50. Jurassic to Eocene Plate Tectonic Reconstructions in the Kerguelen Plateau Region1

Total Page:16

File Type:pdf, Size:1020Kb

50. Jurassic to Eocene Plate Tectonic Reconstructions in the Kerguelen Plateau Region1 Wise, S. W., Jr., Schlich, R., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 120 50. JURASSIC TO EOCENE PLATE TECTONIC RECONSTRUCTIONS IN THE KERGUELEN PLATEAU REGION1 Jean-Yves Royer2 and Millard F. Coffin3 ABSTRACT We present a series of preliminary reconstructions for the Kerguelen Plateau region from the Late Jurassic to the Eocene that summarize and review the outstanding questions about its plate tectonic evolution. The development of the Indian and adjacent Southern oceans began in Middle to Late Jurassic time with the breakup of Gondwana. Marine magnetic anomalies and limited Deep Sea Drilling Project and Ocean Drilling Program core samples have been used to date the oceanic crust. Fracture zone trends interpreted from satellite (SEASAT and GEOSAT) altimetry, and marine seismic, gravity, and magnetic data have been combined with crustal dates to produce kinematic models of the plates through time. Between the Jurassic and the Late Cretaceous, time controls on the plate tectonic evolution of the region are few. Mesozoic marine magnetic anomalies off the shore of East Africa, Antarctica, and Western Australia document plate motions during the interval; however, extensive areas of oceanic crust from which no anomalies have been identified, including that created during the Cretaceous Long Normal Polarity Interval, and a dearth of fracture zones prevent detailed links with the much better defined plate kinematic synthesis for the past 84 m.y. The Kerguelen Plateau/Broken Ridge complex was emplaced at ~ 110 Ma in a region flanked by Greater India, Australia, and Antarctica. Between then and —43 Ma, when seafloor spreading between the Kerguelen Plateau and Broken Ridge began, our model includes transform motions between the northern and southern sectors of the Kerguelen Plateau. INTRODUCTION Gondwana included Africa. In the second phase, in Early Cretaceous time, East and West Gondwana dispersed and The plate kinematic history of the Indian and adjacent reorganized through the transfer of crustal blocks. Madagas- Southern oceans has been analyzed and described since car/Seychelles/Greater India separated from Australia/Antarc- shortly after the advent of the plate tectonics paradigm. tica. Later on, relative motion between Africa and Madagas- Marine magnetic (McKenzie and Sclater, 1971; Norton and car/Seychelles/Greater India ceased. The third phase, starting Sclater, 1979) and SEASAT/GEOSAT radar altimeter (Royer in mid-Cretaceous time, was marked by a further disintegra- and Sandwell, 1989) data have been used to show that the tion and reorganization of the Gondwana fragments into four oceans formed by a series of seafloor-spreading episodes and plates: Seychelles/Greater India and Africa/Madagascar broke differing plate geometries (Figs. 1 and 2). Although the Cen- up, as did Australia (including Broken Ridge and the Northern ozoic evolution of the ocean basins is fairly well known, the Kerguelen Plateau) and Antarctica (including the Southern Mesozoic history is more problematic because of the Creta- Kerguelen Plateau). In the fourth phase, the Seychelles trans- ceous Long Normal Polarity Interval and the scarcity of ferred from the Indian to the African plate in Paleocene time, marine magnetic data from areas of suspected older crust. Our and the number of plates remained at four. In the fifth phase, intent is to summarize the plate kinematic evolution of the India and Australia joined to become one plate, leaving a total ocean basins surrounding the Kerguelen Plateau/Broken of three. At the same time, the northern sector of the Ridge complex and to outline the major questions about the Kerguelen Plateau was transferred from the Indo-Australian tectonic evolution of this region between the Late Jurassic and Plate to the Antarctic Plate as Broken Ridge and the Ker- the middle Eocene. guelen Plateau were separated by