University of Florida Thesis Or Dissertation Formatting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Design Framework 3D Graphic Statics
Computational Design Framework for 3D Graphic Statics 3D Graphic for Computational Design Framework Computational Design Framework for 3D Graphic Statics Juney Lee Juney Lee Juney ETH Zurich • PhD Dissertation No. 25526 Diss. ETH No. 25526 DOI: 10.3929/ethz-b-000331210 Computational Design Framework for 3D Graphic Statics A thesis submitted to attain the degree of Doctor of Sciences of ETH Zurich (Dr. sc. ETH Zurich) presented by Juney Lee 2015 ITA Architecture & Technology Fellow Supervisor Prof. Dr. Philippe Block Technical supervisor Dr. Tom Van Mele Co-advisors Hon. D.Sc. William F. Baker Prof. Allan McRobie PhD defended on October 10th, 2018 Degree confirmed at the Department Conference on December 5th, 2018 Printed in June, 2019 For my parents who made me, for Dahmi who raised me, and for Seung-Jin who completed me. Acknowledgements I am forever indebted to the Block Research Group, which is truly greater than the sum of its diverse and talented individuals. The camaraderie, respect and support that every member of the group has for one another were paramount to the completion of this dissertation. I sincerely thank the current and former members of the group who accompanied me through this journey from close and afar. I will cherish the friendships I have made within the group for the rest of my life. I am tremendously thankful to the two leaders of the Block Research Group, Prof. Dr. Philippe Block and Dr. Tom Van Mele. This dissertation would not have been possible without my advisor Prof. Block and his relentless enthusiasm, creative vision and inspiring mentorship. -
Magneto-Luminescence Correlation in the Textbook Dysprosium(III
Magnetochemistry 2016, 2, 41; doi:10.3390/magnetochemistry2040041 S1 of S3 Supplementary Materials: Magneto‐Luminescence Correlation in the Textbook Dysprosium(III) Nitrate Single‐Ion Magnet Ekaterina Mamontova, Jérôme Long, Rute A. S. Ferreira, Alexandre M. P. Botas, Dominique Luneau, Yannick Guari, Luis D. Carlos and Joulia Larionova Table S1. Crystal and structure refinement data for compound 1. Compound 1 Formula DyH12N3O15 Formula weight 456.60 Temperature/K 293 Crystal system Triclinic Space group P‐1 a/Å 6.7429(8) b/Å 9.1094(9) c/Å 11.6502(11) α/° 70.369(9) β/° 88.714(9) γ/° 69.113(11) Volume/Å3 625.86(13) Z 2 Dc/g∙cm−3 2.4228 μ(Mo‐Kα)/mm−1 6.054 F(000) 414.2 Crystal size/mm 0.1 × 0.1 × 0.1 Crystal type Colourless plates range 3.25 to 29.29 −9 ≤ h ≤ 9 Index ranges −12 ≤ k ≤ 11 −14 ≤ l ≤ 14 Reflections collected 5351 Independent reflections 2879 (Rint = 0.0424) Data/parameters 2879/171 R1 = 0.0369 Final R indices [I > 2σ(I)]a,b wR2 = 0.0765 R1 = 0.0443 Final R indices (all data)a,b wR2 = 0.0848 Largest diff. peak and hole 1.18 and −1.64 eÅ−3 a b 2222 2 RFFF1 / ; wR2 w F F/ w F oc o oc o Magnetochemistry 2016, 2, 41 S2 of S3 Table S2. SHAPE analysis for compound 1. DP EPY OBPY PPR PAPR JBCCU JPCSAPR JMBIC JATDI JSPC SDD TD HD 33.818 23.117 17.902 9.556 14.372 11.933 4.385 8.791 17.518 2.204 6.675 6.077 10.278 DP, decagon; EPY, ennegonal pyramid; OBPY, octagonal pyramid; PPR, pentagonal prism; PAPR, pentagonal antiprism; JBCCU, bicapped cube; JPCSPAR, bicapped square antiprism; JMBIC, metabidiminished icosahedron; JATDI, augmented tridiminished icosahedron; JSPC, spherocorona; SDD, staggered dodecahedron; TD, tetradecahedron; HD, hexadecahedron. -
Article Published Under an ACS Authorchoice License, Which Permits Copying and Redistribution of the Article Or Any Adaptations for Non-Commercial Purposes
