Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Performance Enhancement at the Cost of Potential Brain Plasticity: Neural Ramifications of Nootropic Drugs in the Healthy Developing Brain
REVIEW ARTICLE published: 13 May 2014 SYSTEMS NEUROSCIENCE doi: 10.3389/fnsys.2014.00038 Performance enhancement at the cost of potential brain plasticity: neural ramifications of nootropic drugs in the healthy developing brain Kimberly R. Urban 1 and Wen-Jun Gao 2* 1 Department of Psychology, University of Delaware, Newark, DE, USA 2 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA Edited by: Cognitive enhancement is perhaps one of the most intriguing and controversial Mikhail Lebedev, Duke University, topics in neuroscience today. Currently, the main classes of drugs used as potential USA cognitive enhancers include psychostimulants (methylphenidate (MPH), amphetamine), Reviewed by: Kimberly Simpson, University of but wakefulness-promoting agents (modafinil) and glutamate activators (ampakine) are Mississippi Medical Center, USA also frequently used. Pharmacologically, substances that enhance the components Christopher R. Madan, University of of the memory/learning circuits—dopamine, glutamate (neuronal excitation), and/or Alberta, Canada norepinephrine—stand to improve brain function in healthy individuals beyond their *Correspondence: baseline functioning. In particular, non-medical use of prescription stimulants such as Wen-Jun Gao, Department of Neurobiology and Anatomy, Drexel MPH and illicit use of psychostimulants for cognitive enhancement have seen a recent University College of Medicine, rise among teens and young adults in schools and college campuses. However, this 2900 Queen Lane, Philadelphia, PA enhancement likely comes with a neuronal, as well as ethical, cost. Altering glutamate 19129, USA function via the use of psychostimulants may impair behavioral flexibility, leading to e-mail: [email protected] the development and/or potentiation of addictive behaviors. Furthermore, dopamine and norepinephrine do not display linear effects; instead, their modulation of cognitive and neuronal function maps on an inverted-U curve. -
General Anesthesia and Altered States of Arousal: a Systems Neuroscience Analysis
General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Brown, Emery N., Patrick L. Purdon, and Christa J. Van Dort. “General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis.” Annual Review of Neuroscience 34, no. 1 (July 21, 2011): 601–628. As Published http://dx.doi.org/10.1146/annurev-neuro-060909-153200 Publisher Annual Reviews Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/86331 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ NIH Public Access Author Manuscript Annu Rev Neurosci. Author manuscript; available in PMC 2012 July 06. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Annu Rev Neurosci. 2011 ; 34: 601–628. doi:10.1146/annurev-neuro-060909-153200. General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis Emery N. Brown1,2,3, Patrick L. Purdon1,2, and Christa J. Van Dort1,2 Emery N. Brown: [email protected]; Patrick L. Purdon: [email protected]; Christa J. Van Dort: [email protected] 1Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 2Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 3Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Abstract Placing a patient in a state of general anesthesia is crucial for safely and humanely performing most surgical and many nonsurgical procedures. -
Ampakines Potentiate the Corticostriatal Pathway to Reduce Acute and Chronic Pain Fei Zeng1,2, Qiaosheng Zhang2, Yaling Liu2, Guanghao Sun2, Anna Li2, Robert S
Zeng et al. Mol Brain (2021) 14:45 https://doi.org/10.1186/s13041-021-00757-y RESEARCH Open Access AMPAkines potentiate the corticostriatal pathway to reduce acute and chronic pain Fei Zeng1,2, Qiaosheng Zhang2, Yaling Liu2, Guanghao Sun2, Anna Li2, Robert S. Talay2 and Jing Wang2,3* Abstract The corticostriatal circuit plays an important role in the regulation of reward- and aversion-types of behaviors. Specif- cally, the projection from the prelimbic cortex (PL) to the nucleus accumbens (NAc) has been shown to regulate sensory and afective aspects of pain in a number of rodent models. Previous studies have shown that enhancement of glutamate signaling through the NAc by AMPAkines, a class of agents that specifcally potentiate the