Glutathione Ethyl Ester Reverses the Deleterious Effects of Fentanyl On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INVESTIGATION of NATURAL PRODUCT SCAFFOLDS for the DEVELOPMENT of OPIOID RECEPTOR LIGANDS by Katherine M
INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS By Katherine M. Prevatt-Smith Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. _________________________________ Chairperson: Dr. Thomas E. Prisinzano _________________________________ Dr. Brian S. J. Blagg _________________________________ Dr. Michael F. Rafferty _________________________________ Dr. Paul R. Hanson _________________________________ Dr. Susan M. Lunte Date Defended: July 18, 2012 The Dissertation Committee for Katherine M. Prevatt-Smith certifies that this is the approved version of the following dissertation: INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS _________________________________ Chairperson: Dr. Thomas E. Prisinzano Date approved: July 18, 2012 ii ABSTRACT Kappa opioid (KOP) receptors have been suggested as an alternative target to the mu opioid (MOP) receptor for the treatment of pain because KOP activation is associated with fewer negative side-effects (respiratory depression, constipation, tolerance, and dependence). The KOP receptor has also been implicated in several abuse-related effects in the central nervous system (CNS). KOP ligands have been investigated as pharmacotherapies for drug abuse; KOP agonists have been shown to modulate dopamine concentrations in the CNS as well as attenuate the self-administration of cocaine in a variety of species, and KOP antagonists have potential in the treatment of relapse. One drawback of current opioid ligand investigation is that many compounds are based on the morphine scaffold and thus have similar properties, both positive and negative, to the parent molecule. Thus there is increasing need to discover new chemical scaffolds with opioid receptor activity. -
Effects of Chronic Systemic Low-Impact Ampakine Treatment On
Biomedicine & Pharmacotherapy 105 (2018) 540–544 Contents lists available at ScienceDirect Biomedicine & Pharmacotherapy journal homepage: www.elsevier.com/locate/biopha Effects of chronic systemic low-impact ampakine treatment on neurotrophin T expression in rat brain ⁎ Daniel P. Radin , Steven Johnson, Richard Purcell, Arnold S. Lippa RespireRx Pharmaceuticals, Inc., 126 Valley Road, Glen Rock, NJ, 07452, United States ARTICLE INFO ABSTRACT Keywords: Neurotrophin dysregulation has been implicated in a large number of neurodegenerative and neuropsychiatric Ampakine diseases. Unfortunately, neurotrophins cannot cross the blood brain barrier thus, novel means of up regulating BDNF their expression are greatly needed. It has been demonstrated previously that neurotrophins are up regulated in Cognitive enhancement response to increases in brain activity. Therefore, molecules that act as cognitive enhancers may provide a LTP clinical means of up regulating neurotrophin expression. Ampakines are a class of molecules that act as positive Neurotrophin allosteric modulators of AMPA-type glutamate receptors. Currently, they are being developed to prevent opioid- NGF induced respiratory depression without sacrificing the analgesic properties of the opioids. In addition, these molecules increase neuronal activity and have been shown to restore age-related deficits in LTP in aged rats. In the current study, we examined whether two different ampakines could increase levels of BDNF and NGF at doses that are active in behavioral measures of cognition. Results demonstrate that ampakines CX516 and CX691 induce differential increases in neurotrophins across several brain regions. Notable increases in NGF were ob- served in the dentate gyrus and piriform cortex while notable BDNF increases were observed in basolateral and lateral nuclei of the amygdala. -
Performance Enhancement at the Cost of Potential Brain Plasticity: Neural Ramifications of Nootropic Drugs in the Healthy Developing Brain
