Thoroughly Modern Mctaggart Change; And, Second, That Genuine Change Requires Becoming

Total Page:16

File Type:pdf, Size:1020Kb

Thoroughly Modern Mctaggart Change; And, Second, That Genuine Change Requires Becoming 1 Introduction There are two traditions in the philosophy of time that, while op- posing one another, are locked in a mutual embrace. The embrace is cemented by two shared assumptions: first, that time presupposes Thoroughly Modern McTaggart change; and, second, that genuine change requires Becoming. Both traditions have ancient roots. One, which takes its inspiration from Parmenides, denies the reality of change and time by rejecting Be- coming; the other, which can be traced to Aristotle, upholds the real- Or ity of change and time by claiming to find Becoming at work in the What McTaggart Would Have Said If He world. What complicates an already complex discussion is that there are at least two distinct senses of Becoming in play. One sense is ex- Had Read the General Theory of Relativity emplified in McTaggart’s (1908, 1927) infamous A-series, in which events are ordered as to past, present, and future. In capsule form, McTaggart’s argument for neo-Parmenideanism goes as follows: (P1) There must be real change if there is to be time. (P2) There must be temporal passage (i.e. a continual change in John Earman events of the non-relational properties of presentness, past- ness, and futurity) if there is to be real change. (P3) Temporal passage is incoherent. (C) Therefore, time is unreal. While the majority of philosophers agree with McTaggart’s (P3), there is a significant minority that finds his alleged demonstration of the incoherency of the A-series less than convincing.1 McTaggart’s brand of Becoming is property-based: that an event becomes present means for him that it loses the (non-relational) Philosophers’ Imprint property of futurity and takes on the (non-relational) property of <http://www.philosophersimprint.org/002003/> nowness. A non-property-based form of Becoming was articulated Vol. 2 No. 3 in modern form by C. D. Broad (1923) and has been championed August 2002 1 (c) John Earman 2002 See, for example, Savitt (2001a) and the exchange between Smith and Oak- lander, Essays 14-18, in Oaklander and Smith (1994). John Earman Thoroughly Modern McTaggart more recently by Michael Tooley (1997). Both Broad and Tooley both of the venerable traditions alluded to above: let them remain subscribe to a form of Aristotle’s doctrine that the future is unreal locked in their mutual embrace of Becoming and sink from view and/or does not exist and that events become real by coming into into the metaphysical mire. Becoming, in either McTaggart’s sense existence. If we follow convention and call a universe stripped of or Broad’s sense, is part of the manifest image. The scientific image its A-series properties a block universe, then what Broad and Tooley knows nothing of either, and yet science does describe a rich and present us with can be called a dynamic or growing block universe robust sense of change.3 Relinquishing the A-series and eschewing that continually adds new layers of existence. As Broad put it: the metaphor of the piling up of thin slices of existence leaves what has been called the non-dynamic block universe in which events are Nothing has happened to the present by becoming past except that fresh slices of existence have been added to the total history of the ordered only by the earlier-than relation (a.k.a. the B-series). To world. The past is thus as real as the present. On the other hand, be sure, the non-dynamic block universe is itself unanimated; but the essence of a present event is, not that it precedes future events, (to quote Savitt (2001b)) to have a picture of animation, one doesn’t but that there is quite literally nothing to which it has the relation of precedence. The sum total of existence is always increasing, and have to provide an animated picture. The animation that is pictured it is that which gives the time-series a sense as well as an order. A is B-series change–at different moments of time different proper- moment t is later than a moment t0 if the sum total of existence at ties are instantiated, the instantiation of all of which at any single t includes the sum total of existence at t0 together with something more. ... [W]hen an event becomes, it comes into existence; and moment of time would be contradictory. it was not anything at all until it had become. ... Whatever is has Needless to say, the adequacy of the B-series account of change become, and the sum total of existence is continually augmented by needs to be defended against a number of objections, but the de- becoming. (1923, 66-69) fense will not be mounted here.4 For present purposes I can as- Although the text of Gödel’s (1949) essay “A Remark About the Re- sume that this account of change is adequate, for my main aim is lationship Between Relativity Theory and Idealistic Philosophy” is to call to the attention of philosophers the fact that coupling this open to various interpretations, a plausible reading sees Gödel as at- assumption to one of the fundamental theories of modern physics– tempting to derive the ideality of time by coupling an acceptance of Einstein’s general theory of relativity (GTR)–revives McTaggart’s Becoming in Broad’s sense as a necessary condition for real change worries. For GTR–appropriately interpreted–seems to imply that, if with the claim that Einstein’s special and general theories of relativ- the B-series account of change is accepted, then there is no physical ity are incompatible with this sense of Becoming.2 change since–under the appropriate interpretation–GTR implies that The issues surrounding change and Becoming are revisited over no genuine physical magnitude takes on different values at differ- and over again in the philosophical literature, with each generation 3 adding new layers of wisdom. Since I do not aim to contribute to This cavalier attitude glosses over the problem of reconciling the manifest and scientific images; in particular, the problem of how science, if it eschews Be- this literature, I will take a cavalier and callous attitude towards coming, can give an adequate account of the phenomenology of experience which does involve a transient ‘now’. See Shimony (1993). 2For various interpretations and evaluations of Gödel’s argument, see Earman 4The most thoroughgoing defense of the B-series conception of change is to (1995, Ch. 6), Yourgrau (1991, 1999), and Belot (2001). be found in Mellor (1981, 1998). 2 John Earman Thoroughly Modern McTaggart ent times. This implication naturally raises the question of whether sting of this reaction can be drawn by showing both that it does not McTaggart’s conclusion that time is unreal can be avoided in GTR. entail McTaggart’s conclusion of the unreality of time and that it is The plan of the paper is as follows. In section 2 I discuss the compatible with preserving much of the common sense talk about logic of B-series change. The application of this logic to the actual change, albeit in an altered form. My conclusions are presented in universe, as described by textbook versions of GTR, seems to con- section 12. I emphasize especially that these issues are not merely firm the common sense conclusion that there is change in the world. playthings of academic philosophers since the stance taken on them In section 3 we meet modern McTaggart who accepts the B-series influences the direction of current research in physics. account of change but who rejects the common sense conclusion on the grounds that it rests on taking the surface structure of GTR too literally and that B-series change disappears in the deep structure 2 The logic and existence of B-series change of the theory. Section 4 describes in detail the considerations that On the B-series conception of change, change and the Heraclitean appear to support modern McTaggart’s claim that in the deep struc- role of time go hand in hand: the different moments of time sep- ture of GTR the dynamics is “frozen,” wherein all genuine physical magnitudes or “observables” are “constants of the motion.” Since arate what would otherwise be contradictories, transforming them into the temporal alteration that constitutes real change. There are familiar physical quantities do not count as observables in GTR, one must ask what the observables of the theory are and how they can be two ways to understand how time performs its Heraclitean function– the temporal stage view and the relational view.5 According to the used to express the results of observation and measurement. These first, if Jeremy changes from slim to portly, it is because of the matters are taken up in section 5. Section 6 is devoted to some stock taking. I indicate why GTR does not imply a flat-out no change conjunction of three facts: Jeremy is composed of temporal parts, Jeremy-at-t for variable t; Jeremy-at-t is slim; and Jeremy-at-t is view: it is compatible with an ontology consisting of a time ordered 1 2 t < t series of occurrences or events, with different occurrences or events portly, where 1 2. It is crucial, of course, that the temporal occupying different positions in the series. But GTR does not, I stages are stages of the same continuant. But even with this proviso in place, some philosophers remain unsatisfied. Thus, Mellor once claim, sanction an interpretation of this D-series (as I dub it) that restores B-series or property change. Section 7 contains a digres- complained that “different entities differing in their properties do not amount to change even when ..
