Man-In-The-Sea
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
I Reefs of Life to Reefs of Death: the Political Ecology of Coral Reef Health by Tegan Churcher Hoffmann B.S. (University of Ca
Reefs of Life to Reefs of Death: The Political Ecology of Coral Reef Health by Tegan Churcher Hoffmann B.S. (University of California at Berkeley) 1994 M.A. (University of California at Berkeley) 1998 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Geography in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in Charge: Professor Michael Watts, Chair Professor David Stoddart Professor Jere Lipps Fall 2001 i Reefs of Life to Reefs of Death: The Political Ecology of Coral Reef Health Copyright 2001 by Tegan Churcher Hoffmann ii Abstract Reefs of Life to Reefs of Death: The Political Ecology of Coral Reef Health by Tegan Churcher Hoffmann Doctor of Philosophy in Geography University of California, Berkeley Professor Michael Watts, Chair This research focuses on the South Pacific region, an area of high global coral diversity. I examine reef health surrounding two islands in Fiji, Vatulele and Ovalau, and two Cook Islands, Aitutaki and Rarotonga. Each island has distinct differences based not only on reef type, environment, and ecology, but also upon social institutions. I will compare four islands with barrier and fringing reefs that have different levels of economic development, population pressure, land-use practices, and marine management practices. This research will assess coral health in areas that have not been previously surveyed. This interdisciplinary research methodology includes both ecological and social data collection to further understanding of human environment interactions. I do this by identifying and describing the presence of certain social institutions and some historical reasons as to why they exist. -
Download Transcript
SCIENTIFIC AMERICAN FRONTIERS PROGRAM #1503 "Going Deep" AIRDATE: February 2, 2005 ALAN ALDA Hello and welcome to Scientific American Frontiers. I'm Alan Alda. It's said that the oceans, which cover more than two thirds of the earth's surface, are less familiar to us than the surface of the moon. If you consider the volume of the oceans, it's actually more than ninety percent of the habitable part of the earth that we don't know too much about. The main reason for our relative ignorance is simply that the deep ocean is an absolutely forbidding environment. It's pitch dark, extremely cold and with pressures that are like having a 3,000-foot column of lead pressing down on every square inch -- which does sound pretty uncomfortable. In this program we're going to see how people finally made it to the ocean floor, and we'll find out about the scientific revolutions they brought back with them. We're going to go diving in the Alvin, the little submarine that did so much of the work. And we're going to glimpse the future, as Alvin's successor takes shape in a small seaside town on Cape Cod. That's coming up in tonight's episode, Going Deep. INTO THE DEEP ALAN ALDA (NARRATION) Woods Hole, Massachusetts. It's one of the picturesque seaside towns that draw the tourists to Cape Cod each year. But few seaside towns have what Woods Hole has. For 70 years it's been home to the Woods Hole Oceanographic Institution — an organization that does nothing but study the world's oceans. -
Fly High Dive Deep
FLY HIGH DIVE DEEP COMMERCIAL DIVING REMOTE OPERATED VEHICLES SPACE EXPLORATION HUMAN LIFE SCIENCE WWW.BLUEABYSS.UK THE PROMISE Blue Abyss is among the most ground-breaking projects of its time. Designed to support the commercial diving, remote operated vehicle, human spaceflight and human life science sectors, Blue Abyss promises to be Europe’s premier extreme environment research, development and training facility. This unique aquatic centre will house the world’s largest and deepest indoor pool, alongside: hyper and hypobaric chambers; the Kuehnegger Human Performance Centre; a micro-gravity simulation suspension suite for replicating the effects of weightlessness and hypo-gravity; amphitheatre and classrooms; cafeteria and 120-bed hotel. ASTRONAUTS AND “OTHER SPACE PROFESSIONALS