudskipper the fins, direct geometrical measurements and finite element modelling.
    [Show full text]
  • Developmental Plasticity and the Origin of Tetrapods
    ARTICLE doi:10.1038/nature13708 Developmental plasticity and the origin of tetrapods Emily M. Standen1, Trina Y. Du2 & Hans C. E. Larsson2 The origin of tetrapods from their fish antecedents, approximately 400 million years ago, was coupled with the origin of terrestrial locomotion and the evolution of supporting limbs. Polypterus is a memberof the basal-most group of ray-finned fish (actinopterygians) and has many plesiomorphic morphologies that are comparable to elpistostegid fishes, which are stem tetrapods. Polypterus therefore serves as an extant analogue of stem tetrapods, allowing us to examine how devel- opmental plasticity affects the ‘terrestrialization’ of fish. We measured the developmental plasticity of anatomical and biomechanical responses in Polypterus reared on land. Here we show the remarkable correspondence between the envi- ronmentally induced phenotypes of terrestrialized Polypterus and the ancient anatomical changes in stem tetrapods, and we provide insight into stem tetrapod behavioural evolution. Our results raise the possibility that environmentally induced developmental plasticity facilitated the origin of the terrestrial traits that led to tetrapods. The evolution of terrestrial locomotion in vertebrates required the appear- a sister taxon to the derived groups of interest can be used to estimate the ance of new behaviours and supporting appendicular structures1–8.The ancestral plasticity12. skeletal changes included the origin of supporting limbs, the decoupling of In this study, we investigated developmental
    [Show full text]
  • Axolotls Are Aquatic Animals and Need to Live in Water at All Times for Their Skin to Stay Moist and Gills to Function Properly
    albino, white albino, white with black eyes, and spotted varieties. HOUSING YOUR AXOLOTL: Axolotls are aquatic animals and need to live in water at all times for their skin to stay moist and gills to function properly. The best place to house an axolotl is a large fish tank placed indoors in a shady area out of the sun. TANK SIZE: When choosing a tank, consider that axolotls can grow to 25-35 cm in length and need sufficient space to move. The accepted minimum would be a 45 cm long aquarium for one adult axolotl. You can keep a group of axolotls together as long as there is enough A Guide to Keeping space and places to hide. However, axolotls chase and eat anything smaller than themselves so watch out for any fish, young AXOLOTLS axolotls or other animals placed in the tank. The tank does not have to be very deep as axolotls mainly sit on the bottom and slowly AXOLOTLS walk around the tank. They occasionally come to the surface to take a breath of air. Axolotls are also called Mexican Walking Fish. They are however not fish, but belong to the SUBSTRATE: family of Amphibians like frogs, toads and The best substrate to go into the bottom of salamanders. They are the juvenile form of a the tank is sand, e.g. children’s play sand from Bunnings or Mitre Ten, as axolotls will try to salamander but do not metamorphose into the swallow anything that fits into their mouths. adult stage. They retain their gills and fins Swallowed pieces of gravel can cause throughout their life and never leave their intestinal blockages and death.
    [Show full text]
  • Dancing with DNA and Flirting with the Ghost of Lamarck
    Biology and Philosophy (2007) 22:439–451 Ó Springer 2006 DOI 10.1007/s10539-006-9034-x Book review Dancing with DNA and flirting with the ghost of Lamarck MARY JANE WEST-EBERHARD Smithsonian Tropical Research Institute, c/o Escuela de Biologı´a, Cı`udad Unı`versitaria, Costa Rica (e-mail: [email protected]; phone: +506-228-0001; fax: +506-228-0001) Review of: Evolution in Four Dimensions, Eva Jablonka and Marion J. Lamb, 2005, MIT Press, Cambridge, Massachusetts Evolution in Four Dimensions, by Eva Jablonka and Marion Lamb, is a dis- armingly good-humored book that challenges the overly gene-centered ‘Neo- Darwinian’ (mid-20th-Century-Synthesis) view of evolution via selection on phenotypes affected by random changes in DNA. Their remedy, more palat- able by the end of the book than I expected at the beginning, is to propose that we revise and expand our ‘‘unidimensional’ vision of heredity. Heredity, they argue, occurs in four dimensions: genetic inheritance, the conventionally rec- ognized mode of inheritance via transmission of DNA; epigenetic inheritance, or transmission of non-genetic information from parental cells to daughter cells, as in the cytoplasm of an egg; behavioral inheritance, or cultural trans- mission of learned traits; and symbolic transmission of information by means of abstract representation, especially language in humans. All four modes of inheritance provide variants on which natural selection can act. Therefore they portray evolution as occurring in four dimensions, corresponding to the four dimensions of inheritance. The style of the book makes it accessible to an educated lay reader. The text has been unburdened by removal of bibliographic citations to a single section of notes at the end of the book, and by a series of dialogues with a make-believe Devil’s advocate named Ifcha Mistabra (in Aramaic, ‘‘The opposite conjecture’’), where the authors anticipate and answer potential confusions and objections to their main points.