Recommended publications
  • 2008. Pruning Some Branches from 'Branching Spacetimes'
    CHAPTER 10 Pruning Some Branches from “Branching Spacetimes” John Earman* Abstract Discussions of branching time and branching spacetime have become com- mon in the philosophical literature. If properly understood, these concep- tions can be harmless. But they are sometimes used in the service of debat- able and even downright pernicious doctrines. The purpose of this chapter is to identify the pernicious branching and prune it back. 1. INTRODUCTION Talk of “branching time” and “branching spacetime” is wide spread in the philo- sophical literature. Such expressions, if properly understood, can be innocuous. But they are sometimes used in the service of debatable and even downright per- nicious doctrines. The purpose of this paper is to identify the pernicious branching and prune it back. Section 2 distinguishes three types of spacetime branching: individual branch- ing, ensemble branching, and Belnap branching. Individual branching, as the name indicates, involves a branching structure in individual spacetime models. It is argued that such branching is neither necessary nor sufficient for indeterminism, which is explicated in terms of the branching in the ensemble of spacetime mod- els satisfying the laws of physics. Belnap branching refers to the sort of branching used by the Belnap school of branching spacetimes. An attempt is made to sit- uate this sort of branching with respect to ensemble branching and individual branching. Section 3 is a sustained critique of various ways of trying to imple- ment individual branching for relativistic spacetimes. Conclusions are given in Section 4. * Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, USA The Ontology of Spacetime II © Elsevier BV ISSN 1871-1774, DOI: 10.1016/S1871-1774(08)00010-7 All rights reserved 187 188 Pruning Some Branches from “Branching Spacetimes” 2.
    [Show full text]
  • Terminator and Philosophy
    ftoc.indd viii 3/2/09 10:29:19 AM TERMINATOR AND PHILOSOPHY ffirs.indd i 3/2/09 10:23:40 AM The Blackwell Philosophy and Pop Culture Series Series Editor: William Irwin South Park and Philosophy Edited by Robert Arp Metallica and Philosophy Edited by William Irwin Family Guy and Philosophy Edited by J. Jeremy Wisnewski The Daily Show and Philosophy Edited by Jason Holt Lost and Philosophy Edited by Sharon Kaye 24 and Philosophy Edited by Richard Davis, Jennifer Hart Weed, and Ronald Weed Battlestar Galactica and Philosophy Edited by Jason T. Eberl The Offi ce and Philosophy Edited by J. Jeremy Wisnewski Batman and Philosophy Edited by Mark D. White and Robert Arp House and Philosophy Edited by Henry Jacoby Watchmen and Philosophy Edited by Mark D. White X-Men and Philosophy Edited by Rebecca Housel and J. Jeremy Wisnewski ffirs.indd ii 3/2/09 10:23:40 AM TERMINATOR AND PHILOSOPHY I'LL BE BACK, THEREFORE I AM Edited by Richard Brown and Kevin S. Decker John Wiley & Sons, Inc. ffirs.indd iii 3/2/09 10:23:41 AM This book is printed on acid-free paper. Copyright © 2009 by John Wiley & Sons. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or trans- mitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com.
    [Show full text]
  • Mind the Gap a Cognitive Perspective on the flow of Time in Physics
    Mind the Gap A cognitive perspective on the flow of time in physics Master's Thesis History and Philosophy of Science Supervisor: Prof. dr. Dennis Dieks Utrecht University August 16th 2009 Annemarie Hagenaars Lange Hilleweg 31b 3073 BH Rotterdam Student number: 3203808 Preface The image on the title page of my thesis is The Persistence of Memory (1931), which is the most famous painting by Salvador Dali. This painting captures many standard issues that relate to time: relativity theory, clocks, memory, and the flow of time. This thesis is about the flow of time. As time moves on and never stops, so will the philosophical and scientific research on its flow be incomplete forever. Never in my life has time flown by as fast as it did this last year of my master's research. So many questions remain unanswered; so much works still needs to be done, while the months were passing like weeks and the weeks were passing like days. One year is too short, to dive into the fascinating river of time. To me it feels like this thesis is a first survey of the possibilities within the field of the philosophy of time. Time's passage has been a source of interest for quite a long time. When I was a child I kept diaries and memo-books to write down what happened each day in the hope I wouldn't forget it. Nowadays it is still a favorite game to exactly remember the date and time of special happenings and pinpoint those on my personal time line in my mind.
