One-Pot Tandem Diels-Alder/Nazarov Reactions to Generate Advanced Tricyclic Intermediates

Total Page:16

File Type:pdf, Size:1020Kb

One-Pot Tandem Diels-Alder/Nazarov Reactions to Generate Advanced Tricyclic Intermediates University of Nevada, Reno One-pot Tandem Diels-Alder/Nazarov Reactions to Generate Advanced Tricyclic Intermediates A dissertation submitted in partial fullfilment of the Requirements for the degree of Doctor of Philosophy in Chemistry by Rachael A. Carmichael Dr. Wesley. A. Chalifoux/Dissertation Advisor August 2017 Copyright by Rachael A. Carmichael 2017 All Rights Reserved THE GRADUATE SCHOOL We recommend that the dissertation prepared under our supervision by RACHAEL A. CARMICHAEL Entitled One-Pot Tandem Diels-Alder/Nazarov Reaction To Generate Advanced Tricyclic Intermediates be accepted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Wesley A. Chalifoux, Ph.D., Advisor Thomas Bell, Ph.D., Committee Member Vincent Catalano, Ph.D., Committee Member Angela Smilanich, Ph.D., Committee Member Christine Cremo, Ph.D., Graduate School Representative David W. Zeh, Ph. D., Dean, Graduate School August, 2017 i Abstract One-pot multi-component reactions represent efficacious strategies to rapidly obtain complex intermediates applicable in the synthesis of therapeutically germane compounds. Nazarov reactions of aryl vinyl ketones are viewed as important steps in total synthesis and contribute to expanding the chemist’s synthetic toolbox. Currently, activated substrates or photochemical means are necessary to effect this transformation because the energy barrier is predicted to be relatively high. The stabilizing effect of silyl substituents beta to a carbocation intermediate has been well documented. a) We hypothesized that incorporation of a silyl group into the ynone starting materials may stabilize the reactive intermediates, enabling the aryl Nazarov reaction to proceed even with unactivated substrates. The use of aryl silyl ynones proved successful and as a consequence our group developed a tandem process utilizing the Diels-Alder and Nazarov reactions of aryl ynones to generate carbo- and heterocyclic fused ring systems in good yields. The tandem reactions proceed under Lewis acidic conditions to generate three new carbon-carbon bonds, a quaternary carbon and two stereogenic centers. In order to access a wider range of pharmaceutically important compounds through concise routes, a more versatile technology is needed. The use of diynones as relatively high energy starting materials facilitates multiple carbon-carbon bond formations in a one-pot reaction. With respect to unsymmetrical diynones, regiocontrol of the double bond is accomplished through silane elimination rather than loss of hydrogen, ensuring the formation of one major product. Furthermore, the Diels-Alder cycloaddition occurs preferentially on the silyl substituted ii alkyne at low temperatures, allowing for a “timed” double Diels-Alder reaction in which two different dienes can be added, generating a highly asymmetric product. Such molecular control permits a significant amount of versatility within the method. b) Our lab has designed and successfully executed a highly modifiable multicomponent reaction, initiating from a double Diels-Alder cycloaddition followed by a Nazarov reaction to furnish the [6-5-6] backbone. This method produces three fused rings evolving from the construction of five new carbon-carbon bonds, quaternary or vicinal quaternary carbons, and stereogenic centers in a one-pot reaction. A diverse array of drug-like scaffolds can be rapidly synthesized through these tandem processes providing a high level of stereo- and regiocontrol in the products. iii Dedication I dedicate this dissertation to Michael R. King for his steadfast love and support iv Acknowledgements I would like to sincerely thank my advisor, Dr. Wesley Chalifoux, for always holding the bar high and helping me to become the researcher that I am today. I would like to thank my committee members, Dr. Thomas Bell, Dr. Vincent Catalano, Dr. Christine Cremo, and Dr. Angela Smilanich for their guidance, time, and support. I would also like to thank Dr. Vincent Catalano, Dr. Stephen Spain, and Casey Philbin for instrumentation training and assistance. I would like to thank my lab mates in the Chalifoux lab, particularly Radha Bam and Dr. Wenlong Yang for their help and support. I would also like to thank the faculty, staff, and students in the UNR Chemistry department for helpful discussions and assistance. I would also like to thank my friends and family for always lending an ear and their support when I needed it most. Additionally, I would like to thank Dr. Darcie Smith- Smiley and Mason Smiley for their support and advice and Darcie for editing my writing. Lastly, I would like to thank Michael King for his love and support. v Table of Contents 1 Introduction ................................................................................................................. 