Received: 27 April 2017 | Revised: 14 July 2017 | Accepted: 3 August 2017 DOI: 10.1002/ece3.3429 ORIGINAL RESEARCH The genetics of phenotypic plasticity. XV. Genetic assimilation, the Baldwin effect, and evolutionary rescue Samuel M. Scheiner1 | Michael Barfield2 | Robert D. Holt2 1Division of Environmental Biology, National Science Foundation, Arlington, VA, USA Abstract 2Department of Biology, University of Florida, We used an individual- based simulation model to examine the role of phenotypic plas- Gainesville, FL, USA ticity on persistence and adaptation to two patterns of environmental variation, a sin- Correspondence gle, abrupt step change and continual, linear change. Our model tested the assumptions Samuel M. Scheiner, Division of Environmental and predictions of the theory of genetic assimilation, explored the evolutionary Biology, National Science Foundation, Arlington, VA, USA. dynamics of the Baldwin effect, and provided expectations for the evolutionary re- Email:
[email protected] sponse to climate change. We found that genetic assimilation as originally postulated Funding information is not likely to occur because the replacement of plasticity by fixed genetic effects University of Florida Foundation takes much longer than the environment is likely to remain stable. On the other hand, trait plasticity as an enhancement to continual evolutionary change may be an impor- tant evolutionary mechanism as long as plasticity has little or no costs. Whether or not plasticity helps or hinders evolutionary rescue following a step change in the environ- ment depends on whether plasticity is costly. For linear environmental change, non- costly plasticity always decreases extinction rates, while costly plasticity can create a fitness drag and increase the chance of extinction.