    [Show full text]
  • Lost in the Tensors: Einstein's Struggles with Covariance Principles 1912-1916"
    JOHN EARMAN and CLARK GL YMOUR LOST IN THE TENSORS: EINSTEIN'S STRUGGLES WITH COVARIANCE PRINCIPLES 1912-1916" Introduction IN 1912 Einstein began to devote a major portion of his time and energy to an attempt to construct a relativistic theory of gravitation. A strong intimation of the struggle that lay ahead is contained in a letter to Arnold Sommerfeld dated October 29, 1912: At the moment I am working solely on the problem of gravitation and believe 1 will be able to overcome all difficulties with the help of a local, friendly mathemat- ician. But one thing is certain, that I have never worked so hard in my life, and that I have been injected with a great awe of mathematics, which in my naivet~ until now I only viewed as a pure luxury in its subtler forms! Compared to this problem the original theory of relativity is mere child's play.' Einstein's letter contained only a perfunctory reply to a query from Sommerfeld about the Debye-Born theory of specific heats. Obviously disappointed, Som- merfeld wrote to Hilbert: 'My letter to Einstein was in vain . Einstein is evidently so deeply mired in gravitation that he is deaf to everything else? Sommerfeld's words were more prophetic than he could possibly have known; the next three years were to see Einstein deeply mired in gravitation, sometimes seemingly hopelessly so. In large measure, Einstein's struggle resulted from his use and his misuse, his understanding and his misunderstanding of the nature and implications of covariance principles. In brief, considerations of general covariance were bound up with Einstein's motive for seeking a 'generalized' theory of relativity; mis- understandings about the meaning and implementation of this motivation threatened to wreck the search; and in the end, the desire for general covariance helped to bring Einstein back onto the track which led to what we now recognize *Present address c/o Department of Philosophy, University of Minnesota, Minneapolis, Minn, U.S.A.
    [Show full text]
  • The Quantum Mechanics of the Present
    The quantum mechanics of the present Lee Smolina and Clelia Verdeb a Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2J 2Y5, Canada and Department of Physics and Astronomy, University of Waterloo and Department of Philosophy, University of Toronto bCorso Concordia, 20129 - Milano April 21, 2021 Abstract We propose a reformulation of quantum mechanics in which the distinction be- tween definite and indefinite becomes the fundamental primitive. Inspired by suggestions of Heisenberg, Schrodinger and Dyson that the past can’t be described in terms of wavefunctions and operators, so that the uncertainty prin- ciple does not apply to past events, we propose that the distinction between past, present and future is derivative of the fundamental distinction between indefinite and definite. arXiv:2104.09945v1 [quant-ph] 20 Apr 2021 We then outline a novel form of presentism based on a phenomonology of events, where an event is defined as an instance of transition between indefinite and definite. Neither the past nor the future fully exist, but for different reasons. We finally suggest reformulating physics in terms of a new class of time coordinates in which the present time of a future event measures a countdown to the present moment in which that event will happen. 1 Contents 1 Introduction 2 2 Constructions of space and time 3 3 A phenomonology of present events 4 3.1 Thedefiniteandtheindefinite. .... 5 3.2 Thepast ....................................... 6 3.3 Thefuture ...................................... 6 3.4 Causalitywithoutdeterminism . ..... 7 4 Thequantummechanicsofdefiniteandindefinite 7 5 Theframeofreferenceforanobserverinapresentmoment 10 6 Closing remarks 11 1 Introduction The idea we will discuss here has arisin from time to time since the invention of quan- tum mechanics.