the westward-propagating Southeast Indian Ridge in Eocene time. RECONSTRUCTIONS In the following, we describe briefly these salient events Gondwana began to break up and disperse in Mesozoic (using the time scales of Berggren et al., 1985; Kent and time. In some cases, rifting preceded breakup by many tens of Gradstein, 1985; Handschumacher et al., 1988) in the tectonic millions of years, and extensive volcanism and associated development of the southern Indian and adjacent Southern intrusions commonly accompanied the rifting (e.g., Hinz, oceans. The 110-Ma and older reconstructions, based on 1981; Cox, 1988; Mahoney, 1988; Davies et al., 1989). Jurassic published data, are considered qualitative and provisional, through Eocene seafloor spreading in the Indian Ocean region pending a thorough analysis of all pertinent geophysical and occurred in five major phases (Table 1). During the first, in geological data. No satisfactory model has yet been proposed Late Jurassic time, Gondwana rifted into two major litho- for the early opening of the Indian Ocean. Norton and spheric plates, East and West Gondwana. In the Indian Ocean Sclater's (1979) model was based on very sparse data. Ségou- sector, East Gondwana included Madagascar, the Seychelles, fin and Patriat (1980) focused on the relative motions of the Greater India, Sri Lanka, Australia, and Antarctica; West African, Antarctic, and Madagascan plates. Bergh (1987) proposed different solutions for the Antarctic/Africa relative motions, whereas Powell et al. (1988) proposed a model limited to the Indian/Antarctic/Australian plate system. In- 1 Wise, S. W., Jr., Schlich, R., et al., 1992. Proc. ODP, Sci. Results, 120: College Station, TX (Ocean Drilling Program). compatibilities among these different models highlight the 2 Laboratoire de Géodynamique sous-marine—O.O.V., B.P. 48, 06230 necessity of considering all of the relevant plates simultane- Villefranche sur mer, France. ously. Some of the ideas used in our model were developed by 917 J.-Y. ROYER, M. F. COFFIN Bathymetric Chart of the Indian Ocean 2000 and 4000 meters sobaths (redrawn after Irte GEBCO Chans series) 30S 60S 0 30E 60E 90E 120E 150E Figure 1. Bathymetric chart of the Indian Ocean (2000- and 4000-m isobaths) after Royer et al. (1989). Lawver et al. (in press). We used the pre-breakup configura- age has been identified in the Indian or adjacent Southern tion for Gondwana of Lawver and Scotese (1987) as a starting oceans. In the region that was to become the Indian Ocean, point at 165 Ma. The relative position of Madagascar relative the initial rifts separated West Gondwana, which included to Africa at 130 Ma (M10) and 119 Ma (M0) are based on Africa, from East Gondwana, which included Madagascar, Ségoufin and Patriafs (1980) model. The relative motions of the Seychelles, Greater India, Australia, and Antarctica. East Australia and Antarctica between 165 and 43 Ma are from and West Gondwana may have undergone an episode of Royer and Sandwell (1989). For the pre-MO reconstructions of stretching at nearly right angles to the subsequent spreading Africa and Antarctica, we matched Mesozoic lineations in the direction (Coffin and Rabinowitz, 1987, 1988; Reeves et al., Mozambique Channel with those off Dronning Maud Land in 1987). The pre-rift fit of Gondwana components is poorly Antarctica. The rates and directions of spreading in the Perth constrained because of a scarcity of information on continen- Basin were used to constrain the India/Australia relative tal extension. motions. Other geometrical constraints (e.g., no overlap be- Continental extension and limited seafloor spreading (Fig. tween India and Madagascar) were also taken into account. 