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article www.acsnano.org Standardizing Size- and Shape-Controlled Synthesis of Monodisperse Magnetite (Fe3O4) Nanocrystals by Identifying and Exploiting Effects of Organic Impurities † † † ‡ † † † § Liang Qiao, Zheng Fu, Ji Li, , John Ghosen, Ming Zeng, John Stebbins, Paras N. Prasad, † and Mark T. Swihart*, † § Department of Chemical and Biological Engineering and Institute for Lasers, Photonics, Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260, United States ‡ MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China *S Supporting Information ABSTRACT: Magnetite (Fe3O4) nanocrystals (MNCs) are among the most-studied magnetic nanomaterials, and many reports of solution-phase synthesis of monodisperse MNCs have been published. However, lack of reproducibility of MNC synthesis is a persistent problem, and the keys to producing monodisperse MNCs remain elusive. Here, we define and explore synthesis parameters in this system thoroughly to reveal their effects on the product MNCs. We demonstrate the essential role of benzaldehyde and benzyl benzoate produced by oxidation of benzyl ether, the solvent typically used for MNC synthesis, in producing mono- disperse MNCs. This insight allowed us to develop stable formulas for producing monodisperse MNCs and propose a model to rationalize MNC size and shape evolution. Solvent polarity controls the MNC size, while short ligands shift the morphology from octahedral to cubic. We demonstrate preparation of specific assemblies with these MNCs. -
Novel Magnetic Materials Based on Macrocyclic Ligands: Towards High Relaxivity Contrast Agents and Mononuclear Single-Molecule Magnets
Novel Magnetic Materials Based on Macrocyclic Ligands: Towards High Relaxivity Contrast Agents and Mononuclear Single-Molecule Magnets Emma Stares A thesis submitted to the Department of Chemistry in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Supervised by Professor Melanie Pilkington Brock University St. Catharines Ontario, Canada August 2015 © Emma Stares, 2015 Abstract The preparation and characterization of coordination complexes of Schiff-base and crown ether macrocycles is presented, for application as contrast agents for magnetic resonance imaging, Project 1; and single-molecule magnets (SMMs), Projects 2 and 3. II III In Project 1, a family of eight Mn and Gd complexes of N3X2 (X = NH, O) and N3O3 Schiff-base macrocycles were synthesized, characterized, and evaluated as potential contrast agents for MRI. In vitro and in vivo (rodent) studies indicate that the studied complexes display efficient contrast behaviour, negligible toxicity, and rapid excretion. III In Project 2, Dy complexes of Schiff-base macrocycles were prepared with a view to developing a new family of mononuclear Ln-SMMs with pseudo-D5h geometries. Each complex displayed slow relaxation of magnetization, with magnetically-derived energy barriers in the range Ueff = 4 – 24 K. In Project 3, coordination complexes of selected later lanthanides with various crown ether ligands were synthesized. Two families of complexes were structurally and magnetically analyzed: ‘axial’ or sandwich-type complexes based on 12-crown-4 and 15- crown-5; and ‘equatorial’ complexes based on 18-crown-6. Magnetic data are supported by ab initio calculations and luminescence measurements. Significantly, the first mononuclear Ln-SMM prepared from a crown ether ligand is described. -
Computer-Aided Design Disjointed Force Polyhedra