    [Show full text]
  • Lawrence Sklar
    LAWRENCE SKLAR Born: June 25, 1938 in Baltimore, MD Married to: Elizabeth S. Sklar; one child Education Oberlin College, B.A., 1958 Princeton University, M.A., 1960; Ph.D., 1964 Fellowships, Awards and National Offices Held Undergraduate Ford Foundation Early Admission Scholarship Honors List (all years) Phi Beta Kappa (elected in junior year) Sigma Xi (associate member) Graduate Woodrow Wilson Fellowship, 1959-60 Chancellor Green Fellowship, 1960-61 Charlotte Elizabeth Proctor Advanced Fellowship (awarded to top ten students in third year graduate class), 1961-62 National Science Foundation Cooperative Fellowship, 1962-63 Post-Graduate American Council of Learned Societies Study Fellowship (held at Oxford University), 1965-66 John Simon Guggenheim Memorial Foundation Fellowship, 1974-75 Franklin J. Matchette Prize. Awarded by the American Philosophical Association to Space, Time, and Spacetime as outstanding philosophical book of 1973 and 1974 National Science Foundation Research Grants, 1977-78, 1979-80, 1982, 1984-85, 1986-87, 1988-89, 1998-2001, 2002-03 Rackham Foundation Summer Research Fellowship, 1983, 1994 2 Nelson Fellow, Philosophy Department, University of Michigan, l991-l994, 1995- James B. and Grace J. Nelson Professorship, Philosophy Department, University of Michigan, 1994-95 National Endowment for the Humanities Fellowship, 1995-96 Faculty Recognition Award, University of Michigan, 1995-98 William K. Frankena Collegiate Professorship, University of Michigan, 1995-2002 Lakatos Award. Awarded to Physics and Chance as outstanding book in the philosophy of science for 1995. Physics and Chance selected by Choice Magazine as Outstanding Academic Book in philosophy of science for 1995 Fellow, American Academy of Arts and Sciences John Locke Lectureship in Philosophy, 1998, Oxford University Visiting Fellowship, All Souls College, Oxford University, 1998 Michigan Humanities Award, 1998-99.
    [Show full text]
  • Determinism and General Relativity
    Determinism and General Relativity Chris Smeenk and Christian W¨uthrich∗ 16 September 2020 Abstract We investigate the fate of determinism in general relativity (GR), comparing the philosopher's account with the physicist's well-posed initial value formulations. The fate of determinism is interwoven with the question of what it is for a spacetime to be `physically reasonable'. A central concern is the status of global hyperbolicity, a putatively necessary condition for determinism in GR. While global hyperbolicity may fail to be true of all physically reasonable models, we analyze whether global hyperbolicity should be (i) imposed by fiat; (ii) established from weaker assumptions, as in cosmic censorship theorems; or (iii) justified by beyond-GR physics. 1 Introduction Two foundational questions one might ask about any physical theory bring out particularly subtle and interesting features of general relativity (GR). First, is GR a deterministic theory? Second, do all mathematical models of the theory represent physically possible spacetimes? There is a tight connection in GR between these two questions, i.e., between an assessment of what spacetimes are physically possible or reasonable and of whether determinism holds. It is this connection that we explore in this essay. Determinism holds if specifying the state of a system uniquely fixes its dynamical evolution. Spacetimes with exotic causal structure raise a distinctive set of questions regarding the status of determinism in GR, differing from those raised by the (in)famous hole argument. Below we will bypass the hole argument by assuming that the existence of a unique solution `up to diffeomor- phism invariance' is sufficient for determinism in GR.