3) began to occur between West and East Gondwana (Rab- The 84-Ma and younger reconstructions are based largely on inowitz et al., 1983; Coffin and Rabinowitz, 1987), and be- the more quantitative plate kinematic analysis of Royer et al. tween northwest Australia (East Gondwana) and its unidenti- (1988) and Royer and Sandwell (1989). We interpreted a fied conjugate ("Argo" land mass of Powell et al., 1988). The transform boundary between the northern and southern prov- overall plate configuration at the time of breakup is uncertain inces of the Kerguelen Plateau along the 77°E Graben (Coffin because of the poorly defined continent/ocean boundaries of et al., in prep.). The rotation parameters determined in this the Gondwana fragments. study are provided in the figure captions. The age of the oldest oceanic crust in the southern Indian Ocean is not known. Larson (1975) estimated that oceanic BREAKUP CONFIGURATION crust began forming off northwest Australia at the time of Although rifting, associated rift volcanism and intrusion, magnetic lineation M25 (157 Ma) or earlier; with additional and probable continental extension occurred between East data Fullerton et al. (1989) identified lineation M26 (158 Ma). and West Gondwana before 200 Ma, at least as early as However, drilling on magnetic lineation M26 off northwest Permo-Carboniferous time (e.g., review in Coffin and Rab- Australia provided a date of Early Cretaceous (Gradstein, inowitz, 1988), no oceanic crust of Early Jurassic or greater Ludden, et al., 1990), or ~20 m.y. younger than the accepted 918 PLATE TECTONIC RECONSTRUCTIONS 30S 60S I I I I I I 0 30E 60E 150E Figure 2. Tectonic fabric chart of the Indian Ocean (from Royer et al Table 1. Indian Ocean spreading chronology. 165 Ma M10/M0 - 132/119 110 Ma C34 - 84 Ma C28 - 64 Ma C18 - 43 Ma Ma Africa Africa Africa Africa Africa Africa Madagascar Madagascar Madagascar Madagascar Madagascar Madagascar Seychelles Seychelles Seychelles Seychelles Seychelles Greater India Greater India Seychelles Greater India India India India Australia Australia Antarctica Australia Australia Australia Australia Broken Ridge Antarctica Broken Ridge Broken Ridge Broken Ridge Kerguelen Plateau northern Kerguelen Pl. northern Kerguelen PL Antarctica Antarctica Antarctica Antarctica northern Kerguelen Pl. southern Kerguelen Pl. southern Kerguelen Pl. southern Kerguelen Pl. Note: Rippled lines indicate uncertain plate configurations. 919 J.-Y. ROYER, M. F. COFFIN Figure 3. Plate tectonic reconstruction at 165 Ma. Seafloor spreading has begun between East and West Gondwana, and off northwest Australia.
Recommended publications
  • Breakup and Early Seafloor Spreading Between India and Antarctica
    Geophys. J. Int. (2007) 170, 151–169 doi: 10.1111/j.1365-246X.2007.03450.x Breakup and early seafloor spreading between India and Antarctica Carmen Gaina,1 R. Dietmar Muller¨ ,2 Belinda Brown,2 Takemi Ishihara3 and Sergey Ivanov4 1Center for Geodynamics, Geological Survey of Norway, Trondheim, Norway 2Earth Byte Group, School of Geosciences, The University of Sydney, Australia 3Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science and Technology, AIST Central 7, Tsukuba, Japan 4Polar Marine Geophysical Research Expedition, St Petersburg Accepted 2007 March 21. Received 2007 March 21; in original form 2006 May 26 SUMMARY We present a tectonic interpretation of the breakup and early seafloor spreading between India and Antarctica based on improved coverage of potential field and seismic data off the east Antarctic margin between the Gunnerus Ridge and the Bruce Rise. We have identified a series of ENE trending Mesozoic magnetic anomalies from chron M9o (∼130.2 Ma) to M2o (∼124.1 Ma) in the Enderby Basin, and M9o to M4o (∼126.7 Ma) in the Princess Elizabeth Trough and Davis Sea Basin, indicating that India–Antarctica and India–Australia breakups were roughly contemporaneous. We present evidence for an abandoned spreading centre south geoscience of the Elan Bank microcontinent; the estimated timing of its extinction corresponds to the early surface expression of the Kerguelen Plume at the Southern Kerguelen Plateau around rine 120 Ma. We observe an increase in spreading rate from west to east, between chron M9 Ma and M4 (38–54 mm yr–1), along the Antarctic margin and suggest the tectono-magmatic segmentation of oceanic crust has been influenced by inherited crustal structure, the kinematics GJI of Gondwanaland breakup and the proximity to the Kerguelen hotspot.
