Syncytia in Fungi

Total Page:16

File Type:pdf, Size:1020Kb

Syncytia in Fungi cells Review Syncytia in Fungi Alexander P. Mela 1, Adriana M. Rico-Ramírez 1 and N. Louise Glass 1,2,* 1 Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; [email protected] (A.P.M.); [email protected] (A.M.R.-R.) 2 Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA * Correspondence: [email protected] Received: 31 August 2020; Accepted: 29 September 2020; Published: 8 October 2020 Abstract: Filamentous fungi typically grow as interconnected multinucleate syncytia that can be microscopic to many hectares in size. Mechanistic details and rules that govern the formation and function of these multinucleate syncytia are largely unexplored, including details on syncytial morphology and the regulatory controls of cellular and molecular processes. Recent discoveries have revealed various adaptations that enable fungal syncytia to accomplish coordinated behaviors, including cell growth, nuclear division, secretion, communication, and adaptation of the hyphal network for mixing nuclear and cytoplasmic organelles. In this review, we highlight recent studies using advanced technologies to define rules that govern organizing principles of hyphal and colony differentiation, including various aspects of nuclear and mitochondrial cooperation versus competition. We place these findings into context with previous foundational literature and present still unanswered questions on mechanistic aspects, function, and morphological diversity of fungal syncytia across the fungal kingdom. Keywords: syncytia; filamentous fungi; heterokaryon; nucleus; morphology 1. Syncytia Syncytia can be defined as multinucleated cells within a common cytoplasmic environment whose main purpose is to function as a single coordinated unit. There are many cases of syncytia in nature. In animals, for example, the placenta is a multinucleate organ that has an important role in protecting the fetus and transporting nutrients [1]. In muscle cells, multinucleated fibers are formed via the fusion of myoblasts [2], and osteoclasts are multinuclear bone-resorbing cells that are formed via cell fusion [3] (Figure1a). In the slime mold, Physarum polycephalum, individual amoebae fuse to form a large mass of protoplasm containing multiple nuclei [4] that undergo synchronous mitoses [5] (Figure1b). In plants, syncytia also occur, for example, the endosperm–placental syncytia [6] (Figure1c). In fungi, diversity of morphological characteristics that have evolved over time, and the syncytial lifestyle may have arisen in hyphal and non-hyphal organisms. For example, chytrids species belong to an ancient phylum of fungi (Chytridiomycota) that diverged at least 750 million years ago from other fungal lineages [7]. Chytrids do not form long multinucleate hyphae that search for nutrients. Instead, they have anucleate ‘rhizoids’ that are derived from a unicellular, multinucleate structure, or more complex rhizomycelia, which share morphological features with filamentous fungal syncytia and multinucleate hyphae. Cells 2020, 9, 2255; doi:10.3390/cells9102255 www.mdpi.com/journal/cells Cells 2020, 9, 2255 2 of 14 Cells 2020, 9, x 2 of 14 Figure 1.FigureExamples 1. Examples of syncytia of syncytia in nature. in nature. (a) Myoblasts (a) Myoblasts are fused are to fused form to multinucleated form multinucleated muscle muscle fibers. (bfibers.) Slime (b) mold SlimePhysarum mold Physarum polycephalum polycephalum, multinucleate, multinucleate protoplasm protoplasm formed formed by the fusionby the offusion of individualindividual amoebae. amoebae. (c) Endospermal–placental (c) Endospermal–placental syncytia syncytia in developmental in developmental stages of stagesUrticularia of Urticulariaseeds, seeds, the formationthe formation of syncytia of syncytia occurs occurs in the placenta.in the placenta. The syncytia The syncytia harbor harbor two populations two populations of nuclei, of nuclei, a a nucleusnucleus from the from nutritive the nutritive tissue, tissue, and a giantand a endosperm giant endosperm nucleus nucleus (modified (modified from [ 8from]). [8]). The hallmarkThe hallmark growth growth habit habi of filamentoust of filamentous fungi fungi is as is multinucleate as multinucleate syncytia syncytia (Figure (Figure2a,b). 