    [Show full text]
  • KRITERION | Journal of Philosophy
    KRITERION JOURNAL OF PHILOSOPHY Volume 30, Issue 2 2016 Special issue: New Developments in Philosophy of Time Guest edited by Florian Fischer Florian Fischer: Philosophy of time: A slightly opinionated intro- duction ............................................................3 Jesse M. Mulder: Defining Original Presentism . 29 Florian Fischer: Carnap's Logic of Science and Reference to the Present Moment ..............................................61 Cord Friebe: Time Order, Time Direction, and the Presentist's View on Spacetime ................................................91 Sonja Deppe: The Mind-Dependence of the Relational Structure of Time (or: What Henri Bergson Would Say to B-theorists) . 107 Pamela Zinn: Lucretius On Time and Its Perception . .125 EDITORIAL KRITERION { Journal of Philosophy is a forum for contributions in any field of analytic philosophy. We welcome submissions of previously unpublished papers, not under consideration for publication anywhere else. Submissions are reviewed in double-blind peer review mode. Con- tributions should meet the following conditions: (1) The content must be philosophical. (2) The language must be intelligible to a broader readership. (3) The contribution must contain a traceable argumentation. The length should be between 4000 and 8000 words. Only contributions in English (preferred) and German are accepted. IMPRESSUM Editors-in-Chief: Christian J. Feldbacher-Escamilla, Alexander Gebharter Editorial Board: Albert J. J. Anglberger, Laurenz Hudetz, Christine Schurz, Christian Wallmann Address: Franziskanergasse 1, 5020 Salzburg, Austria. E-Mail: [email protected] Web: http://www.kriterion-journal-of-philosophy.org Indexing: KRITERION { Journal of Philosophy is indexed and abstracted by The Philosopher's Index and EBSCOhost Humanities Source. Infor- mation about the journal's ranking is available at SJR. The journal was also approved of satisfying the ERIH (European Reference Index for the Humanities) criteria: ERIH PLUS.
    [Show full text]
  • Forthcoming in Time and Identity: Topics in Contemporary Philosophy
    Time and Identity: Topics in Contemporary Philosophy, Vol. 6, Michael O’Rourke, Joseph Campbell, and Harry Silverstein, eds. (Cambridge MA: MIT Press, 2009). Temporal Reality Lynne Rudder Baker University of Massachusetts Amherst Nonphilosophers, if they think of philosophy at all, wonder why people work in metaphysics. After all, metaphysics, as Auden once said of poetry, makes nothing happen.1 Yet some very intelligent people are driven to spend their lives exploring metaphysical theses. Part of what motivates metaphysicians is the appeal of grizzly puzzles (like the paradox of the heap or the puzzle of the ship of Theseus). But the main reason to work in metaphysics, for me at least, is to understand the shared world that we all encounter and interact with. And the shared world that we all encounter includes us self-conscious beings and our experience. The world that we inhabit is unavoidably a temporal world: the signing of the Declaration of Independence is later than the Lisbon earthquake; the Cold War is in the past; your death is in the future. There is no getting away from time. The ontology of time is currently dominated by two theories: Presentism, according to which “only currently existing objects are real,”2 and Eternalism, according to which “past and future objects and times are just as real as currently existing ones.”3 In my opinion, neither Presentism nor Eternalism yields a satisfactory ontology of time. Presentism seems both implausible on its face and in conflict with the Special Theory of Relativity, and Eternalism gives us no handle on time as universally experienced in terms of an ongoing now.
    [Show full text]
  • Indeterminism Is a Modal Notion: Branching Spacetimes and Earman’S Pruning
    Indeterminism is a modal notion: branching spacetimes and Earman’s pruning Tomasz Placek and Nuel Belnap Contents 1 Three types of branching 4 1.1 Ensemble and individual branching defined . 5 1.2 BST branching . 6 2 BT/BST branching 8 2.1 BST: Our World and its point events . 8 2.2 BST: histories . 9 2.3 BST: axioms . 10 2.4 BST: space-like relatedness . 10 2.5 BST: modal thickness and thinness . 10 2.6 BST: applications . 11 2.7 Spatiotemporal locations . 12 3 Physically-motivated BST models 13 3.1 Minkowskian Branching Structures . 13 3.2 Defining MBS’s . 18 3.3 Takingstock............................ 22 3.4 Historical remarks . 23 4 Further replies to Earman 24 4.1 BST: Hausdorffproperty..................... 24 4.2 The thin red line . 31 4.3 Semantic rule (R)......................... 33 4.4 Past/future asymmetry . 35 5 Indeterminism 37 1 6 Final 40 2 Abstract The paper defends an Aristotelian notion of indeterminism, as rig- orously formulated in the framework of branching space-times (BST) of Belnap (1992), against criticism by Earman (2008) based on a model-theoretic characterization of indeterminism. It delineates BST branching against the background provided by Earman’s (2008) dis- tinction between individual vs. ensemble branching. Partly in order to motivate our responses to Earman, it describes a construction of physically-motivated BST models, in which histories are isomorphic to Minkowski spacetime. Finally it responds to Earman’s criticisms leveled against BST by addressing a topological issue, the question of an actual future, the past/future asymmetry, and some semantical questions.