REVIEW ARTICLE published: 13 May 2014 SYSTEMS NEUROSCIENCE doi: 10.3389/fnsys.2014.00038 Performance enhancement at the cost of potential brain plasticity: neural ramifications of nootropic drugs in the healthy developing brain Kimberly R. Urban 1 and Wen-Jun Gao 2* 1 Department of Psychology, University of Delaware, Newark, DE, USA 2 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA Edited by: Cognitive enhancement is perhaps one of the most intriguing and controversial Mikhail Lebedev, Duke University, topics in neuroscience today. Currently, the main classes of drugs used as potential USA cognitive enhancers include psychostimulants (methylphenidate (MPH), amphetamine), Reviewed by: Kimberly Simpson, University of but wakefulness-promoting agents (modafinil) and glutamate activators (ampakine) are Mississippi Medical Center, USA also frequently used. Pharmacologically, substances that enhance the components Christopher R. Madan, University of of the memory/learning circuits—dopamine, glutamate (neuronal excitation), and/or Alberta, Canada norepinephrine—stand to improve brain function in healthy individuals beyond their *Correspondence: baseline functioning. In particular, non-medical use of prescription stimulants such as Wen-Jun Gao, Department of Neurobiology and Anatomy, Drexel MPH and illicit use of psychostimulants for cognitive enhancement have seen a recent University College of Medicine, rise among teens and young adults in schools and college campuses. However, this 2900 Queen Lane, Philadelphia, PA enhancement likely comes with a neuronal, as well as ethical, cost. Altering glutamate 19129, USA function via the use of psychostimulants may impair behavioral flexibility, leading to e-mail: [email protected] the development and/or potentiation of addictive behaviors. Furthermore, dopamine and norepinephrine do not display linear effects; instead, their modulation of cognitive and neuronal function maps on an inverted-U curve. -
General Anesthesia and Altered States of Arousal: a Systems Neuroscience Analysis
General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Brown, Emery N., Patrick L. Purdon, and Christa J. Van Dort. “General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis.” Annual Review of Neuroscience 34, no. 1 (July 21, 2011): 601–628. As Published http://dx.doi.org/10.1146/annurev-neuro-060909-153200 Publisher Annual Reviews Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/86331 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ NIH Public Access Author Manuscript Annu Rev Neurosci. Author manuscript; available in PMC 2012 July 06. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Annu Rev Neurosci. 2011 ; 34: 601–628. doi:10.1146/annurev-neuro-060909-153200. General Anesthesia and Altered States of Arousal: A Systems Neuroscience Analysis Emery N. Brown1,2,3, Patrick L. Purdon1,2, and Christa J. Van Dort1,2 Emery N. Brown: [email protected]; Patrick L. Purdon: [email protected]; Christa J. Van Dort: [email protected] 1Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 2Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 3Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 Abstract Placing a patient in a state of general anesthesia is crucial for safely and humanely performing most surgical and many nonsurgical procedures. -
Effects of Dexfenfluramine and 5-HT3 Receptor Antagonists on Stress-Induced Reinstatement of Alcohol Seeking in Rats
Psychopharmacology (2006) 186: 82–92 DOI 10.1007/s00213-006-0346-y ORIGINAL INVESTIGATION Anh Dzung Lê . Douglas Funk . Stephen Harding . W. Juzytsch . Paul J. Fletcher . Yavin Shaham Effects of dexfenfluramine and 5-HT3 receptor antagonists on stress-induced reinstatement of alcohol seeking in rats Received: 29 October 2005 / Accepted: 3 February 2006 / Published online: 7 March 2006 # Springer-Verlag 2006 Abstract Rationale and objectives: We previously found 0.1 mg/kg, i.p) on reinstatement induced by 10 min of that systemic injections of the 5-HT uptake blocker intermittent footshock (0.8 mA) was determined. fluoxetine attenuate intermittent footshock stress-induced Results: Systemic injections of dexfenfluramine, ondan- reinstatement of alcohol seeking in rats, while inhibition of setron or tropisetron attenuated