2a,b). The The interconnectednessinterconnectedness of fungalof fungal syncytia syncyt occursia occurs via via fusion fusion of germinatedof germinated asexual asexual spores spores (germlings) (germlings) via via so-calledso-called conidial conidial anastomosis anastomosis tubes tubes (CATs) (CATs) [9] or [9] between or between hyphae hyphae within within a single a colonysingle colony or between or between coloniescolonies (anastomosis) (anastomosis) [10] (Figure [10]2a–d). (Figure Fusion 2a–d). results Fusion in the results formation in the of anformation interconnected of an networkinterconnected (mycelium)network [11,12 (mycelium)], which is the[11,12], foundation which for is colonythe founda establishmenttion for andcolony growth. establishment In Neurospora and crassa growth., In anastomosisNeurospora is associated crassa, anastomosis with cell-to-cell is associated communication with cell-to-cell processes thatcommunication regulate chemotropic processes growth that regulate of germlingschemotropic and hyphae growth before of germlings cell contact and [ 10hyphae]. Germlings before cell/hyphae contact send [10]. and Germlings/hyphae receive signals that send and guide chemotropicreceive signals interactions, that guide culminating chemotropic in cell–cellinteractions adhesion,, culminating cell wall in dissolution, cell–cell adhesion, membrane cell wall merger,dissolution, and cytoplasmic membrane mixing merger, [13–16 and]. Hyphal cytoplasmic anastomosis mixing primarily [13–16]. occursHyphal in anastomosis the interior primarily of a colonyoccurs either in through the interior hyphal of a branches colony either or by throug contacth betweenhyphal branches adjacent or hyphae, by contact resulting between in the adjacent formationhyphae, of a fusion resulting bridge in the [10 ,formation11]. Hyphal of fusiona fusion can bridge also occur [10,11]. between Hyphal colonies fusion withcan also the sameoccur orbetween non-identicalcolonies genotypes with the [same17,18 ].or non-identical genotypes [17,18]. The formationThe formation of an interconnected of an interconnected syncytium cansyncytium be beneficial can for be colony beneficial development, for colony facilitating development, the exchangefacilitating of genetic the exchange material, of nutrient genetic transport,material, nutrie improvingnt transport, colony improving establishment, colony and establishment, increasing and colonyincreasing size [17,19 colony–21]. Uponsize [17,19–21]. hyphal fusion, Upon hyphal cytoplasmic fusion,flow cytoplasmic can show flow dramatic can show changes dramatic in changes directionalityin directionality [10,22]. Germlings [10,22]. Germlings or young colonies or young can colonies share genetic can share resources genetic or nutrients resources through or nutrients cell fusion,through but thecell process fusion, can but be the restricted process as coloniescan be agerestricted and undergo as colonies hyphal age differentiation and undergo [17 ].hyphal The advantagesdifferentiation of interconnected [17]. The advantages syncytial of hyphae interconnected lie in their syncytial ability to hyphae transport lie nutrientsin their ability through to transport a continuousnutrients cytoplasm, through allowing a continuous the efficient cytoplasm, use of the nutrientsallowing once the aefficient local source use has of beenthe nutrients exhausted once [23]. a local Withinsource a has syncytium, been exhausted heterokaryons [23]. can arise due to a spontaneous mutation within a single colony (FigureWithin3a). In a asyncytium, laboratory strainheterokaryons of N. crassa can, around arise du 2–3%e to ofa thespontaneous nuclear population mutation harboredwithin a single mutationscolony that (Figure modified 3a). the In myceliuma laboratory phenotype, strain of N. showing crassa, thearound diffi culties2–3% of of the maintaining nuclear population a mycelium harbored with a uniformmutations genetic that backgroundmodified the [24 ].mycelium Heterokaryons phenotyp cane, also showing form via the germling difficulties or hyphal of maintaining fusion a betweenmycelium genetically with diff aerent uniform cells /colonies,genetic background resulting in [24] the. coexistence Heterokaryons of genetically can also diformfferent via nuclei germling or hyphal fusion between genetically different cells/colonies, resulting in the coexistence of genetically Cells 2020, 9, 2255 3 of 14 Cells 2020, 9, x 3 of 14 differentin a common nuclei