1 1.1 Pericyclic Reactions in Synthetic Methodology .................................................. 1 1.2 The Diels-Alder Cycloaddition ............................................................................ 2 1.3 The Nazarov Reaction .......................................................................................... 4 1.4 Tandem or Cascade Reactions ............................................................................. 7 1.5 Conclusion ............................................................................................................ 9 1.6 References ............................................................................................................ 9 2 β‑Silyl-Assisted Tandem Diels−Alder/Nazarov Reaction of 1‑Aryl-3-(trimethylsilyl) Ynones .............................................................................................................................. 11 2.1 Introduction ........................................................................................................ 11 2.2 Nazarov Cyclization of Aryl Substituted and Terminal Ynones........................ 13 2.2.1 Unexpected Formation of Mystery Product ................................................ 23 2.3 Tandem Diels-Alder/Nazarov Reaction of Silyl-substituted Ynones ................ 28 2.3.1 Catalytic Screening for Tandem Diels-Alder/Nazarov Reaction................ 38 2.4 Conclusion .......................................................................................................... 40 2.5 Experimental ...................................................................................................... 40 2.6 References .......................................................................................................... 56 vi 3 Multicomponent Double Diels-Alder/Nazarov Tandem Cyclization of Symmetric Cross-conjugated Diynones to Generate [6-5-6] Tricyclic Products ................................ 59 3.1 Introduction ........................................................................................................ 59 3.2 Reactions of Diynones ....................................................................................... 62 3.3 Preliminary Results: Double Diels-Alder Proof of Concept .............................. 63 3.4 One-pot Double Diels-Alder/Nazarov Tandem Reaction of Diynones ............. 66 3.4.1 Double Diels-Alder/Nazarov of Symmetrically Substituted Silyl Diynones ................................................................................................................... 71 3.4.2 Double Diels-Alder/Nazarov Scope for Symmetrical Diynones ................ 73 3.4.3 Double Diels-Alder/Nazarov of Symmetrically Substituted Alkyl/Aryl Diynones ................................................................................................................... 75 3.5 Enantioselective Efforts ..................................................................................... 78 3.6 Investigations into Timed Diene Addition Reactions ........................................ 84 3.7 Scalability of Double Diels-Alder/Nazarov Tandem Reaction .......................... 86 3.8 Conclusion .......................................................................................................... 86 3.9 Experimental ...................................................................................................... 87 3.10 References .................................................................................................... 102 4 One-pot Synthesis of [6-5-6] Tricyclic Products via a Double Diels-Alder/Nazarov Tandem Reaction of Unsymmetrically-substituted Cross-conjugated Diynones ........... 105 4.1 Introduction ...................................................................................................... 105 vii 4.2 Double Diels-Alder/Nazarov Tandem Reaction of Diynones .......................... 106 4.3 Triethyl Silyl versus Trimethyl Silyl Unsymmetrical Diynones ...................... 109 4.4 Optimization Attempts for the Unsymmetrical Scope ..................................... 112 4.5 Scope of Unsymmetrically-substituted Trimethyl Silyl Diynones .................. 117 4.6 Multi-diene Reactions ...................................................................................... 119 4.6.1 Synthetic Efforts Towards Biologically Active Compounds.................... 124 4.7 Conclusions ...................................................................................................... 125 4.8 Experimental .................................................................................................... 125 4.9 References .......................................................................................................