Computer-Aided Design 99 (2018) 11–28 Contents lists available at ScienceDirect Computer-Aided Design journal homepage: www.elsevier.com/locate/cad Disjointed force polyhedraI Juney Lee *, Tom Van Mele, Philippe Block ETH Zurich, Institute of Technology in Architecture, Block Research Group, Stefano-Franscini-Platz 1, HIB E 45, CH-8093 Zurich, Switzerland article info a b s t r a c t Article history: This paper presents a new computational framework for 3D graphic statics based on the concept of Received 3 November 2017 disjointed force polyhedra. At the core of this framework are the Extended Gaussian Image and area- Accepted 10 February 2018 pursuit algorithms, which allow more precise control of the face areas of force polyhedra, and conse- quently of the magnitudes and distributions of the forces within the structure. The explicit control of the Keywords: polyhedral face areas enables designers to implement more quantitative, force-driven constraints and it Three-dimensional graphic statics expands the range of 3D graphic statics applications beyond just shape explorations. The significance and Polyhedral reciprocal diagrams Extended Gaussian image potential of this new computational approach to 3D graphic statics is demonstrated through numerous Polyhedral reconstruction examples, which illustrate how the disjointed force polyhedra enable force-driven design explorations of Spatial equilibrium new structural typologies that were simply not realisable with previous implementations of 3D graphic Constrained form finding statics. ' 2018 Elsevier Ltd. All rights reserved. 1. Introduction such as constant-force trusses [6]. However, in 3D graphic statics using polyhedral reciprocal diagrams, the influence of changing Recent extensions of graphic statics to three dimensions have the geometry of the force polyhedra on the force magnitudes is shown how the static equilibrium of spatial systems of forces not as direct or intuitive. -
Chloranilate Frameworks Katherine Bondaruk and Carol Hua* School of Chemistry, the University of Melbourne, Parkville, Victoria, 3010, Australia
Electronic Supplementary Information for: The Effect of Counterions on the Formation and Structures of Ce(III) and Er(III) Chloranilate Frameworks Katherine Bondaruk and Carol Hua* School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia. *E-mail: [email protected] Table of Contents Table S1. Crystallographic parameters for the 2D (6,3) honeycomb frameworks obtained in this study..S2 Table S2. Crystallographic parameters for the 3D diamond frameworks obtained in this study ...............S3 + Table S3. Crystallographic parameters for frameworks containing PPh3Me obtained in this study.........S4 Table S4. Analysis of the possible coordination geometries using the SHAPE program for the 9- coordinate Ce(III) containing structures, compounds 1, 3 and 5.................................................................S5 Table S5. Analysis of the possible coordination geometries using the SHAPE program for the 8- coordinate Er(III) containing structures, compounds 2, 4 and 7. Where more than one unique Er(III) exists, the analysis is shown for each of the Er(III) centres. .......................................................................S6 Table S6. Analysis of the possible coordination geometries using the SHAPE program for the 9- coordinate Ce(III) centres in compound 6...................................................................................................S7 1-2 Figure S1. The (6,3) [Ce2(can)3(H2O)6] network in [Ce2(can)3(H2O)6]·12H2O ......................................S8 Figure S2. The 3D anionic framework, (DPMP)[Er(can)2] (4) with dia topology. ...................................S8 + + Figure S3. The calculated and experimental powder XRD patterns of 1 with Bu4N and Me4N cations. S9 + + Figure S4. The calculated and experimental powder XRD patterns of 2 with Bu4N and Me4N cations S9 Figure S5. The experimental and calculated powder XRD patterns of 3 .................................................S10 Figure S6. -