function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, reduces acute and persistent pain. How- ever, it is not known whether postsynaptic potentiation of the NAc with these agents can achieve the full anti-noci- ceptive efects of PL activation. Here we compared the impact of AMPAkine treatment in the NAc with optogenetic activation of the PL on pain behaviors in rats. We found that not only does AMPAkine treatment partially reconstitute the PL inhibition of sensory withdrawals, it fully occludes the efect of the PL on reducing the aversive component of pain. These results indicate that the NAc is likely one of the key targets for the PL, especially in the regulation of pain aversion. Furthermore, our results lend support for neuromodulation or pharmacological activation of the corticostri- atal circuit as an important analgesic approach. -
Pharmacological Modulation of Hypoxia-Induced Respiratory Neuroplasticity ⁎ Sara Turnera,C, Kristi Streetera,C, John Greerb, Gordon S
Respiratory Physiology & Neurobiology xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Respiratory Physiology & Neurobiology journal homepage: www.elsevier.com/locate/resphysiol Pharmacological modulation of hypoxia-induced respiratory neuroplasticity ⁎ Sara Turnera,c, Kristi Streetera,c, John Greerb, Gordon S. Mitchella,c, David D. Fullera,c, a University of Florida, College of Public Health and Health Professions, McKnight Brain Institute, Department of Physical Therapy, PO Box 100154, 100 S. Newell Dr, Gainesville, FL 32610, United States b Department of Physiology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada c Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, United States ARTICLE INFO ABSTRACT Keywords: Hypoxia elicits complex cell signaling mechanisms in the respiratory control system that can produce long- Pharmacology lasting changes in respiratory motor output. In this article, we review experimental approaches used to elucidate Hypoxia episodes signaling pathways associated with hypoxia, and summarize current hypotheses regarding the intracellular Signaling mechanisms signaling pathways evoked by intermittent exposure to hypoxia. We review data showing that pharmacological Breathing treatments can enhance neuroplastic responses to hypoxia. Original data are included to show that pharmaco- logical modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) function can reveal a respiratory neuroplastic response to a single, brief hypoxic exposure in anesthetized mice. Coupling pharmacologic treatments with therapeutic hypoxia paradigms may have rehabilitative value following neu- rologic injury or during neuromuscular disease. Depending on prevailing conditions, pharmacologic treatments can enable hypoxia-induced expression of neuroplasticity and increased respiratory motor output, or potentially could synergistically interact with hypoxia to more robustly increase motor output. -
Muscarinic Receptor Occupancy and Cognitive Impairment: a PET Study with [11C]( + )3-MPB and Scopolamine in Conscious Monkeys
Neuropsychopharmacology (2011) 36, 1455–1465 & 2011 American College of Neuropsychopharmacology. All rights reserved 0893-133X/11 $32.00 www.neuropsychopharmacology.org Muscarinic Receptor Occupancy and Cognitive Impairment: A PET Study with [11C]( + )3-MPB and Scopolamine in Conscious Monkeys 1 2 2 2 3 Shigeyuki Yamamoto , Shingo Nishiyama , Masahiro Kawamata , Hiroyuki Ohba , Tomoyasu Wakuda , Nori Takei1, Hideo Tsukada2 and Edward F Domino4 1 Osaka-Hamamatsu Joint Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, 2 3 Japan; Central Research Laboratory, Hamamatsu Photonics KK, Hirakuchi, Hamakita, Hamamatsu, Shizuoka, Japan; Department of Psychiatry 4 and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA The muscarinic cholinergic receptor (mAChR) antagonist scopolamine was used to induce transient cognitive impairment in monkeys trained in a delayed matching to sample task. The temporal relationship between the occupancy level of central mAChRs and cognitive impairment was determined. Three conscious monkeys (Macaca mulatta) were subjected to positron emission tomography (PET) scans with 11 11 the mAChR radioligand N-[ C]methyl-3-piperidyl benzilate ([ C]( + )3-MPB). The scan sequence was pre-, 2, 6, 24, and 48 h post- intramuscular administration of scopolamine in doses of 0.01 and 0.03 mg/kg. Occupancy levels of mAChR were maximal 2 h post- scopolamine in cortical regions innervated primarily by the basal forebrain, thalamus, and brainstem, showing that mAChR occupancy levels were 43–59 and 65–89% in doses of 0.01 and 0.03 mg/kg, respectively. In addition, dose-dependent impairment of working memory performance was measured 2 h after scopolamine. -