Recommended publications
  • Organic Chemistry
    Wisebridge Learning Systems Organic Chemistry Reaction Mechanisms Pocket-Book WLS www.wisebridgelearning.com © 2006 J S Wetzel LEARNING STRATEGIES CONTENTS ● The key to building intuition is to develop the habit ALKANES of asking how each particular mechanism reflects Thermal Cracking - Pyrolysis . 1 general principles. Look for the concepts behind Combustion . 1 the chemistry to make organic chemistry more co- Free Radical Halogenation. 2 herent and rewarding. ALKENES Electrophilic Addition of HX to Alkenes . 3 ● Acid Catalyzed Hydration of Alkenes . 4 Exothermic reactions tend to follow pathways Electrophilic Addition of Halogens to Alkenes . 5 where like charges can separate or where un- Halohydrin Formation . 6 like charges can come together. When reading Free Radical Addition of HX to Alkenes . 7 organic chemistry mechanisms, keep the elec- Catalytic Hydrogenation of Alkenes. 8 tronegativities of the elements and their valence Oxidation of Alkenes to Vicinal Diols. 9 electron configurations always in your mind. Try Oxidative Cleavage of Alkenes . 10 to nterpret electron movement in terms of energy Ozonolysis of Alkenes . 10 Allylic Halogenation . 11 to make the reactions easier to understand and Oxymercuration-Demercuration . 13 remember. Hydroboration of Alkenes . 14 ALKYNES ● For MCAT preparation, pay special attention to Electrophilic Addition of HX to Alkynes . 15 Hydration of Alkynes. 15 reactions where the product hinges on regio- Free Radical Addition of HX to Alkynes . 16 and stereo-selectivity and reactions involving Electrophilic Halogenation of Alkynes. 16 resonant intermediates, which are special favor- Hydroboration of Alkynes . 17 ites of the test-writers. Catalytic Hydrogenation of Alkynes. 17 Reduction of Alkynes with Alkali Metal/Ammonia . 18 Formation and Use of Acetylide Anion Nucleophiles .
    [Show full text]
  • Solvent Effects on Structure and Reaction Mechanism: a Theoretical Study of [2 + 2] Polar Cycloaddition Between Ketene and Imine
    J. Phys. Chem. B 1998, 102, 7877-7881 7877 Solvent Effects on Structure and Reaction Mechanism: A Theoretical Study of [2 + 2] Polar Cycloaddition between Ketene and Imine Thanh N. Truong Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, UniVersity of Utah, Salt Lake City, Utah 84112 ReceiVed: March 25, 1998; In Final Form: July 17, 1998 The effects of aqueous solvent on structures and mechanism of the [2 + 2] cycloaddition between ketene and imine were investigated by using correlated MP2 and MP4 levels of ab initio molecular orbital theory in conjunction with the dielectric continuum Generalized Conductor-like Screening Model (GCOSMO) for solvation. We found that reactions in the gas phase and in aqueous solution have very different topology on the free energy surfaces but have similar characteristic motion along the reaction coordinate. First, it involves formation of a planar trans-conformation zwitterionic complex, then a rotation of the two moieties to form the cycloaddition product. Aqueous solvent significantly stabilizes the zwitterionic complex, consequently changing the topology of the free energy surface from a gas-phase single barrier (one-step) process to a double barrier (two-step) one with a stable intermediate. Electrostatic solvent-solute interaction was found to be the dominant factor in lowering the activation energy by 4.5 kcal/mol. The present calculated results are consistent with previous experimental data. Introduction Lim and Jorgensen have also carried out free energy perturbation (FEP) theory simulations with accurate force field that includes + [2 2] cycloaddition reactions are useful synthetic routes to solute polarization effects and found even much larger solvent - formation of four-membered rings.
    [Show full text]
  • The Arene–Alkene Photocycloaddition
    The arene–alkene photocycloaddition Ursula Streit and Christian G. Bochet* Review Open Access Address: Beilstein J. Org. Chem. 2011, 7, 525–542. Department of Chemistry, University of Fribourg, Chemin du Musée 9, doi:10.3762/bjoc.7.61 CH-1700 Fribourg, Switzerland Received: 07 January 2011 Email: Accepted: 23 March 2011 Ursula Streit - [email protected]; Christian G. Bochet* - Published: 28 April 2011 [email protected] This article is part of the Thematic Series "Photocycloadditions and * Corresponding author photorearrangements". Keywords: Guest Editor: A. G. Griesbeck benzene derivatives; cycloadditions; Diels–Alder; photochemistry © 2011 Streit and Bochet; licensee Beilstein-Institut. License and terms: see end of document. Abstract In the presence of an alkene, three different modes of photocycloaddition with benzene derivatives can occur; the [2 + 2] or ortho, the [3 + 2] or meta, and the [4 + 2] or para photocycloaddition. This short review aims to demonstrate the synthetic power of these photocycloadditions. Introduction Photocycloadditions occur in a variety of modes [1]. The best In the presence of an alkene, three different modes of photo- known representatives are undoubtedly the [2 + 2] photocyclo- cycloaddition with benzene derivatives can occur, viz. the addition, forming either cyclobutanes or four-membered hetero- [2 + 2] or ortho, the [3 + 2] or meta, and the [4 + 2] or para cycles (as in the Paternò–Büchi reaction), whilst excited-state photocycloaddition (Scheme 2). The descriptors ortho, meta [4 + 4] cycloadditions can also occur to afford cyclooctadiene and para only indicate the connectivity to the aromatic ring, and compounds. On the other hand, the well-known thermal [4 + 2] do not have any implication with regard to the reaction mecha- cycloaddition (Diels–Alder reaction) is only very rarely nism.