    [Show full text]
  • Genetic Assimilation: a Review of Its Potential Proximate Causes and Evolutionary Consequences
    Annals of Botany Page 1 of 11 doi:10.1093/aob/mcv130, available online at www.aob.oxfordjournals.org REVIEW: PART OF A SPECIAL ISSUE ON DEVELOPMENTAL ROBUSTNESS AND SPECIES DIVERSITY Genetic assimilation: a review of its potential proximate causes and evolutionary consequences Ian M. Ehrenreich1,* and David W. Pfennig2,* 1Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA 90089, USA and 2Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA *For correspondence. E-mail [email protected] or [email protected] Downloaded from Received: 25 March 2015 Returned for revision: 7 May 2015 Accepted: 29 June 2015 Background Most, if not all, organisms possess the ability to alter their phenotype in direct response to changes in their environment, a phenomenon known as phenotypic plasticity. Selection can break this environmental sensi- tivity, however, and cause a formerly environmentally induced trait to evolve to become fixed through a process called genetic assimilation. Essentially, genetic assimilation can be viewed as the evolution of environmental http://aob.oxfordjournals.org/ robustness in what was formerly an environmentally sensitive trait. Because genetic assimilation has long been suggested to play a key role in the origins of phenotypic novelty and possibly even new species, identifying and characterizing the proximate mechanisms that underlie genetic assimilation may advance our basic understanding of how novel traits and species evolve. Scope This review begins by discussing how the evolution of phenotypic plasticity, followed by genetic assimila- tion, might promote the origins of new traits and possibly fuel speciation and adaptive radiation. The evidence implicating genetic assimilation in evolutionary innovation and diversification is then briefly considered.
    [Show full text]
  • Mexican Walking Fish, Axolotls Ambystoma Mexicanum
    Mexican Walking Fish, Axolotls Ambystoma mexicanum Introduction Mexican walking fish are fascinating creatures looking, and Feeding often acting, like miniature pre historic monsters. These Earthworms are by far the most suitable food for walking fish. animals can grow up to 30cm in size make excellent pets, To ensure earthworms can’t bury out of reach in the aquarium living up to 10 years. gravel, where they would die within a few days, its best to limit Axolotls are the larval stage of a salamander, and are gravel depth to a single layer of smooth standard aquarium gravel only a few millimeters thick. different from other amphibians in that they have the ability to reproduce while remaining a sexually mature larva. They An occasional feed of finely cut lean beef may be offered, but also have the ability to undergo metamorphosis (similar to a if fed regularly the fat in red meat would almost certainly lead tadpole changing into a frog) and change to an air breathing, to health problems such as fat accumulation in internal land dwelling, salamander, but this very seldom occurs. It organs. Sinking fish pellets may also be offered. AI Naturals seems that most strains have now lost the ability to Range Frozen Turtle Mix is ideally suited to Axolotls as well. metamorphose. Mexican walking fish come in various colours, including dark brown , olive, black, albino and golden Feeding every second day is usually sufficient. Requirements (pictured above) forms, (which have bright pink gills) and a for food vary with temperature, they normally refuse to eat if piebald (spotted) form, which is seldom seen.
    [Show full text]