WILL WANT TO COME FROM AROUND THE WORLD TO USE THE MASSIVE, YET CONTROLLED, ENVIRONMENT TO REDUCE RISK IN SPACE. I CAN SEE PLENTY OF INTERNATIONAL COLLABORATIONS AND BUSINESS VENTURES STARTING LIFE WITHIN BLUE ABYSS. DR HELEN SHARMAN” FIRST BRITISH CITIZEN IN SPACE 1 Full onsite mission control, hypo and hyperbaric chambers Crane and lifting platform (30 tonnes) Training/experience mock-ups Pool 50m x 40m on surface Multi-level functionality including ‘Astrolab’ at 12m 50m at deepest point / THE MULTI-LEVEL POOL WILL CONTAIN 38,000M3 OF WATER, EXCEEDING ALL OTHER FACILITIES IN EXISTENCE BOTH IN TERMS OF VOLUME AND DEPTH. Image courtesy of Cityscape Digital 2 3 THE POSSIBILITIES Blue Abyss is a truly pioneering project that will extend the Blue Abyss is designed to cater for Space environment simulation possibilities for education, commercial and scientific research, on one hand, and freediving on the other, with a huge variety of development and training beyond anything that exists today. -
New and Different to Come Your Way with Regard to Our Upcoming 2019 Sea Technology Buyers Guide/Directory
WATCH FOR SOMETHING NEW AND DIFFERENT TO COME YOUR WAY WITH REGARD TO OUR UPCOMING 2019 SEA TECHNOLOGY BUYERS GUIDE/DIRECTORY PROCEED TO MAGAZINE from Surface to Seabed Position / Heading Weather Monitoring Electromagnetic / Smart™ Depth Sensor Ultrasonic Speed Acoustic Communications (ACOMMs) ADCP / DVL Acoustic Communications (ACOMMs) Altimeter Side Scan Forward-looking Sonar Multibeam Sonar Collecting and connecting from surface to seafloor, AIRMAR and MSI push the boundaries of ultrasonic technology to deliver multi-sensor and array solutions that ensure the highest level of data integrity. Consult with our engineering teams to source or design the perfect combination of sensors to achieve your mission’s goals. AIRMAR.COM MSITRANSDUCERS.COM 2 ST | June 2018 www.sea-technology.com High Performance Cable Handling Systems RESEARCH INSTITUTIONS • MILITARY • GOVERNMENT AGENCIES # Custom and Standard Configurations # Mil-Spec, ABS, DNV and 46CFR Certifications # Easy to Operate and Maintain InterOcean Systems has been supplying specialized winches and cable handling systems for over 45 years. Let our experienced application engineers assist you in reviewing and developing performance specifications for your specialized application. Contact us to discuss your oceanographic winch and cable handling system needs! InterOcean Systems, LLC Tel. (858) 565-8400 • Fax (858) 268-9695 www.interoceansystems.com An affiliate of Delmar Systems, Inc. ANY APPLICATION • ANY LOAD • RUGGED AND RELIABLE www.sea-technology.com June 2018 | ST 3 The SeaBat T-series Modular, compact multibeam sonar family that grows with your business The unique modular design concept of the SeaBat T-series allows you to configure exactly the sonar survey system for the job at hand. -
The Mississippi River Find
The Journal of Diving History, Volume 23, Issue 1 (Number 82), 2015 Item Type monograph Publisher Historical Diving Society U.S.A. Download date 04/10/2021 06:15:15 Link to Item http://hdl.handle.net/1834/32902 First Quarter 2015 • Volume 23 • Number 82 • 23 Quarter 2015 • Volume First Diving History The Journal of The Mississippi River Find Find River Mississippi The The Journal of Diving History First Quarter 2015, Volume 23, Number 82 THE MISSISSIPPI RIVER FIND This issue is dedicated to the memory of HDS Advisory Board member Lotte Hass 1928 - 2015 HISTORICAL DIVING SOCIETY USA A PUBLIC BENEFIT NONPROFIT CORPORATION PO BOX 2837, SANTA MARIA, CA 93457 USA TEL. 805-934-1660 FAX 805-934-3855 e-mail: [email protected] or on the web at www.hds.org PATRONS OF THE SOCIETY HDS USA BOARD OF DIRECTORS Ernie Brooks II Carl Roessler Dan Orr, Chairman James Forte, Director Leslie Leaney Lee Selisky Sid Macken, President Janice Raber, Director Bev Morgan Greg Platt, Treasurer Ryan Spence, Director Steve Struble, Secretary Ed Uditis, Director ADVISORY BOARD Dan Vasey, Director Bob Barth Jack Lavanchy Dr. George Bass Clement Lee Tim Beaver Dick Long WE ACKNOWLEDGE THE CONTINUED Dr. Peter B. Bennett Krov Menuhin SUPPORT OF THE FOLLOWING: Dick Bonin Daniel Mercier FOUNDING CORPORATIONS Ernest H. Brooks II Joseph MacInnis, M.D. Texas, Inc. Jim Caldwell J. Thomas Millington, M.D. Best Publishing Mid Atlantic Dive & Swim Svcs James Cameron Bev Morgan DESCO Midwest Scuba Jean-Michel Cousteau Phil Newsum Kirby Morgan Diving Systems NJScuba.net David Doubilet Phil Nuytten Dr. -