cytoplasm in a common (Figure cytoplasm2e,f). Heterokaryon (Figure 2e,f). formation Heterokaryon is anessential formation element is an essential of many element fungal oflife many cycles fungal and maylife cycles be useful and tomay complement be useful to mutations. complement There mutations. are also There beneficial are also aspects beneficial of the parasexualaspects of the cycle, parasexual such as functionalcycle, such diploidy as function andal mitoticdiploidy recombination and mitotic recombination [25] (Figure3d). [25] However, (Figure 3d).heterokaryon However, formationheterokaryon can formation transmit geneticcan transmit infections genetic that infections negatively that impact negatively fitness, impact such fitness, as the suchtransmission
Recommended publications
  • Female Inheritance of Malarial Lap Genes Is Essential for Mosquito Transmission
    Female Inheritance of Malarial lap Genes Is Essential for Mosquito Transmission J. Dale Raine[, Andrea Ecker[, Jacqui Mendoza, Rita Tewari, Rebecca R. Stanway, Robert E. Sinden* Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London, United Kingdom Members of the LCCL/lectin adhesive-like protein (LAP) family, a family of six putative secreted proteins with predicted adhesive extracellular domains, have all been detected in the sexual and sporogonic stages of Plasmodium and have previously been predicted to play a role in parasite–mosquito interactions and/or immunomodulation. In this study we have investigated the function of PbLAP1, 2, 4, and 6. Through phenotypic analysis of Plasmodium berghei loss-of- function mutants, we have demonstrated that PbLAP2, 4, and 6, as previously shown for PbLAP1, are critical for oocyst maturation and sporozoite formation, and essential for transmission from mosquitoes to mice. Sporozoite formation was rescued by a genetic cross with wild-type parasites, which results in the production of heterokaryotic polyploid ookinetes and oocysts, and ultimately infective Dpblap sporozoites, but not if the individual Dpblap parasite lines were crossed amongst each other. Genetic crosses with female-deficient (Dpbs47) and male-deficient (Dpbs48/45) parasites show that the lethal phenotype is only rescued when the wild-type pblap gene is inherited from a female gametocyte, thus explaining the failure to rescue in the crosses between different Dpblap parasite lines. We conclude that the functions of PbLAPs1, 2, 4, and 6 are critical prior to the expression of the male-derived gene after microgameto- genesis, fertilization, and meiosis, possibly in the gametocyte-to-ookinete period of differentiation.
    [Show full text]
  • Sexual Selection in Fungi
    Sexual selection in Fungi Bart P. S. Nieuwenhuis Thesis committee Thesis supervisor Prof. dr. R.F. Hoekstra Emeritus professor of Genetics (Population and Quantitative Genetics) Wageningen University Thesis co-supervisor Dr. D.K. Aanen Assistant professor at the Laboratory of Genetics Wageningen University Other members Prof. dr. J. B. Anderson, University of Toronto, Toronto, Canada Prof. dr. W. de Boer, NIOO, Wageningen and Wageningen University Prof. dr. P.G.L. Klinkhamer, Leiden University, Leiden Prof. dr. H.A.B. Wösten, Utrecht Univesity, Utrecht This research was conducted under the auspices of the C.T. de Wit Graduate School for Production Ecology and Resource Conservation (PE&RC) Sexual selection in Fungi Bart P. S. Nieuwenhuis Thesis submittted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 21 September 2012 at 4 p.m. in the Aula. Bart P. S. Nieuwenhuis Sexual selection in Fungi Thesis, Wageningen University, Wageningen, NL (2012) With references, with summaries in Dutch and English ISBN 978-94-6173-358-0 Contents Chapter 1 7 General introduction Chapter 2 17 Why mating types are not sexes Chapter 3 31 On the asymmetry of mating in the mushroom fungus Schizophyllum commune Chapter 4 49 Sexual selection in mushroom-forming basidiomycetes Chapter 5 59 Fungal fidelity: Nuclear divorce from a dikaryon by mating or monokaryon regeneration Chapter 6 69 Fungal nuclear arms race: experimental evolution for increased masculinity in a mushroom Chapter 7 89 Sexual selection in the fungal kingdom Chapter 8 109 Discussion: male and female fitness Bibliography 121 Summary 133 Dutch summary 137 Dankwoord 147 Curriculum vitea 153 Education statement 155 6 Chapter 1 General introduction Bart P.