Alzheimer Syllabus
Update on Alzheimer’s Disease June, 2006 Stephen S. Flitman, MD, Medical Director 21 st Century Neurology 3100 North Third Ave Suite 100, Phoenix, Arizona (602) 265-6500 www.neurozone.org Alzheimer’s Disease (AD), first described by Dr. Alois Alzheimer in 1907, is a disorder that 10 million Americans are thought to have, but less than 40% are diagnosed or receiving treatment now. It is very common, affecting people ages 40-90 with 2-4% prevalence at ages 65- 75 and increasing in subsequent decades. After heart disease, cancer, and stroke it is the fourth leading cause of death in the US. AD is a disorder of the gray matter of the cerebral cortex. It is characterized clinically by gradually progressive dementia and pathologically by extraneuronal plaques and intraneuronal neurofibrillary tangles by light microscopy. AD progresses anatomically via the connections made by affected neurons. It starts in the entorhinal cortex and then spreads to the hippocampus, basal nuclei, and then to the neocortex. It spares primary motor and sensory cortices, preferentially attacking association areas in the frontal, parietal, and temporal lobes. Affected regions have neurochemical deficits of acetylcholine, glutamate, and serotonin. The degree of dementia correlates with the decline in these neurotransmitters in biopsy or autopsy tissue. While short-term memory deficits predominate early in the progressive dementias, the term dementia is reserved for a clinical syndrome of memory disorder plus at least one other cognitive realm: language, motor or procedural memory (praxis), spatial function, and executive function (decision-making, planning, overall control of behavior). As an etiology for dementia, AD accounts for about two-thirds of cases, with metabolic causes and Lewy body disease making up the lion’s share of the remaining third. -
Early Ventral Hippocampal Lesion Model Eating and Appetite
E Early Ventral Hippocampal Lesion Definition Model Feeding reflects the behavioral response neces- Definition sary for replenishing energy substrates critical for survival, whereas appetite refers to the moti- An animal model in which the ventral hippocam- vational component of this behavior. pal region in rats is lesioned using an excitotoxic agent. This lesion is performed at an early age (typically postnatal day 7). These animals Impact of Psychoactive Drugs develop several schizophrenia-like phenomena in adulthood. Interestingly, most of the symptoms Feeding can be defined as the behavioral response occur after puberty in accordance with the clini- necessary for replenishing energy substrates to cal literature on schizophrenia. maintain energy balance and, ultimately, the sur- vival of all organisms. Predictably, a shortage of Cross-References food sources is associated with increased motiva- tional states that promote food seeking, as well ▶ Schizophrenia: Animal Models as metabolic changes that allow for energy stores ▶ Simulation Models to be amassed in the form of adipose tissue. In general, increases in these motivational states are commonly referred to as appetite (Berthoud Eating and Appetite and Morrison 2008). Feeding can also be elicited by the mere presence of food and, in the absence Alfonso Abizaid1 and Shimon Amir2 of a negative energy state, possibly as an adaptive 1Department of Neuroscience, Carleton behavioral response directed at storing excess University, Ottawa, ON, Canada energy in anticipation of future shortages. 2Department of Psychology, Center for Studies in Clearly, the mechanisms regulating feeding Behavioral Neurobiology, Concordia University, behavior are complex and involve both regula- Montreal, QC, Canada tory and nonregulatory processes. -
(12) Patent Application Publication (10) Pub. No.: US 2010/0184806 A1 Barlow Et Al