footshock-induced rein- 5-HT neurons in the median raphe induces reinstatement statement of alcohol seeking. Injections of dexfenflur- of alcohol seeking. In this study, we further explored the amine, ondansetron, or tropisetron had no effect on role of 5-HT in footshock stress-induced reinstatement of extinguished lever responding in the absence of alcohol seeking by determining the effects of the 5-HT footshock. Conclusions: The present results provide releaser and reuptake blocker dexfenfluramine, and the 5- additional support for the hypothesis that brain 5-HT HT receptor antagonists ondansetron and tropisetron, which systems are involved in stress-induced reinstatement of decrease alcohol self-administration and anxiety-like re- alcohol seeking. The neuronal mechanisms that potentially sponses in rats, on this reinstatement. Methods: Different mediate the unexpected observation that both stimulation groups of male Wistar rats were trained to self-administer of 5-HT release and blockade of 5-HT3 receptors attenuate alcohol (12% v/v) for 28–31 days (1 h/day, 0.19 ml footshock-induced reinstatement are discussed. -
Neuroenhancement in Healthy Adults, Part I: Pharmaceutical
l Rese ca arc ni h li & C f B o i o l e Journal of a t h n Fond et al., J Clinic Res Bioeth 2015, 6:2 r i c u s o J DOI: 10.4172/2155-9627.1000213 ISSN: 2155-9627 Clinical Research & Bioethics Review Article Open Access Neuroenhancement in Healthy Adults, Part I: Pharmaceutical Cognitive Enhancement: A Systematic Review Fond G1,2*, Micoulaud-Franchi JA3, Macgregor A2, Richieri R3,4, Miot S5,6, Lopez R2, Abbar M7, Lancon C3 and Repantis D8 1Université Paris Est-Créteil, Psychiatry and Addiction Pole University Hospitals Henri Mondor, Inserm U955, Eq 15 Psychiatric Genetics, DHU Pe-psy, FondaMental Foundation, Scientific Cooperation Foundation Mental Health, National Network of Schizophrenia Expert Centers, F-94000, France 2Inserm 1061, University Psychiatry Service, University of Montpellier 1, CHU Montpellier F-34000, France 3POLE Academic Psychiatry, CHU Sainte-Marguerite, F-13274 Marseille, Cedex 09, France 4 Public Health Laboratory, Faculty of Medicine, EA 3279, F-13385 Marseille, Cedex 05, France 5Inserm U1061, Idiopathic Hypersomnia Narcolepsy National Reference Centre, Unit of sleep disorders, University of Montpellier 1, CHU Montpellier F-34000, Paris, France 6Inserm U952, CNRS UMR 7224, Pierre and Marie Curie University, F-75000, Paris, France 7CHU Carémeau, University of Nîmes, Nîmes, F-31000, France 8Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Eschenallee 3, 14050 Berlin, Germany *Corresponding author: Dr. Guillaume Fond, Pole de Psychiatrie, Hôpital A. Chenevier, 40 rue de Mesly, Créteil F-94010, France, Tel: (33)178682372; Fax: (33)178682381; E-mail: [email protected] Received date: January 06, 2015, Accepted date: February 23, 2015, Published date: February 28, 2015 Copyright: © 2015 Fond G, et al. -
The Effect of Rosmarinic Acid on Apoptosis and Nnos Immunoreactivity Following Intrahippocampal Kainic Acid Injections in Rats
Basic and Clinical January, February 2020, Volume 11, Number 1 Research Paper: The Effect of Rosmarinic Acid on Apoptosis and nNOS Immunoreactivity Following Intrahippocampal Kainic Acid Injections in Rats Safoura Khamse1* , Seyed Shahabeddin Sadr1,2 , Mehrdad Roghani3* , Mina Rashvand1 , Maryam Mohammadian4 , Narges Mare- fati1 , Elham Harati1 , Fatemeh Ebrahimi1 1. Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. 2. Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran. 3. Neurophysiology Research Center, Shahed University, Tehran, Iran. 4. Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. Use your device to scan and read the article online Citation: Khamse, S., Sadr, Sh., Roghani, M., Rashvand, M., Mohammadian, M., & Marefati, N., et al. The Effect of Ros- marinic Acid on Apoptosis and nNOS Immunoreactivity Following Intrahippocampal Kainic Acid Injections in Rats Basic and Clinical Neuroscience, 11(1), 41-48. http://dx.doi.org/10.32598/bcn.9.10.340 http://dx.doi.org/10.32598/bcn.9.10.340 A B S T R A C T Introduction: Kainic Acid (KA) is an ionotropic glutamate receptor agonist. KA can induce neuronal overactivity and excitotoxicity. Rosmarinic Acid (RA) is a natural polyphenolic Article info: compound with antioxidant, anti-apoptotic, anti-neurodegenerative, and anti-inflammatory Received: 12 Apr 2018 properties. This study aimed to assess the effect of RA on apoptosis, nNOS-positive neurons First Revision: 10 May 2018 number, as well as Mitogen-Activated Protein Kinase (MAPK) and Cyclooxygenase-2 (COX- Accepted: 27 Oct 2018 2) immunoreactivity, following intrahippocampal Kainic acid injection in rats. -