    [Show full text]
  • Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
    fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating.
    [Show full text]
  • By Thesis for the Degree of Doctor of Philosophy
    COMPARATIVE ANATOMY AND HISTOCHEMISTRY OF TIIE ASSOCIATION OF PUCCIiVIA POARUM WITH ITS ALTERNATE HOSTS By TALIB aWAID AL-KHESRAJI Department of Botany~ Universiiy of SheffieZd Thesis for the degree of Doctor of Philosophy JUNE 1981 Vol 1 IMAGING SERVICES NORTH Boston Spa, Wetherby West Yorkshire, lS23 7BQ www.bl.uk BEST COpy AVAILABLE. VARIABLE PRINT QUALITY TO MY PARENTS i Ca.1PARATIVE ANATCl1Y AND HISTOCHEMISTRY OF THE ASSOCIATION OF PUCCINIA POARUM WITH ITS ALTERNATE HOSTS Talib Owaid Al-Khesraji Depaptment of Botany, Univepsity of Sheffield The relationship of the macrocyclic rust fungus PUccinia poarum with its pycnial-aecial host, Tussilago fapfaPa, and its uredial-telial host, Poa ppatensis, has been investigated, using light microscopy, electron microscopy and micro-autoradiography. Aspects of the morp­ hology and ontogeny of spores and sari, which were previously disputed, have been clarified. Monokaryotic hyphae grow more densely in the intercellular spaces of Tussilago leaves than the dikaryotic intercellular hyphae on Poa. Although ultrastructurally sbnilar, monokaryotic hyphae differ from dikaryotic hyphae in their interaction with host cell walls, often growing embedded in wall material which may project into the host cells. The frequency of penetration of Poa mesophyll cells by haustoria of the dikaryon is greater than that of Tussilago cells by the relatively undifferentiated intracellular hyphae of the monokaryon. Intracellular hyphae differ from haustoria in their irregular growth, septation, lack of a neck-band or markedly constricted neck, the deposition of host wall-like material in the external matrix bounded by the invaginated host plasmalemma and in the association of callose reactions \vith intracellular hyphae and adjacent parts of host walls.
    [Show full text]
  • Phylogenetic Classification of Life
    Proc. Natl. Accad. Sci. USA Vol. 93, pp. 1071-1076, February 1996 Evolution Archaeal- eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life (centriole-kinetosome DNA/Protoctista/kingdom classification/symbiogenesis/archaeprotist) LYNN MARGULIS Department of Biology, University of Massachusetts, Amherst, MA 01003-5810 Conitribluted by Lynnl Marglulis, September 15, 1995 ABSTRACT A symbiosis-based phylogeny leads to a con- these features evolved in their ancestors by inferable steps (4, sistent, useful classification system for all life. "Kingdoms" 20). rRNA gene sequences (Trichomonas, Coronympha, Giar- and "Domains" are replaced by biological names for the most dia; ref. 11) confirm these as descendants of anaerobic eu- inclusive taxa: Prokarya (bacteria) and Eukarya (symbiosis- karyotes that evolved prior to the "crown group" (12)-e.g., derived nucleated organisms). The earliest Eukarya, anaero- animals, fungi, or plants. bic mastigotes, hypothetically originated from permanent If eukaryotes began as motility symbioses between Ar- whole-cell fusion between members of Archaea (e.g., Thermo- chaea-e.g., Thermoplasma acidophilum-like and Eubacteria plasma-like organisms) and of Eubacteria (e.g., Spirochaeta- (Spirochaeta-, Spirosymplokos-, or Diplocalyx-like microbes; like organisms). Molecular biology, life-history, and fossil ref. 4) where cell-genetic integration led to the nucleus- record evidence support the reunification of bacteria as cytoskeletal system that defines eukaryotes (21)-then an Prokarya while
    [Show full text]