US 20100184806A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0184806 A1 Barlow et al. (43) Pub. Date: Jul. 22, 2010 (54) MODULATION OF NEUROGENESIS BY PPAR (60) Provisional application No. 60/826,206, filed on Sep. AGENTS 19, 2006. (75) Inventors: Carrolee Barlow, Del Mar, CA (US); Todd Carter, San Diego, CA Publication Classification (US); Andrew Morse, San Diego, (51) Int. Cl. CA (US); Kai Treuner, San Diego, A6II 3/4433 (2006.01) CA (US); Kym Lorrain, San A6II 3/4439 (2006.01) Diego, CA (US) A6IP 25/00 (2006.01) A6IP 25/28 (2006.01) Correspondence Address: A6IP 25/18 (2006.01) SUGHRUE MION, PLLC A6IP 25/22 (2006.01) 2100 PENNSYLVANIA AVENUE, N.W., SUITE 8OO (52) U.S. Cl. ......................................... 514/337; 514/342 WASHINGTON, DC 20037 (US) (57) ABSTRACT (73) Assignee: BrainCells, Inc., San Diego, CA (US) The instant disclosure describes methods for treating diseases and conditions of the central and peripheral nervous system (21) Appl. No.: 12/690,915 including by stimulating or increasing neurogenesis, neuro proliferation, and/or neurodifferentiation. The disclosure (22) Filed: Jan. 20, 2010 includes compositions and methods based on use of a peroxi some proliferator-activated receptor (PPAR) agent, option Related U.S. Application Data ally in combination with one or more neurogenic agents, to (63) Continuation-in-part of application No. 1 1/857,221, stimulate or increase a neurogenic response and/or to treat a filed on Sep. 18, 2007. nervous system disease or disorder. Patent Application Publication Jul. 22, 2010 Sheet 1 of 9 US 2010/O184806 A1 Figure 1: Human Neurogenesis Assay Ciprofibrate Neuronal Differentiation (TUJ1) 100 8090 Ciprofibrates 10-8.5 10-8.0 10-7.5 10-7.0 10-6.5 10-6.0 10-5.5 10-5.0 10-4.5 Conc(M) Patent Application Publication Jul. -
Ampakines Platform Summary-Final
Ampakines® BACKGROUND RespireRx is developing a class of proprietary CNS-acting compounds known as RespireRx is developing a pipeline of new ampakines, which are allosteric modulators of the alpha-amino-3-hydroxy-5- drug products based on our broad patent methyl-4-isoxazolepropionic acid (AMPA) receptor. Ampakines enhance the portfolios for two drug platforms: the excitatory actions of the neurotransmitter, glutamate at the AMPA receptor cannabinoids, including dronabinol (D9- complex, which mediates most excitatory transmission in the CNS. Through an THC), and the ampakines, which extensive translational research effort from the neuronal level through Phase 2 allosterically and positively modulate clinical trials, the company has developed a family of “Low Impact” Ampakines, AMPA-type glutamate receptors to including CX717, CX1739 and CX1942 that have clinical application in the promote neuronal function. treatment of CNS-driven respiratory disorders, behavioral disorders, spinal cord We are a leader in the development of injury, neurological diseases, and orphan indications. drugs for respiratory disorders caused by disruptions of neural signaling, with a CX1739 for Opioid Induced Respiratory Depression (OIRD) focus on sleep apneas, opioid-induced In confirmation of previous clinical trials with CX717, CX1739 has been shown respiratory depression, and other CNS- in a recent Phase 2a study to antagonize the respiratory depression caused by driven breathing disorders. Additionally, remifentanyl, a very potent opioid, without blocking its analgesic effects. These we are developing new drugs and study results confirm target engagement of AMPA receptors and provide proof- formulations that address the widespread of-concept clinical data to support the development of CX1739 for the treatment problem of opioid overdose. -
Glutathione Ethyl Ester Reverses the Deleterious Effects of Fentanyl On
www.nature.com/scientificreports OPEN Glutathione ethyl ester reverses the deleterious efects of fentanyl on ventilation and arterial blood‑gas chemistry while prolonging fentanyl‑induced analgesia Michael W. Jenkins1,2, Faiza Khalid3, Santhosh M. Baby4,9, Walter J. May5, Alex P. Young5, James N. Bates6, Feixiong Cheng7, James M. Seckler1 & Stephen J. Lewis2,8* There is an urgent need to develop novel compounds that prevent the deleterious efects of opioids such as fentanyl on minute ventilation while, if possible, preserving the analgesic actions of the opioids. We report that L‑glutathione ethyl ester (GSHee) may be such a novel compound. In this study, we measured tail fick latency (TFL), arterial blood gas (ABG) chemistry, Alveolar‑arterial gradient, and ventilatory parameters by whole body plethysmography to determine the responses elicited by bolus injections of fentanyl (75 μg/kg, IV) in male adult Sprague–Dawley rats that had received a bolus injection