    [Show full text]
  • Relationship Between the Early Kerguelen Plume and Continental £Ood Basalts of the Paleo-Eastern Gondwanan Margins
    Earth and Planetary Science Letters 197 (2002) 35^50 www.elsevier.com/locate/epsl Relationship between the early Kerguelen plume and continental £ood basalts of the paleo-Eastern Gondwanan margins Stephanie Ingle a;Ã, Dominique Weis a;1, James S. Scoates a, Frederick A. Frey b a De¤partement des Sciences de la Terre et de l’Environnement, Universite¤ Libre de Bruxelles, P.O. Box 160/02, Ave. F.D. Roosevelt 50, B-1050 Brussels, Belgium b Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Building 54-1226, Cambridge, MA 02139, USA Received 4 June 2001; received in revised form 10 December 2001; accepted 10 January 2002 Abstract Cretaceous basalts recovered during Ocean Drilling Program Leg 183 at Site 1137 on the Kerguelen Plateau show remarkable geochemical similarities to Cretaceous continental tholeiites located on the continental margins of eastern India (Rajmahal Traps) and southwestern Australia (Bunbury basalt). Major and trace element and Sr^Nd^Pb isotopic compositions of the Site 1137 basalts are consistent with assimilation of Gondwanan continental crust (from 5 to 7%) by Kerguelen plume-derived magmas. In light of the requirement for crustal contamination of the Kerguelen Plateau basalts, we re-examine the early tectonic environment of the initial Kerguelen plume head. Although a causal role of the Kerguelen plume in the breakup of Eastern Gondwana cannot be ascertained, we demonstrate the need for the presence of the Kerguelen plume early during continental rifting. Activity resulting from interactions by the newly formed Indian and Australian continental margins and the Kerguelen plume may have resulted in stranded fragments of continental crust, isolated at shallow levels in the Indian Ocean lithosphere.
    [Show full text]
  • 51. Breakup and Seafloor Spreading Between the Kerguelen Plateau-Labuan Basin and the Broken Ridge-Diamantina Zone1
    Wise, S. W., Jr., Schlich, R., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 120 51. BREAKUP AND SEAFLOOR SPREADING BETWEEN THE KERGUELEN PLATEAU-LABUAN BASIN AND THE BROKEN RIDGE-DIAMANTINA ZONE1 Marc Munschy,2 Jerome Dyment,2 Marie Odile Boulanger,2 Daniel Boulanger,2 Jean Daniel Tissot,2 Roland Schlich,2 Yair Rotstein,2,3 and Millard F. Coffin4 ABSTRACT Using all available geophysical data and an interactive graphic software, we determined the structural scheme of the Australian-Antarctic and South Australian basins between the Kerguelen Plateau and Broken Ridge. Four JOIDES Resolution transit lines between Australia and the Kerguelen Plateau were used to study the detailed pattern of seafloor spreading at the Southeast Indian Ridge and the breakup history between the Kerguelen Plateau and Broken Ridge. The development of rifting between the Kerguelen Plateau-Labuan Basin and the Broken Ridge-Diamantina Zone, and the evolution of the Southeast Indian Ridge can be summarized as follows: 1. From 96 to 46 Ma, slow spreading occurred between Antarctica and Australia; the Kerguelen Plateau, Labuan Basin, and Diamantina Zone stretched at 88-87 Ma and 69-66 Ma. 2. From 46 to 43 Ma, the breakup between the Southern Kerguelen Plateau and the Diamantina Zone propagated westward at a velocity of about 300 km/m.y. The breakup between the Northern Kerguelen Plateau and Broken Ridge occurred between 43.8 and 42.9 Ma. 3. After 43 Ma, volcanic activity developed on the Northern Kerguelen Plateau and at the southern end of the Ninetyeast Ridge. Lava flows obscured the boundaries of the Northern Kerguelen Plateau north of 48°S and of the Ninetyeast Ridge south of 32°S, covering part of the newly created oceanic crust.