    [Show full text]
  • Aspects of Determinism in Modern Physics
    ASPECTS OF DETERMINISM IN MODERN PHYSICS John Earman 1 INTRODUCTION The aims of this chapter are to review some aspects of determinism that are famil- iar to physicists but are little discussed in the philosophical literature and to show how these aspects connect determinism to issues about symmetries in physics, the structure and ontological status of spacetime, predictability, and computability.1 It will emerge that in some respects determinism is a robust doctrine and is quite hard to kill, while in other respects it is fragile and requires various enabling as- sumptions to give it a fighting chance. It will also be seen that determinism is far from a dead issue. Whether or not ordinary non-relativistic quantum mechanics (QM) admits a viable deterministic underpinning is still a matter of debate. Less well known is the fact that in some cases QM turns out to be more deterministic than its classical counterpart. Quantum field theory (QFT) assumes determinism, at least at the classical level, in order to construct the field algebra of quantum observables. Determinism is at the heart of the cosmic censorship hypothesis, the most important unsolved issue in classical general relativity theory (GTR). And issues about the nature and status of determinism lie at the heart of key foundation issues in the search for a theory of quantum gravity. 2 PRELIMINARIES 2.1 The metaphysics of determinism The proposal is to begin by getting a grip on the doctrine of determinism as it was understood pre-GTR and pre-QM, and then subsequently to try to understand how the doctrine has to be adjusted to accommodate these theories.
    [Show full text]
  • Intermediate Philosophy of Physics Reading List
    Intermediate Philosophy of Physics Reading List James Read [email protected] This is James Read’s reading list for the Finals paper, Intermediate Philosophy of Physics. If you have any questions, comments, or suggestions, please email me at the above address. 1 1 Special Relativity As preparation for the special relativity section of the paper, you might consider reading: (Warning: All of these books are stellar, but some of the later entries are very technical!) 1. N. David Mermin, It’s About Time: Understanding Einstein’s Relativity, Princeton: Prince- ton University Press, 2009. 2. Tim Maudlin, Philosophy of Physics Volume I: Space and Time, Princeton: Princeton Uni- versity Press, 2012. 3. Hans Reichenbach, The Philosophy of Space and Time, New York: Dover, 1957. 4. Harvey R. Brown, Physical Relativity: Spacetime Structure from a Dynamical Perspective, Oxford: Oxford University Press, 2005. 5. Roberto Torretti, Relativity and Geometry, New York: Dover, 1996. 6. Michael Friedman, Foundations of Space-Time Theories, Princeton: Princeton University Press, 1983. 2 1.1 Newton’s laws State Newton’s laws of motion and define all terms therein. How (if at all) do the laws depend upon one another? Do the laws together imply that Newtonian mechanics is Galilean invariant? Core reading 1. Herbert Pfister and Markus King, Inertia and Gravitation, Heidelberg: Springer, 2015. xx1.1-1.3. 2. Roberto Torretti, Relativity and Geometry, New York: Dover, 1996. Ch. 1. 3. Harvey R. Brown, Physical Relativity: Spacetime Structure from a Dynamical Perspective, Oxford: Oxford University Press, 2005. xx2.2, 3.1, 3.2. 4. Michael Friedman, Foundations of Space-Time Theories, Princeton, NJ: Princeton Univer- sity Press, 1983.
    [Show full text]