Volume 75 (2019)
Acta Cryst. (2019). B75, doi:10.1107/S2052520619010047 Supporting information Volume 75 (2019) Supporting information for article: Lanthanide coordination polymers based on designed bifunctional 2-(2,2′:6′,2″-terpyridin-4′-yl)benzenesulfonate ligand: syntheses, structural diversity and highly tunable emission Yi-Chen Hu, Chao Bai, Huai-Ming Hu, Chuan-Ti Li, Tian-Hua Zhang and Weisheng Liu Acta Cryst. (2019). B75, doi:10.1107/S2052520619010047 Supporting information, sup-1 Table S1 Continuous Shape Measures (CShMs) of the coordination geometry for Eu3+ ions in 1- Eu. Label Symmetry Shape 1-Eu EP-9 D9h Enneagon 33.439 OPY-9 C8v Octagonal pyramid 22.561 HBPY-9 D7h Heptagonal bipyramid 15.666 JTC-9 C3v Johnson triangular cupola J3 15.263 JCCU-9 C4v Capped cube J8 10.053 CCU-9 C4v Spherical-relaxed capped cube 9.010 JCSAPR-9 C4v Capped square antiprism J10 2.787 CSAPR-9 C4v Spherical capped square antiprism 1.930 JTCTPR-9 D3h Tricapped trigonal prism J51 3.621 TCTPR-9 D3h Spherical tricapped trigonal prism 2.612 JTDIC-9 C3v Tridiminished icosahedron J63 12.541 HH-9 C2v Hula-hoop 9.076 MFF-9 Cs Muffin 1.659 Acta Cryst. (2019). B75, doi:10.1107/S2052520619010047 Supporting information, sup-2 Table S2 Continuous Shape Measures (CShMs) of the coordination geometry for Ln3+ ions in 2- Er, 4-Tb, and 6-Eu. Label Symmetry Shape 2-Er 4-Tb 6-Eu Er1 Er2 OP-8 D8h Octagon 31.606 31.785 32.793 31.386 HPY-8 C7v Heptagonal pyramid 23.708 24.442 23.407 23.932 HBPY-8 D6h Hexagonal bipyramid 17.013 13.083 12.757 15.881 CU-8 Oh Cube 11.278 11.664 8.749 11.848 -
Supporting Information
Supporting Information Exploring the Slow Magnetic Relaxation of a Family of Photoluminescent 3D Lanthanide-Organic Frameworks Based on Dicarboxylate Ligands Itziar Oyarzabal, Sara Rojas, Ana D. Parejo, Alfonso Salinas-Castillo, José Ángel García, José M. Seco, Javier Cepeda and Antonio Rodríguez-Diéguez Index: 1. Powder X-ray Diffraction 2. Additional structural data 3. Interpretation of void content from SQUEEZE analysis 4. Continuous Shape Measures Calculations 5. Magnetic Properties 6. Luminescence Properties 1 S1. Powder X-ray Diffraction Table S1. Data of pattern-matching refinement of compound 2. Space group P-1 a (Å) 10.87(2) b(Å) 11.11(2) c(Å) 13.26(3) α (°) 105.28(2) β (°) 94.22(3) γ (°) 93.65(2) V/ Å3 1534(3) Figure S1. Pattern-matching analysis and crystalline parameters of the polycrystalline sample of compound 2. Table S2. Data of pattern-matching refinement of compound 3. Space group P-1 a (Å) 10.85(2) b(Å) 11.04(4) c(Å) 13.21(2) α (°) 105.01(2) β (°) 94.90(4) γ (°) 93.90(4) V/ Å3 1516(5) Figure S2. Pattern-matching analysis and crystalline parameters of the polycrystalline sample of compound 3. 2 Table S3. Data of pattern-matching refinement of compound 4. Space group P-1 a (Å) 10.86(2) b(Å) 11.03(4) c(Å) 13.20(2) α (°) 105.20(2) β (°) 94.38(4) γ (°) 93.75(4) V/ Å3 1515(5) Figure S3. Pattern-matching analysis and crystalline parameters of the polycrystalline sample of compound 4. 3 S2. -
2020 Color Guide Aluminum Powder Coat Colors