    [Show full text]
  • The "Lost Inca Plateau": Cause of Flat Subduction Beneath Peru? M.-A
    Earth and Planetary Science Letters Archimer http://www.ifremer.fr/docelec/ SEP 1999; 171(3) : 335-341 Archive Institutionnelle de l’Ifremer http://dx.doi.org/10.1016/S0012-821X(99)00153-3 © 1999 Elsevier ailable on the publisher Web site The “lost Inca Plateau”: cause of flat subduction beneath Peru? M. -A. Gutschera, *, J. -L. Olivetb, D. Aslanianb, J. -P. Eissenc and R. Mauryd a Laboratorie de Géophysique et Tectonique, Université Montpellier II, France b IFREMER, Brest, France c IRD, Brest, France d Université de Bretagne Occidentale, Brest, France *: Corresponding author : IRD Centre de Bretagne (ex ORSTOM), B.P. 70, 29280 Plouzane, France. Tel.: +33 blisher-authenticated version is av 298 22 46 68; Fax: +33 298 224514, E-mail: [email protected] Abstract: Since flat subduction of the Nazca Plate beneath Peru was first recognized in the 1970s and 1980s a satisfactory explanation has eluded researchers. We present evidence that a lost oceanic plateau (Inca Plateau) has subducted beneath northern Peru and propose that the combined buoyancy of Inca Plateau and Nazca Ridge in southern Peru supports a 1500 km long segment of the downgoing slab and shuts off arc volcanism. This conclusion is based on an analysis of the seismicity of the subducting Nazca Plate, the structure and geochemistry of the Marquesas Plateau as well as tectonic reconstructions of the Pacific–Farallon spreading center 34 to 43 Ma. These restore three sub–parallel Pacific oceanic plateaus; the Austral, Tuamotu and Marquesas, to two Farallon Plate counterparts; the Iquique and Nazca Ridges. Inca Plateau is apparently the sixth and missing piece in an ensemble of ‘V-shaped' hotspot tracks formed at on-axis positions.
    [Show full text]
  • Dynamic Subsidence of Eastern Australia During the Cretaceous
    Gondwana Research 19 (2011) 372–383 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Dynamic subsidence of Eastern Australia during the Cretaceous Kara J. Matthews a,⁎, Alina J. Hale a, Michael Gurnis b, R. Dietmar Müller a, Lydia DiCaprio a,c a EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia b Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA c Now at: ExxonMobil Exploration Company, Houston, TX, USA article info abstract Article history: During the Early Cretaceous Australia's eastward passage over sinking subducted slabs induced widespread Received 16 February 2010 dynamic subsidence and formation of a large epeiric sea in the eastern interior. Despite evidence for Received in revised form 25 June 2010 convergence between Australia and the paleo-Pacific, the subduction zone location has been poorly Accepted 28 June 2010 constrained. Using coupled plate tectonic–mantle convection models, we test two end-member scenarios, Available online 13 July 2010 one with subduction directly east of Australia's reconstructed continental margin, and a second with subduction translated ~1000 km east, implying the existence of a back-arc basin. Our models incorporate a Keywords: Geodynamic modelling rheological model for the mantle and lithosphere, plate motions since 140 Ma and evolving plate boundaries. Subduction While mantle rheology affects the magnitude of surface vertical motions, timing of uplift and subsidence Australia depends on plate boundary geometries and kinematics. Computations with a proximal subduction zone Cretaceous result in accelerated basin subsidence occurring 20 Myr too early compared with tectonic subsidence Tectonic subsidence calculated from well data.