  • Real-Time Dynamics of Plasmodium NDC80 Reveals Unusual Modes of Chromosome Segregation During Parasite Proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2021) 134, jcs245753. doi:10.1242/jcs.245753 RESEARCH ARTICLE SPECIAL ISSUE: CELL BIOLOGY OF HOST–PATHOGEN INTERACTIONS Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation Mohammad Zeeshan1,*, Rajan Pandey1,*, David J. P. Ferguson2,3, Eelco C. Tromer4, Robert Markus1, Steven Abel5, Declan Brady1, Emilie Daniel1, Rebecca Limenitakis6, Andrew R. Bottrill7, Karine G. Le Roch5, Anthony A. Holder8, Ross F. Waller4, David S. Guttery9 and Rita Tewari1,‡ ABSTRACT eukaryotic organisms to proliferate, propagate and survive. During Eukaryotic cell proliferation requires chromosome replication and these processes, microtubular spindles form to facilitate an equal precise segregation to ensure daughter cells have identical genomic segregation of duplicated chromosomes to the spindle poles. copies. Species of the genus Plasmodium, the causative agents of Chromosome attachment to spindle microtubules (MTs) is malaria, display remarkable aspects of nuclear division throughout their mediated by kinetochores, which are large multiprotein complexes life cycle to meet some peculiar and unique challenges to DNA assembled on centromeres located at the constriction point of sister replication and chromosome segregation. The parasite undergoes chromatids (Cheeseman, 2014; McKinley and Cheeseman, 2016; atypical endomitosis and endoreduplication with an intact nuclear Musacchio and Desai, 2017; Vader and Musacchio, 2017). Each membrane and intranuclear mitotic spindle. To understand these diverse sister chromatid has its own kinetochore, oriented to facilitate modes of Plasmodium cell division, we have studied the behaviour movement to opposite poles of the spindle apparatus. During and composition of the outer kinetochore NDC80 complex, a key part of anaphase, the spindle elongates and the sister chromatids separate, the mitotic apparatus that attaches the centromere of chromosomes to resulting in segregation of the two genomes during telophase.
    [Show full text]
  • Aspergillus Nidulans
    RECESSIVE MUTANTS AT UNLINKED LOCI WHICH COMPLEMENT IN DIPLOIDS BUT NOT IN HETEROKARYONS OF ASPERGILLUS NIDULANS DAVID APIRION’ Department of Genetics, The University, Glasgow, Scotland Received January 10, 1966 HE fungus Aspergillus nidulans, like some other fungi, offers the opportunity comparing the interaction between genes when they are in the same nucleus (diploid condition) or in different nuclei sharing the same cytoplasm (heterokaryotic condition-in a heterokaryon each cell contains many nuclei from two different origins). Differences between the phenotypes produced by an identical genotype in these different cellular organizations were expected on general grounds (PONTECORVO1950), and soon after it was possible to obtain heterozygous diploids of Aspergillus (ROPER1952) the first example of such a difference was found (PONTECORVO1952, pp. 228-229). Thus far, differences between heterozygous diploids and heterokaryons which have the same genetical constitution have been reported in only eight cases. (For reviews, see PONTECORVO1963; and ROBERTS1964.) The usual test is a compari- son of complementation between two recessive mutants when they are in the heterozygous diploid and in the corresponding heterokaryon. In most instances, only one or a few mutants were tested. In the case of three suppressor loci for a methionine requirement in Coprinus lagopus (LEWIS 1961 and unpublished results), some but not all combinations of mutants in different suppressor loci showed discrepancies when their phenotypes were compared in the dikaryon and the corresponding diploid. (In a dikaryon each cell contains only two nuclei, each from a different origin.) This paper deals with intergenic complementation among recessive mutants which complement in the heterozygous diploid but not in the corresponding heterokaryon.