    [Show full text]
  • Predicting Glycosylation Stereoselectivity Using Machine Learning† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Predicting glycosylation stereoselectivity using machine learning† Cite this: Chem. Sci.,2021,12,2931 ab a ab All publication charges for this article Sooyeon Moon, ‡ Sourav Chatterjee, ‡ Peter H. Seeberger have been paid for by the Royal Society and Kerry Gilmore §*a of Chemistry Predicting the stereochemical outcome of chemical reactions is challenging in mechanistically ambiguous transformations. The stereoselectivity of glycosylation reactions is influenced by at least eleven factors across four chemical participants and temperature. A random forest algorithm was trained using a highly reproducible, concise dataset to accurately predict the stereoselective outcome of glycosylations. The steric and electronic contributions of all chemical reagents and solvents were quantified by quantum mechanical calculations. The trained model accurately predicts stereoselectivities for unseen nucleophiles, electrophiles, acid catalyst, and solvents across a wide temperature range (overall root mean square error 6.8%). All predictions were validated experimentally on a standardized microreactor platform. The model helped to identify novel ways to control glycosylation stereoselectivity and Creative Commons Attribution 3.0 Unported Licence. Received 11th November 2020 accurately predicts previously unknown means of stereocontrol. By quantifying the degree of influence Accepted 24th December 2020 of each variable, we begin to gain a better general understanding of the transformation, for example that DOI: 10.1039/d0sc06222g environmental factors influence the stereoselectivity of glycosylations more than the coupling partners in rsc.li/chemical-science this area of chemical space. Introduction retrosynthesis,9 reaction performance10 and products,11,12 the identication of new materials and catalysts,13–15 as well as Predicting the outcome of an organic reaction generally enantioselectivity16,17 have been addressed.
    [Show full text]
  • Aldol Reactions: E-Enolates and Anti-Selectivity
    Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 5-2005 Aldol Reactions: E-Enolates and Anti-Selectivity Matthew Grant Anderson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Organic Chemistry Commons Recommended Citation Anderson, Matthew Grant, "Aldol Reactions: E-Enolates and Anti-Selectivity" (2005). All Graduate Plan B and other Reports. 1312. https://digitalcommons.usu.edu/gradreports/1312 This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ALDOL REACTIONS: E-ENOLATES AND ANTI-SELECTIVITY Prepared By: MATTHEW GRANT ANDERSON A non-thesis paper submitted in partial fulfillment of the requirement for a Plan B Degree of Masters of Science in Organic Chemistry UTAH STATE UNIVERSITY Logan, Utah 2005 Contents Page CONTENTS ...................................................................................... .i LIST OF TABLES, FIGURES AND SCHEMES ....................................... ii,iii ABSTRACT .................................................................................... iv CHAPTER I. ALDOL REACTIONS:E-ENOLATES AND ANTI SELECTIVITY ......... 1 CHAPTER II. SECTION 1. MODELS OF E-ENOLATE FORMATION ...... .... ....... ... 12 SECTION 2. PATERSON ENOLATE PAPER ..... .........................