Hypothermia and Respiratory Heat Loss While Scuba Diving
HYPOTHERMIA AND RESPIRATORY HEAT LOSS WHILE SCUBA DIVING Kateřina Kozáková Faculty of Physical Education and Sport, Charles University in Prague, Department of Biomedical Labo- ratory Abstract One of the factors affecting length of stay under water of a diver is heat comfort. During scuba diving there is an increased risk of hypothermia. Hypothermia is one of the most life threatening factors of a diver and significantly affects his performance. The body heat loss runs by different mechanisms. One of them is the respiratory mechanism, which is often overlooked. Compressed dry air or other media is coming out from the cylinder, which have to be heated and humidified to a suitable value. Thus the organism loses body heat and consequently energy. Based on literature search the article will describe safe dive time in terms of hypo- thermia in connection to respiratory heat loss. Key words: hypothermia, heat loss, respiration, scuba diving, water environment Souhrn Jedním z faktorů ovlivňujících délku pobytu potápěče pod vodou je tepelný komfort. Během výkonu přístro- jového potápění hrozí zvýšené riziko hypotermie. Hypotermie představuje jedno z nejzávažnějších ohrožení života potápěče a zásadně ovlivňuje jeho výkon. Ke ztrátám tělesného tepla dochází různými mechanismy. Jednou cestou tepelných ztrát je ztráta tepla dýcháním, která je často opomíjená. Z potápěčského přístroje vychází suchý stlačený vzduch nebo jiné médium, který je třeba při dýchání ohřát a zvlhčit na potřebnou hodnotu. Tím organismus ztrácí tělesné teplo a potažmo energii. Tento článek, na základě literární rešerše, popíše bezpečnou dobou ponoru z hlediska hypotermie a v souvislosti se ztrátou tepla dýcháním. Klíčová slova: hypotermie, ztráta tepla, dýchání, přístrojové potápění, vodní prostředí Introduction amount of body heat. -
The Weed That Feeds the North Atlantic
DRIFTING PLANTS KNOWN AS SARGASSUM SUPPORT A COMPLEX AND AMAZING VARIETY OF MARINE LIFE. The Weed That Feeds the North Atlantic BY JAMES PROSEK PHOTOGRAPHS BY DAVID DOUBILET AND DAVID LIITTSCHWAGER 129 Hatchling sea turtles, like this juvenile log- gerhead, make their way from the sandy beaches where they were born toward mats of sargassum weed, finding food and refuge from predators during their first years of life. PREVIOUS PHOTO A clump of sargassum weed the size of a soccer ball drifts near Bermuda in the slow swirl of the Sargasso Sea, part of the North Atlantic gyre. A weed mass this small may shelter thousands of organisms, from larval fish to seahorses. DAVID DOUBILET (BOTH) 130 NATIONAL GEOGRAPHIC THE WEED THAT FEEDS THE NORTH ATLANTIC 131 ‘There’s nothing like it in any other ocean,’ says marine biologist Brian Lapointe. ‘There’s nowhere else on our blue planet that supports such diversity in the middle of the ocean—and it’s because of the weed.’ LAPOINTE IS TALKING about a floating seaweed known as sargassum in a region of the Atlantic called the Sargasso Sea. The boundaries of this sea are vague, defined not by landmasses but by five major currents that swirl in a clockwise embrace around Bermuda. Far from any main- land, its waters are nutrient poor and therefore exceptionally clear and stunningly blue. The Sargasso Sea, part of the vast whirlpool known as the North Atlantic gyre, often has been described as an oceanic desert—and it would appear to be, if it weren’t for the floating mats of sargassum. -
"Aquarius" Undersea Habitat As an Analog for Long- Duration Space Flight