    [Show full text]
  • Substrate and Cell Fusion Influence on Slime Mold Network Dynamics
    www.nature.com/scientificreports OPEN Substrate and cell fusion infuence on slime mold network dynamics Fernando Patino‑Ramirez1*, Chloé Arson1,3 & Audrey Dussutour2,3* The acellular slime mold Physarum polycephalum provides an excellent model to study network formation, as its network is remodelled constantly in response to mass gain/loss and environmental conditions. How slime molds networks are built and fuse to allow for efcient exploration and adaptation to environmental conditions is still not fully understood. Here, we characterize the network organization of slime molds exploring homogeneous neutral, nutritive and adverse environments. We developed a fully automated image analysis method to extract the network topology and followed the slime molds before and after fusion. Our results show that: (1) slime molds build sparse networks with thin veins in a neutral environment and more compact networks with thicker veins in a nutritive or adverse environment; (2) slime molds construct long, efcient and resilient networks in neutral and adverse environments, whereas in nutritive environments, they build shorter and more centralized networks; and (3) slime molds fuse rapidly and establish multiple connections with their clone‑mates in a neutral environment, whereas they display a late fusion with fewer connections in an adverse environment. Our study demonstrates that slime mold networks evolve continuously via pruning and reinforcement, adapting to diferent environmental conditions. Transportation networks where fuids are transported from one point of the network to another are ubiquitous in nature. Vascular networks in animals, plants, fungi and slime molds are commonly cited examples of such natural transportation networks. Tese networks are ofen studied as static architectures, although most of them have the ability to alter their morphology in space and time in response to environmental conditions1.
    [Show full text]
  • S41598-020-68694-9.Pdf
    www.nature.com/scientificreports OPEN Delayed cytokinesis generates multinuclearity and potential advantages in the amoeba Acanthamoeba castellanii Nef strain Théo Quinet1, Ascel Samba‑Louaka2, Yann Héchard2, Karine Van Doninck1 & Charles Van der Henst1,3,4,5* Multinuclearity is a widespread phenomenon across the living world, yet how it is achieved, and the potential related advantages, are not systematically understood. In this study, we investigate multinuclearity in amoebae. We observe that non‑adherent amoebae are giant multinucleate cells compared to adherent ones. The cells solve their multinuclearity by a stretchy cytokinesis process with cytosolic bridge formation when adherence resumes. After initial adhesion to a new substrate, the progeny of the multinucleate cells is more numerous than the sibling cells generated from uninucleate amoebae. Hence, multinucleate amoebae show an advantage for population growth when the number of cells is quantifed over time. Multiple nuclei per cell are observed in diferent amoeba species, and the lack of adhesion induces multinuclearity in diverse protists such as Acanthamoeba castellanii, Vermamoeba vermiformis, Naegleria gruberi and Hartmannella rhysodes. In this study, we observe that agitation induces a cytokinesis delay, which promotes multinuclearity. Hence, we propose the hypothesis that multinuclearity represents a physiological adaptation under non‑adherent conditions that can lead to biologically relevant advantages. Te canonical view of eukaryotic cells is usually illustrated by an uninucleate organization. However, in the liv- ing world, cells harbouring multiple nuclei are common. Tis multinuclearity can have diferent origins, being either generated (i) by fusion events between uninucleate cells or by (ii) uninucleate cells that replicate their DNA content without cytokinesis.
    [Show full text]
  • Cilia and Flagella of Eukaryotes
    Cilia and Flagella of Eukaryotes I . R . GIBBONS The simple description that cilia are "contractile protoplasm in Early Developments its simplest form" (Dellinger, 1909) has fallen away as a mean- Among the most notable steps in the history of early studies ingless phrase ... A cilium is manifestly a highly complex and Downloaded from http://rupress.org/jcb/article-pdf/91/3/107s/1075481/107s.pdf by guest on 26 September 2021 compound organ, and . morphological description is clearly on cilia and flagella were the initial light microscope observa- only a beginning . tions of beating cilia on ciliated protozoa by Anton van Leeu- Irene Manton, 1952 wenhoek in 1675 ; the hypothesis proposed by W . Sharpey in 1835 that cilia and flagella are active organelles moved by contractile material distributed along their length rather than As recognized by Irene Manton (1) at the time that the basic passive structures moved by cytoplasmic flow or other contrac- 9 + 2 structural uniformity of cilia and most eukaryotic flagella tile activity within the cell body; and the observation in 1888- was first becoming recognized, these organelles are sufficiently 1890 by E . Ballowitz (2) that sperm flagella contain a substruc- complex that knowledge of their structure, no matter how ture of about 9-11 fine fibrils which are continuous along the detailed, cannot provide an understanding of their mechanisms length of the flagellum (Fig . 1) . More detailed accounts with of growth and function . In our understanding of these mecha- full references to this early work and to other studies before nisms, the substantial advances of the intervening 28 years 1948 can be found in the monographs of Sir James Gray (3) have, for the most part, resulted from experiments in which it and Michael Sleigh (4) .