    [Show full text]
  • Stereoselectivity in Atmospheric Autoxidation Kristian H
    Subscriber access provided by Caltech Library Clusters, Radicals, and Ions; Environmental Chemistry Stereoselectivity in Atmospheric Autoxidation Kristian H. Møller, Eric Joseph Praske, Lu Xu, John D. Crounse, Paul O. Wennberg, and Henrik Grum Kjaergaard J. Phys. Chem. Lett., Just Accepted Manuscript • DOI: 10.1021/acs.jpclett.9b01972 • Publication Date (Web): 23 Sep 2019 Downloaded from pubs.acs.org on September 24, 2019 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
    [Show full text]
  • Reactions of Alkenes and Alkynes
    05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each.
    [Show full text]
  • Predictive Models for Kinetic Parameters of Cycloaddition
    Predictive Models for Kinetic Parameters of Cycloaddition Reactions Marta Glavatskikh, Timur Madzhidov, Dragos Horvath, Ramil Nugmanov, Timur Gimadiev, Daria Malakhova, Gilles Marcou, Alexandre Varnek To cite this version: Marta Glavatskikh, Timur Madzhidov, Dragos Horvath, Ramil Nugmanov, Timur Gimadiev, et al.. Predictive Models for Kinetic Parameters of Cycloaddition Reactions. Molecular Informatics, Wiley- VCH, 2018, 38 (1-2), pp.1800077. 10.1002/minf.201800077. hal-02346844 HAL Id: hal-02346844 https://hal.archives-ouvertes.fr/hal-02346844 Submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 0DQXVFULSW &OLFNKHUHWRGRZQORDG0DQXVFULSW&$UHYLVLRQGRF[ Predictive models for kinetic parameters of cycloaddition reactions Marta Glavatskikh[a,b], Timur Madzhidov[b], Dragos Horvath[a], Ramil Nugmanov[b], Timur Gimadiev[a,b], Daria Malakhova[b], Gilles Marcou[a] and Alexandre Varnek*[a] [a] Laboratoire de Chémoinformatique, UMR 7140 CNRS, Université de Strasbourg, 1, rue Blaise Pascal, 67000 Strasbourg, France; [b] Laboratory of Chemoinformatics and Molecular Modeling, Butlerov Institute of Chemistry, Kazan Federal University, Kremlyovskaya str. 18, Kazan, Russia Abstract This paper reports SVR (Support Vector Regression) and GTM (Generative Topographic Mapping) modeling of three kinetic properties of cycloaddition reactions: rate constant (logk), activation energy (Ea) and pre-exponential factor (logA).
    [Show full text]
  • Aromatic Substitution Reactions: an Overview
    Review Article Published: 03 Feb, 2020 SF Journal of Pharmaceutical and Analytical Chemistry Aromatic Substitution Reactions: An Overview Kapoor Y1 and Kumar K1,2* 1School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Sohna, Gurgaon, Haryana, India 2School of Pharmacy and Technology Management, SVKM’s NMIMS University, Hyderabad, Telangana, India Abstract The introduction or replacement of substituent’s on aromatic rings by substitution reactions is one of the most fundamental transformations in organic chemistry. On the basis of the reaction mechanism, these substitution reactions can be divided into electrophilic, nucleophilic, radical, and transition metal catalyzed. This article also focuses on electrophilic and nucleophilic substitution mechanisms. Introduction The replacement of an atom, generally hydrogen, or a group attached to the carbon from the benzene ring by another group is known as aromatic substitution. The regioselectivity of these reactions depends upon the nature of the existing substituent and can be ortho, Meta or Para selective. Electrophilic Aromatic Substitution (EAS) reactions are important for synthetic purposes and are also among the most thoroughly studied classes of organic reactions from a mechanistic point of view. A wide variety of electrophiles can effect aromatic substitution. Usually, it is a substitution of some other group for hydrogen that is of interest, but this is not always the case. For example, both silicon and mercury substituent’s can be replaced by electrophiles. The reactivity of a particular electrophile determines which aromatic compounds can be successfully substituted. Despite the wide range of electrophilic species and aromatic ring systems that can undergo substitution, a single broad mechanistic picture encompasses most EAS reactions.
