REVIEW ARTICLE published: 13 May 2014 SYSTEMS NEUROSCIENCE doi: 10.3389/fnsys.2014.00038 Performance enhancement at the cost of potential brain plasticity: neural ramifications of nootropic drugs in the healthy developing brain Kimberly R. Urban 1 and Wen-Jun Gao 2* 1 Department of Psychology, University of Delaware, Newark, DE, USA 2 Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA Edited by: Cognitive enhancement is perhaps one of the most intriguing and controversial Mikhail Lebedev, Duke University, topics in neuroscience today. Currently, the main classes of drugs used as potential USA cognitive enhancers include psychostimulants (methylphenidate (MPH), amphetamine), Reviewed by: Kimberly Simpson, University of but wakefulness-promoting agents (modafinil) and glutamate activators (ampakine) are Mississippi Medical Center, USA also frequently used. Pharmacologically, substances that enhance the components Christopher R. Madan, University of of the memory/learning circuits—dopamine, glutamate (neuronal excitation), and/or Alberta, Canada norepinephrine—stand to improve brain function in healthy individuals beyond their *Correspondence: baseline functioning. In particular, non-medical use of prescription stimulants such as Wen-Jun Gao, Department of Neurobiology and Anatomy, Drexel MPH and illicit use of psychostimulants for cognitive enhancement have seen a recent University College of Medicine, rise among teens and young adults in schools and college campuses. However, this 2900 Queen Lane, Philadelphia, PA enhancement likely comes with a neuronal, as well as ethical, cost. Altering glutamate 19129, USA function via the use of psychostimulants may impair behavioral flexibility, leading to e-mail:
[email protected] the development and/or potentiation of addictive behaviors. Furthermore, dopamine and norepinephrine do not display linear effects; instead, their modulation of cognitive and neuronal function maps on an inverted-U curve.