    [Show full text]
  • Nuclear and Genome Dynamics in Multinucleate Ascomycete Fungi
    Current Biology 21, R786–R793, September 27, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2011.06.042 Nuclear and Genome Dynamics Review in Multinucleate Ascomycete Fungi Marcus Roper1,2, Chris Ellison3, John W. Taylor3, to enhance phenotypic plasticity [5] and is also thought to and N. Louise Glass3,* contribute to fungal virulence [6–8]. Recent and ongoing work reveals two fundamental chal- lenges of multinucleate fungal lifestyles, both in the presence Genetic variation between individuals is essential to evolu- and absence of genotypic diversity — namely, the coordina- tion and adaptation. However, intra-organismic genetic tion of populations of nuclei for growth and other behaviors, variation also shapes the life histories of many organisms, and the suppression of nucleotypic competition during including filamentous fungi. A single fungal syncytium can reproduction and dispersal. The potential for a mycelium to harbor thousands or millions of mobile and potentially harbor fluctuating proportions and distributions of multiple genotypically different nuclei, each having the capacity genotypes led some 20th century mycologists to argue for to regenerate a new organism. Because the dispersal of life-history models that focused on nuclei as the unit of asexual or sexual spores propagates individual nuclei in selection, and on the role of nuclear cooperation and compe- many of these species, selection acting at the level of tition in shaping mycelium growth and behavior [9,10].In nuclei creates the potential for competitive and coopera- particular, nuclear totipotency creates potential for conflict tive genome dynamics. Recent work in Neurospora crassa between heterogeneous nuclear populations within a myce- and Sclerotinia sclerotiorum has illuminated how nuclear lium [11,12].
    [Show full text]
  • Roles for IFT172 and Primary Cilia in Cell Migration, Cell Division, and Neocortex Development
    fcell-07-00287 November 26, 2019 Time: 12:22 # 1 ORIGINAL RESEARCH published: 26 November 2019 doi: 10.3389/fcell.2019.00287 Roles for IFT172 and Primary Cilia in Cell Migration, Cell Division, and Neocortex Development Michal Pruski1,2,3,4,5†‡, Ling Hu3,5†, Cuiping Yang4, Yubing Wang4, Jin-Bao Zhang6, Lei Zhang4,5, Ying Huang3,4,5, Ann M. Rajnicek5, David St Clair5, Colin D. McCaig5, Bing Lang1,2,5* and Yu-Qiang Ding3,4* Edited by: 1 Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China, 2 National Clinical Eiman Aleem, Research Center for Mental Disorders, Changsha, China, 3 State Key Laboratory of Medical Neurobiology and MOE The University of Arizona, Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China, 4 Key Laboratory United States of Arrhythmias, Ministry of Education, East Hospital, Department of Anatomy and Neurobiology, Collaborative Innovation Reviewed by: Centre for Brain Science, Tongji University School of Medicine, Shanghai, China, 5 School of Medicine, Medical Sciences Surya Nauli, and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom, 6 Department of Histology University of California, Irvine, and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, China United States Andrew Paul Jarman, The University of Edinburgh, The cilium of a cell translates varied extracellular cues into intracellular signals that United Kingdom control embryonic development and organ function. The dynamic maintenance of *Correspondence: ciliary structure and function requires balanced bidirectional cargo transport involving Bing Lang intraflagellar transport (IFT) complexes. IFT172 is a member of the IFT complex B, and [email protected] Yu-Qiang Ding IFT172 mutation is associated with pathologies including short rib thoracic dysplasia, [email protected] retinitis pigmentosa and Bardet-Biedl syndrome, but how it underpins these conditions † These authors have contributed is not clear.
    [Show full text]