ALUMINUM SHADE SOLUTIONS FOR DOORS & WINDOWS Mix and match styles and colors for effective, durable, attractive shade. FABRIC SHADE SOLUTIONS FOR DOORS & WINDOWS Choose from our vast array of fabrics for shade that perfectly complements your home. RETRACTABLE SHADE SOLUTIONS FOR DECKS & PATIOS For solar protection, energy savings, and a touch of style, retractable awnings are a smart investment for homeowners! Sunbrella® Fabric Swatches 2020 Color Guide Aluminum Powder Coat Colors We proudly use Sunbrella® fabrics in the manufacturing of our retractable awnings, fabric window awnings and fabric door canopies. 1-800-858-5818 • www.nuimageawnings.com 8 NI.CSG.02/2020 FABRIC AWNINGS & CANOPIES ALUMINUM COLORS Sunbrella® Fabrics, Solids Rust-proof powder coating for lasting performance COLORS SHOWN MAY VARY FROM ACTUAL MATERIALS. ALL COLORS AND PATTERNS ARE COLORS SHOWN MAY VARY FROM ACTUAL MATERIALS. THE UNDERSIDE OF ALL ALUMINUM SUBJECT TO CHANGE WITHOUT NOTICE. PLEASE CONFIRM AT TIME OF ORDER. DOOR CANOPIES AND WINDOW AWNINGS IS WHITE. Erin Green # 4600 Pacific Blue # 4601 Sunflower Yellow # 4602 Jockey Red # 4603 White # 01 Almond # 05 Sandalwood # 07 Natural # 4604 Black # 4608 Turquoise # 4610 Aruba # 4612 Mocha Tan # 09 Brick Red # 13 Burgundy # 16 Tan # 4614 Smoke # 4615 Beige # 4620 True Brown # 4621 Terracotta # 4622 Aquamarine # 4623 Sky Blue # 4624 Navy # 4626 Brown # 20 Fern Green # 23 Evergreen # 25 Toast # 4628 Cadet Grey # 4630 Burgundy # 4631 Ivy # 4632 Bedford Blue # 32 Slate Blue # 37 Graystone # 45 Linen # 4633 White # 4634 Buttercup # 4635 Storm # 4636 Black # 90 Forest Green # 4637 Black Cherry # 4640 Sapphire Blue # 4641 Oyster # 4642 2 7 FABRIC AWNINGS & CANOPIES Sunbrella® Fabrics, Textures COLORS SHOWN MAY VARY FROM ACTUAL MATERIALS. -
Air Force Blue (Raf) {\Color{Airforceblueraf}\#5D8aa8
Air Force Blue (Raf) {\color{airforceblueraf}\#5d8aa8} #5d8aa8 Air Force Blue (Usaf) {\color{airforceblueusaf}\#00308f} #00308f Air Superiority Blue {\color{airsuperiorityblue}\#72a0c1} #72a0c1 Alabama Crimson {\color{alabamacrimson}\#a32638} #a32638 Alice Blue {\color{aliceblue}\#f0f8ff} #f0f8ff Alizarin Crimson {\color{alizarincrimson}\#e32636} #e32636 Alloy Orange {\color{alloyorange}\#c46210} #c46210 Almond {\color{almond}\#efdecd} #efdecd Amaranth {\color{amaranth}\#e52b50} #e52b50 Amber {\color{amber}\#ffbf00} #ffbf00 Amber (Sae/Ece) {\color{ambersaeece}\#ff7e00} #ff7e00 American Rose {\color{americanrose}\#ff033e} #ff033e Amethyst {\color{amethyst}\#9966cc} #9966cc Android Green {\color{androidgreen}\#a4c639} #a4c639 Anti-Flash White {\color{antiflashwhite}\#f2f3f4} #f2f3f4 Antique Brass {\color{antiquebrass}\#cd9575} #cd9575 Antique Fuchsia {\color{antiquefuchsia}\#915c83} #915c83 Antique Ruby {\color{antiqueruby}\#841b2d} #841b2d Antique White {\color{antiquewhite}\#faebd7} #faebd7 Ao (English) {\color{aoenglish}\#008000} #008000 Apple Green {\color{applegreen}\#8db600} #8db600 Apricot {\color{apricot}\#fbceb1} #fbceb1 Aqua {\color{aqua}\#00ffff} #00ffff Aquamarine {\color{aquamarine}\#7fffd4} #7fffd4 Army Green {\color{armygreen}\#4b5320} #4b5320 Arsenic {\color{arsenic}\#3b444b} #3b444b Arylide Yellow {\color{arylideyellow}\#e9d66b} #e9d66b Ash Grey {\color{ashgrey}\#b2beb5} #b2beb5 Asparagus {\color{asparagus}\#87a96b} #87a96b Atomic Tangerine {\color{atomictangerine}\#ff9966} #ff9966 Auburn {\color{auburn}\#a52a2a} #a52a2a Aureolin -
Exploring Weaire-Phelan Through Cellular Automata: a Proposal for a Structural Variance-Producing Engine