https://ntrs.nasa.gov/search.jsp?R=20110011365 2019-08-30T15:38:42+00:00Z Source of Acquisiti on NASA Jolmson Space Center The NEEMO Project: A Report on how NASA Utilizes the "Aquarius" Undersea Habitat as an Analog for Long- Duration Space Flight. Bill ToddlUnited Space Alliance Marc Reagan/NASA NEEMO Project Leads Spaceflight Training, NASAJJSC October, 2003 Abstract NEEMO is the NASA Extreme Environment Mission Operations, a cooperative project between NASA and the National Oceanic and Atmospheric Administration (NOAA). NEEMO was created and is managed by the Mission Operations Directorate at the Johnson Space Center in Houston, Texas. On the NOAA side, the National Undersea Research Center (NURC) in Key Largo, FL, with the help of the University of North Carolina at Wilmington, manages and operates the Aquarius Program. NEEMO was developed by astronaut training specialists to utilize an undersea research habitat as a multi-objective mission analog for long-duration space flight. Each mission was designed to expose astronauts to extreme environments for training purposes and to research crew behavior, habitability, and space analog life sciences. All of this was done much in the model of a space mission utilizing specific crew procedures, mission rules and timelines. Objectives of the missions were very diverse and contained many of the typical space mission type activities such as EV As (also known as extra vehicular activities), in-habitat science and research, and educational, public outreach, and media events. Five missions, dubbed NEEMO 1-5, were conducted between October 2001 and July 2003, the longest of which (NEEMO 5) lasted 14 days. -
Aquarius Fact Sheet
Fact Sheet: 2019 Designer: Perry Submarine Builders (Florida) Construction: Victoria Machine Works (Texas); start: 1986 | complete: 1987 Estimated construction cost: $5.5M Operational Timeline: St. Croix Deployment: Deployment in Salt River Canyon, St. Croix: 1987 Owner: NOAA Operator: Farleigh Dickenson University Interim Period: Recovered: 1990 by the University of North Carolina Wilmington Refurbished: 1990-1993 at North Carolina State Ports, Wilmington, NC Owner: NOAA Operator: University of North Carolina Wilmington Florida Keys Deployment: Initial deployment on Conch Reef, Florida Keys: 1993 (baseplate deployed 1992) Recovered for refurbishment: 1996-1998 - Harbor Branch Oceanographic Institution, Ft. Pierce, FL Redeployment on Conch Reef, Florida Keys: 1998 – present Owner: NOAA: 1986-2014; Florida International University: 2014 – present Operator: FDU: 1987-1989; UNCW: 1990-2012; Florida International University: 2013 - present Aquarius Siting: Conch Reef, Florida Keys (Florida Keys National Marine Sanctuary): Distance From Islamorada shore base: 15.4 km (8.5 nm) Distance offshore: 9 km (5.4 nm) Hatch depth/storage depth: 14 m (46 fsw) 35 psi Depth of bottom directly below Aquarius: 18 m (60 fsw) (updated: 09.15.19) Habitat Specifications: Aquarius weight: 82-ton double-lock pressure vessel Baseplate weight: 120 tons Dimensions: 14-meters long by 3-meters in diameter (46 ft x 10 ft) Crew: 4 scientists and 2 technicians Amenities: kitchen facilities that include a microwave, instant hot water dispenser, refrigerator, sink, dining -
Sylvia Earle Background Information
Sylvia Earle Background Information Birth and Childhood Home She was born in Gibbs town, NJ on August 30, 1935. Her early childhood years were on a farm where there were many woods to explore. One of her favorite places was a pond. Her parent, particularly her mother was very influential in teaching her respect for animals. She always emphasized putting animals back where they were found after observing them. Sylvia took notes as a young child on the things that she observed. They also taught her not to fear the unknown. Horseshoe Crab Story Sylvia as a little girl at the beach was curious about the horseshoe crabs and how they moved. She was also concerned that they were stranded on the beach. She tried to pick them up, turn them around and sent them back to the ocean, not realizing that they were coming up on shore to lay their eggs and that she was really interfering with their mating. (see additional notes on horseshoe crabs) Reading As a child she liked to read. She liked science fiction, fairy tales, and animal stories. As she got a little older, she found that she liked non-fiction books even better. One of her favorite books was by William Beebe name Half Mile Down. He wrote about going down in the ocean in a vehicle like a submarine. In her book Sea Change and some of her other writings and interviews she refers to it frequently. After reading that book she started reading more non-fiction books and began liking the encyclopedia. -