Phencyclidine: an Update
Phencyclidine: An Update U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol, Drug Abuse and Mental Health Administration Phencyclidine: An Update Editor: Doris H. Clouet, Ph.D. Division of Preclinical Research National Institute on Drug Abuse and New York State Division of Substance Abuse Services NIDA Research Monograph 64 1986 DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administratlon National Institute on Drug Abuse 5600 Fishers Lane Rockville, Maryland 20657 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, DC 20402 NIDA Research Monographs are prepared by the research divisions of the National lnstitute on Drug Abuse and published by its Office of Science The primary objective of the series is to provide critical reviews of research problem areas and techniques, the content of state-of-the-art conferences, and integrative research reviews. its dual publication emphasis is rapid and targeted dissemination to the scientific and professional community. Editorial Advisors MARTIN W. ADLER, Ph.D. SIDNEY COHEN, M.D. Temple University School of Medicine Los Angeles, California Philadelphia, Pennsylvania SYDNEY ARCHER, Ph.D. MARY L. JACOBSON Rensselaer Polytechnic lnstitute National Federation of Parents for Troy, New York Drug Free Youth RICHARD E. BELLEVILLE, Ph.D. Omaha, Nebraska NB Associates, Health Sciences Rockville, Maryland REESE T. JONES, M.D. KARST J. BESTEMAN Langley Porter Neuropsychiatric lnstitute Alcohol and Drug Problems Association San Francisco, California of North America Washington, D.C. DENISE KANDEL, Ph.D GILBERT J. BOTV N, Ph.D. College of Physicians and Surgeons of Cornell University Medical College Columbia University New York, New York New York, New York JOSEPH V. -
Ampakines Potentiate the Corticostriatal Pathway to Reduce Acute and Chronic Pain Fei Zeng1,2, Qiaosheng Zhang2, Yaling Liu2, Guanghao Sun2, Anna Li2, Robert S
Zeng et al. Mol Brain (2021) 14:45 https://doi.org/10.1186/s13041-021-00757-y RESEARCH Open Access AMPAkines potentiate the corticostriatal pathway to reduce acute and chronic pain Fei Zeng1,2, Qiaosheng Zhang2, Yaling Liu2, Guanghao Sun2, Anna Li2, Robert S. Talay2 and Jing Wang2,3* Abstract The corticostriatal circuit plays an important role in the regulation of reward- and aversion-types of behaviors. Specif- cally, the projection from the prelimbic cortex (PL) to the nucleus accumbens (NAc) has been shown to regulate sensory and afective aspects of pain in a number of rodent models. Previous studies have shown that enhancement of glutamate signaling through the NAc by AMPAkines, a class of agents that specifcally potentiate the function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, reduces acute and persistent pain. How- ever, it is not known whether postsynaptic potentiation of the NAc with these agents can achieve the full anti-noci- ceptive efects of PL activation. Here we compared the impact of AMPAkine treatment in the NAc with optogenetic activation of the PL on pain behaviors in rats. We found that not only does AMPAkine treatment partially reconstitute the PL inhibition of sensory withdrawals, it fully occludes the efect of the PL on reducing the aversive component of pain. These results indicate that the NAc is likely one of the key targets for the PL, especially in the regulation of pain aversion. Furthermore, our results lend support for neuromodulation or pharmacological activation of the corticostri- atal circuit as an important analgesic approach. -
Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction?