SIGraDi 2016, XX Congress of the Iberoamerican Society of Digital Graphics 9-11, November, 2016 - Buenos Aires, Argentina Exploring Weaire-Phelan through Cellular Automata: A proposal for a structural variance-producing engine André L. Araujo University of Campinas, Brazil [email protected] Gabriela Celani University of Campinas, Brazil [email protected] Abstract Complex forms and structures have always been highly valued in architecture, even much before the development of computers. Many architects and engineers have strived to develop structures that look very complex but at the same time are relatively simple to understand, calculate and build. A good example of this approach is the Beijing National Aquatics Centre design for the 2008 Olympic Games, also known as the Water Cube. This paper presents a proposal for a structural variance- producing engine using cellular automata (CA) techniques to produce complex structures based on Weaire-Phelan geometry. In other words, this research evaluates how generative and parametric design can be integrated with structural performance in order to enhance design flexibility and control in different stages of the design process. The method we propose was built in three groups of procedures: 1) we developed a method to generate several fits for the two Weaire-Phelan polyhedrons using CA computation techniques; 2) through the finite elements method, we codify the structural analysis outcomes to use them as inputs for the CA algorithm; 3) evaluation: we propose a framework to compare how the final outcomes deviate for the good solutions in terms of structural performance and rationalization of components. We are interested in knowing how the combination of the procedures could contribute to produce complex structures that are at the same time certain rational. -
Metallaheteroboranes Containing Group 16 Elements: an Experimental and Theoretical Study
Journal of Organometallic Chemistry 883 (2019) 71e77 Contents lists available at ScienceDirect Journal of Organometallic Chemistry journal homepage: www.elsevier.com/locate/jorganchem Metallaheteroboranes containing group 16 elements: An experimental and theoretical study * Moulika Bhattacharyya, Rini Prakash, R. Jagan, Sundargopal Ghosh Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India article info abstract Article history: Thermolysis of diphenyl dichalcogenides, Ph2E2 (E ¼ S, Se and Te) with an insitu generated intermediate, Received 19 November 2018 5 obtained from the reaction of [Cp*WCl4] (Cp* ¼ h -C5Me5) with [LiBH4$THF], yielded new tung- Received in revised form staheteroboranes, [(Cp*W)2(m-EPh)(m3-E)(m-H)(B3H2EPh)], 1 and 2 (1:E¼ S; 2:E¼ Se), and [(Cp*W)2(m- 9 January 2019 TePh)B H (m-H) ], 4. Formation of compounds 1 and 2 substantiate the evidence of [(Cp*W) B H ], Accepted 11 January 2019 5 5 3 2 4 10 which supports our previous studies. Compound 4 has a capped octahedral geometry that is unique due Available online 17 January 2019 to the presence of three W-H-B bridging hydrogens in a closo cluster. Alternatively, the shape of cluster 4 can be defined as oblatoarachno that can be derived from a heptagonal bipyramid. All the compounds Keywords: 1 11 1 13 1 Oblatoarachno have been characterized by mass spectrometry, H, B{ H}, IR and C{ H} NMR spectroscopy in solution Metallaheteroboranes and the structural architectures of 1 and 4 were unequivocally established by X-ray crystallographic Tungsten analysis. The density functional theory calculations also yielded geometries in close agreement with the Diphenyl dichalcogenide observed structures.