    [Show full text]
  • [4 + 2] Annulation and Enyne Cross Metathesis
    Communication pubs.acs.org/JACS Gold-Catalyzed Intermolecular Reactions of Propiolic Acids with Alkenes: [4 + 2] Annulation and Enyne Cross Metathesis † † † ‡ ‡ ‡ Hyun-Suk Yeom, Jaeyoung Koo, Hyun-Sub Park, Yi Wang, Yong Liang, Zhi-Xiang Yu,*, † and Seunghoon Shin*, † Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea ‡ Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China *S Supporting Information Scheme 1. Propiolic Acid as a Functional Equivalent of 1,4- ABSTRACT: A gold-catalyzed intermolecular reaction of C,O-Dipole or Biscarbene propiolic acids with alkenes led to a [4 + 2] annulation or enyne cross metathesis. The [4 + 2] annulation proceeds with net cis-addition with respect to alkenes and provides an expedient route to α,β-unsaturated δ-lactones, for which preliminary asymmetric reactions were also demonstrated. For 1,2-disubstituted alkenes, unprecedented enyne cross metathesis occurred to give 1,3-dienes in a completely stereospecific fashion. DFT calculations and experiments indicated that the cyclobutene derivatives are not viable We commenced our study using propiolic acid (4a) and intermediates and that the steric interactions during 10 concerted σ-bond rearrangements are responsible for the styrene derivatives as substrates. After extensive optimization, observed unique stereospecificity. we found that treating styrene 3a with 4a
    [Show full text]
  • A New Withanolide from the Roots of Withania Somnifera
    Indian Journal of Chemistry Vol. 47B, March 2008, pp. 485-487 Note Synthetic potentiality of α-chloronitrone in The most remarkable feature of both the nitrones 2 aldehyde synthesis: A new approach 1a,b is that they undergo SN reaction with benzyl chloride leading to the formation of benzaldehyde, a Bhaskar Chakraborty* & Manjit Singh Chhetri significant reaction in nitrone chemistry which Organic Chemistry Laboratory, Sikkim Govt. College proceeds through SNi reaction initially and forms Gangtok 737 102, India transient nitrones 2a,b. A new mechanistic pathway E-mail: [email protected] has been suggested for the synthesis of aldehyde (Scheme I). Received 9 August 2007; accepted (revised) 12 December 2007 The lone pair of electrons of the OH group of the i N-Phenyl-N-cyclohexyl-α-chloronitrones have been synthe- nitrones 1a,b play the most significant role in SN sized and a new method of synthesis of aldehyde has been mechanism for the formation of transient nitrones discovered involving SNi and SN2 reactions with benzyl chloride. 2a,b which reacts very quickly with benzyl chloride 2 and results in the formation of benzaldehyde with a Keywords: N-Phenyl-N-cyclohexyl-α-chloronitrone, SN reac- very good yield (72% and 63% respectively) along tion, aldehyde synthesis with furan derivative. The synthesis of N-phenyl-N-cyclohexyl-α-chloro- nitrones1 1a,b and their 1,3-dipolar cycloaddition Experimental Section reaction with different dipolarophiles have been Hand drawn silica gel (E. Merck) plates of 0.5-0.7 already established. Existing reports2-7 already mm thickness are used for TLC.
    [Show full text]
  • Heterocyclic Chemistrychemistry
    HeterocyclicHeterocyclic ChemistryChemistry Professor J. Stephen Clark Room C4-04 Email: [email protected] 2011 –2012 1 http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html Recommended Reading • Heterocyclic Chemistry – J. A. Joule, K. Mills and G. F. Smith • Heterocyclic Chemistry (Oxford Primer Series) – T. Gilchrist • Aromatic Heterocyclic Chemistry – D. T. Davies 2 Course Summary Introduction • Definition of terms and classification of heterocycles • Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups Intermediates used for the construction of aromatic heterocycles • Synthesis of aromatic heterocycles • Carbon–heteroatom bond formation and choice of oxidation state • Examples of commonly used strategies for heterocycle synthesis Pyridines • General properties, electronic structure • Synthesis of pyridines • Electrophilic substitution of pyridines • Nucleophilic substitution of pyridines • Metallation of pyridines Pyridine derivatives • Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides Quinolines and isoquinolines • General properties and reactivity compared to pyridine • Electrophilic and nucleophilic substitution quinolines and isoquinolines 3 • General methods used for the synthesis of quinolines and isoquinolines Course Summary (cont) Five-membered aromatic heterocycles • General properties, structure and reactivity of pyrroles, furans and thiophenes • Methods and strategies for the synthesis of five-membered heteroaromatics
    [Show full text]