Pharmaceuticals 2014, 7, 29-45; doi:10.3390/ph7010029 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction? Lucas R. Watterson 1,* and M. Foster Olive 1,2 1 Department of Psychology, Behavioral Neuroscience Area, Arizona State University, Tempe, AZ 85287, USA 2 Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ 85287, USA * Author to whom correspondence should be addressed; E-Mail:[email protected]; Tel.: +1-480-965-2573. Received: 28 October 2013; in revised form: 13 December 2013 / Accepted: 24 December 2013 / Published: 30 December 2013 Abstract: Positive allosteric modulators (PAMs) of α-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) receptors are a diverse class of compounds that increase fast excitatory transmission in the brain. AMPA PAMs have been shown to facilitate long-term potentiation, strengthen communication between various cortical and subcortical regions, and some of these compounds increase the production and release of brain-derived neurotrophic factor (BDNF) in an activity-dependent manner. Through these mechanisms, AMPA PAMs have shown promise as broad spectrum pharmacotherapeutics in preclinical and clinical studies for various neurodegenerative and psychiatric disorders. In recent years, a small collection of preclinical animal studies has also shown that AMPA PAMs may have potential as pharmacotherapeutic adjuncts to extinction-based or cue-exposure therapies for the treatment of drug addiction. The present paper will review this preclinical literature, discuss novel data collected in our laboratory, and recommend future research directions for the possible development of AMPA PAMs as anti-addiction medications. -
Kainic Acid-Induced Neurotoxicity: Targeting Glial Responses and Glia-Derived Cytokines
388 Current Neuropharmacology, 2011, 9, 388-398 Kainic Acid-Induced Neurotoxicity: Targeting Glial Responses and Glia-Derived Cytokines Xing-Mei Zhang1 and Jie Zhu1,2, 1Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden; 2Department of Neurology, The First Hospital of Jilin University, Changchun, China Abstract: Glutamate excitotoxicity contributes to a variety of disorders in the central nervous system, which is triggered primarily by excessive Ca2+ influx arising from overstimulation of glutamate receptors, followed by disintegration of the endoplasmic reticulum (ER) membrane and ER stress, the generation and detoxification of reactive oxygen species as well as mitochondrial dysfunction, leading to neuronal apoptosis and necrosis. Kainic acid (KA), a potent agonist to the -amino- 3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate class of glutamate receptors, is 30-fold more potent in neuro- toxicity than glutamate. In rodents, KA injection resulted in recurrent seizures, behavioral changes and subsequent degeneration of selective populations of neurons in the brain, which has been widely used as a model to study the mechanisms of neurode- generative pathways induced by excitatory neurotransmitter. Microglial activation and astrocytes proliferation are the other characteristics of KA-induced neurodegeneration. The cytokines and other inflammatory molecules secreted by activated glia cells can modify the outcome of disease progression. Thus, anti-oxidant and anti-inflammatory treatment could attenuate or prevent KA-induced neurodegeneration. In this review, we summarized updated experimental data with regard to the KA-induced neurotoxicity in the brain and emphasized glial responses and glia-oriented cytokines, tumor necrosis factor-, interleukin (IL)-1, IL-12 and IL-18. -
Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory
4930 • The Journal of Neuroscience, May 4, 2016 • 36(18):4930–4939 Behavioral/Cognitive Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory Abigail Benn, Gareth R. I. Barker, Sarah A. Stuart, XEva v. L. Roloff, XAnja G. Teschemacher, E. Clea Warburton, and Emma S. J. Robinson School of Physiology, Pharmacology, and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the poten- tial to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. Key words: AMPAkine; optogenetics; prefrontal cortex; rat; recognition memory Significance Statement These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal ac- tivity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments thatenhancetheamplitudeofEPSPs;however,drugsthatalterthedurationoftheEPSPorincreaseglutamatereleaselackefficacy.