Observations on the Reproductive Cycles of Some Viviparous North American Sharks
aqua, International Journal of Ichthyology Observations on the reproductive cycles of some viviparous North American sharks José I. Castro NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center at Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, Florida 34236, USA. E-mail: [email protected] Received: 07 July 2009 – Accepted: 23 September 2009 Abstract gleicher Vitellogenese und Trächtigkeit sowie kontinuier- The reproductive cycle of sharks is defined by how often licher Ovulation. Squalus acanthias zeigt den dornhai-typis- a species breeds and consists of two periods: vitellogenesis chen zweijährigen Fortpflanzungszyklus mit parallel and gestation. These two periods can run concurrently or laufender Vitellogenese und Trächtigkeit. Die Haie der Gat- consecutively, and the duration of each period is variable. tungen Carcharhinus, Sphyrna (teilweise) und Ginglymostoma Together, the periods of vitellogenesis and gestation deter- bekommen alle zwei Jahre Nachwuchs, Dottereinlagerung mine the length of the reproductive cycle. The genera Rhi- und Trächtigkeit folgen aufeinander. Bei Galeocerdo cuvier im zoprionodon, Mustelus, and some Sphyrna exhibit annual West-Atlantik dauert die Trächtigkeit 12 Monate, der Zyklus cycles with concurrent vitellogenesis and gestation, and insgesamt dürfte zweijährig sein. Carcharhinus obscurus hat thus, they produce one brood each year. Carcharias taurus eine 18-monatige Trächtigkeitsphase und wahrscheinlich females apparently have a biennial reproductive cycle with einen dreijährigen Fort pflan zungszyklus. Der zweijährige discontinuous ovulation. Alopias spp. exhibit an annual Zyklus mit den verschiedenen Varianten kommt also bei cycle with concurrent vitellogenesis and gestation, and have Haien unterschiedlicher stammesgeschichtlicher Herkunft continuous ovulation. Squalus acanthias has a squaloid vor, so bei Angehörigen von Carcharhinus, Squalus und Orec- biennial cycle with concurrent vitellogenesis and gestation. -
Biomechanics of Safe Ascents Workshop
PROCEEDINGS OF BIOMECHANICS OF SAFE ASCENTS WORKSHOP — 10 ft E 30 ft TIME AMERICAN ACADEMY OF UNDERWATER SCIENCES September 25 - 27, 1989 Woods Hole, Massachusetts Proceedings of the AAUS Biomechanics of Safe Ascents Workshop Michael A. Lang and Glen H. Egstrom, (Editors) Copyright © 1990 by AMERICAN ACADEMY OF UNDERWATER SCIENCES 947 Newhall Street Costa Mesa, CA 92627 All Rights Reserved No part of this book may be reproduced in any form by photostat, microfilm, or any other means, without written permission from the publishers Copies of these Proceedings can be purchased from AAUS at the above address This workshop was sponsored in part by the National Oceanic and Atmospheric Administration (NOAA), Department of Commerce, under grant number 40AANR902932, through the Office of Undersea Research, and in part by the Diving Equipment Manufacturers Association (DEMA), and in part by the American Academy of Underwater Sciences (AAUS). The U.S. Government is authorized to produce and distribute reprints for governmental purposes notwithstanding the copyright notation that appears above. Opinions presented at the Workshop and in the Proceedings are those of the contributors, and do not necessarily reflect those of the American Academy of Underwater Sciences PROCEEDINGS OF THE AMERICAN ACADEMY OF UNDERWATER SCIENCES BIOMECHANICS OF SAFE ASCENTS WORKSHOP WHOI/MBL Woods Hole, Massachusetts September 25 - 27, 1989 MICHAEL A. LANG GLEN H. EGSTROM Editors American Academy of Underwater Sciences 947 Newhall Street, Costa Mesa, California 92627 U.S.A. An American Academy of Underwater Sciences Diving Safety Publication AAUSDSP-BSA-01-90 CONTENTS Preface i About AAUS ii Executive Summary iii Acknowledgments v Session 1: Introductory Session Welcoming address - Michael A.