of GSHee (100 μmol/kg, IV) 15 min previously. GSHee given alone had minimal efects on TFL, ABG chemistry and A‑a gradient whereas it elicited changes in some ventilatory parameters such as an increase in breathing frequency. In vehicle‑treated rats, fentanyl elicited (1) an increase in TFL, (2) decreases in pH, pO2 and sO2 and increases in pCO2 (all indicative of ventilatory depression), (3) an increase in Alveolar‑arterial gradient (indicative of a mismatch in ventilation‑perfusion in the lungs), and (4) changes in ventilatory parameters such as a reduction in tidal volume, that were indicative of pronounced ventilatory depression. In GSHee‑pretreated rats, fentanyl elicited a more prolonged analgesia, relatively minor changes in ABG chemistry and Alveolar‑arterial gradient, and a substantially milder depression of ventilation. -
Dual Mechanisms of Opioid-Induced Respiratory Depression in The
RESEARCH ARTICLE Dual mechanisms of opioid-induced respiratory depression in the inspiratory rhythm-generating network Nathan A Baertsch1,2*, Nicholas E Bush1, Nicholas J Burgraff1, Jan-Marino Ramirez1,2,3 1Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, United States; 2Department of Pediatrics, University of Washington, Seattle, United States; 3Department Neurological Surgery, University of Washington, Seattle, United States Abstract The analgesic utility of opioid-based drugs is limited by the life-threatening risk of respiratory depression. Opioid-induced respiratory depression (OIRD), mediated by the m-opioid receptor (MOR), is characterized by a pronounced decrease in the frequency and regularity of the inspiratory rhythm, which originates from the medullary preBo¨ tzinger Complex (preBo¨ tC). To unravel the cellular- and network-level consequences of MOR activation in the preBo¨ tC, MOR- expressing neurons were optogenetically identified and manipulated in transgenic mice in vitro and in vivo. Based on these results, a model of OIRD was developed in silico. We conclude that hyperpolarization of MOR-expressing preBo¨ tC neurons alone does not phenocopy OIRD. Instead, the effects of MOR activation are twofold: (1) pre-inspiratory spiking is reduced and (2) excitatory synaptic transmission is suppressed, thereby disrupting network-driven rhythmogenesis. These dual mechanisms of opioid action act synergistically to make the normally robust inspiratory rhythm- generating network particularly prone to collapse when challenged with exogenous opioids. *For correspondence: nathan.baertsch@seattlechildrens. org Introduction Competing interests: The The neuronal control of breathing is highly vulnerable to exogenous opioid-based analgesics and authors declare that no drugs of abuse. As a result, clinical and illicit use of opioids is associated with the life-threatening, competing interests exist. -
US 2015/0125441 A1 Wang Et Al
US 2015O125441A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0125441 A1 Wang et al. (43) Pub. Date: May 7, 2015 (54) METHODS OF TREATING DEPRESSION AND Publication Classification PAIN (51) Int. Cl. (71) Applicant: NEW YORK UNIVERSITY, New A613 L/453 (2006.01) York, NY (US) A6II 45/06 (2006.01) A613 L/405 (2006.01) (72) Inventors: Jing Wang, New York, NY (US); (52) U.S. Cl. Edward Ziff, New York, NY (US) CPC ........... A6 IK3I/453 (2013.01); A61 K3I/4015 (2013.01); A61K 45/06 (2013.01) (73) Assignee: New York University, New York, NY (57) ABSTRACT (US) The present invention provides methods of treating and phar maceutical compositions useful for treating a mood disorder (21) Appl. No.: 14/401,202 or depressive symptoms associated with pain, inducing anal gesia and treating pain in a Subject by administering a phar (22) PCT Filed: May 24, 2013 maceutically effective amount of an agent capable of one or more of increasing GluA1 level, expression, concentration, or 86) PCT NO. PCT/US2013/042572 biological1ological activity,activitV. iincreasing calciumlci permeableble AMPA O. S371 (c)(1) amino-3-hydroxy-5-methylisoxazole-4-propionic acid) (2) Date: s Nov. 14, 2014 receptor (CPAR) level, expression, concentration, or biologi e - rs cal activity or potentiating a CPAR current. The agent may be an AMPA potentiator or ampakine. The agent may increase O O AMPA receptor currents by slowing the deactivation of open Related U.S. Application Data channels and may be, for instance, 2-pyrrolidinone, 4-2- (60) Provisional application No.