    [Show full text]
  • Overview of Zealandia and Its Subduction Record
    Overview of Zealandia and its subduction record Nick Mortimer, GNS Science, Dunedin, New Zealand GNS Science New Guinea SW Pacific geography Fiji New Caledonia Scattered, remote Australia islands Tasman 4 million people Sea New Near Australia Zealand 1000 km GNS Science SW Pacific bathymetry Fiji New Based on satellite Caledonia gravity Broad plateaus and ridges 1-2 km water depth New Zealand 1000 km Sandwell & Smith (1997), Stagpoole (2002) GNS Science SW Pacific 87 present day Fiji tectonics 77 New Caledonia 67 mm/yr • Pacific and Australian plates 53 • nearby pole of PAC plate rotation AUS plate New Zealand 38 • convergence variably oblique • subduction polarity 30 changes 1000 km Bird (2003) GNS Science OJP MP Zealandia • continent that is 95% submerged • rifted internally and on most margins 45-0 Ma 120-85 Ma • now on two plates PAC plate • Hikurangi Plateau adjacent AUS plate HP continental rock 85-55 Ma samples Median Batholith (Cambrian-Cret) Late Cret. MCCs 85-0 Ma Early Cret LIPs 45-0 Ma Preserved E Cret subduction zone 1000 km GNS Science Zealandia and Gondwana • ZLD on PAC and AUS plates PAC plate • match piercing points AUS plate HP • track fracture zones • rotation and translation 1000 km Sutherland (1995, 1999) GNS Science 1000 km 14 April 84,000,000 B.P. Gondwana reconstruction NG Just before major LP breakup episode MR QP KP Continental crust MP NewCal Oceanic crust NLHR AUST Hikurangi LIP SNR SLHR <85 Ma continental breakup D ZLND lines ET Chall STR IB HP Camp CR • Zealandia EANT WR was a ribbon continent WANT After Gaina et al.
    [Show full text]
  • USGS Analysis of the Australian UNCLOS Submission
    USGS Analysis of the Australian UNCLOS Submission By Deborah R. Hutchinson and Robert W. Rowland Open-File Report 2006-1073 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia For Additional Information: See the United Nations web page on the United Nations Convention on the Law of the Sea at http://www.un.org/Depts/los/index.htm, and the Executive Summary of the Australian UNCLOS submission at http://www.un.org/Depts/los/clcs_new?submission_files/submission_aus.htm. Contact Deborah R. Hutchinson U.S. Geological Survey 384 Woods Hole Road Woods Hole, MA, 02543 [email protected] 508-457-2263 Robert W. Rowland U.S. Geological Survey, Retired 55825 River Shore Lane Elkhart, IN 46516 [email protected] For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation Hutchinson, D.R., and Rowland, R.W., 2006, USGS Analysis of the Australian UNCLOS Submission: U.S. Geological Survey Open-File Report 2006-1073, 19 p., http://pubs.usgs.gov/of/2006/1073. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government, nor does the interpretation presented here reflect official U.S.
    [Show full text]
  • Original Pdf Version
    Rhiana Elizabeth Henry Tectonic History Hildebrand Project 1A December 9th, 2016 North America subducted under Rubia Are there modern analogs for Hildebrand’s model of North America subducting under Rubia? In the Geological Society of America Special Papers “Did Westward Subduction Cause Cretaceous–Tertiary Orogeny in the North American Cordillera?” and “Mesozoic Assembly of the North American Cordillera” by Robert S. Hildebrand, the author argues that the North American continent experienced westward subduction under what he calls a “ribbon continent” known as Rubia around ~124Ma. This ribbon continent is composed of multiple terranes both known to be exotic to North America, and terranes that were previously thought to be part of North America. As the seaway between Rubia and North America closed, Hildebrand postulates that North America was dragged underneath with the oceanic crust. This continental material combined with the fluids from the margin caused great amounts of magmatism in the North American Cordillera. Eventually the continental crust broke due to upward buoyancy. This caused slab failure around 75-60 Ma, followed by a reversal of subduction polarity around 53 Ma, with eastward subduction through the mid- Tertiary (Fig. 1). As a way of checking to see if this hypothesis is plausible, I investigated modern geologic settings that are undergoing similar tectonic events. Although these regions are Figure 1: Hildebrand’s model of subduction of not perfect analogies, they share enough North America and Rubia. From Hildebrand, 2009. 1 Rhiana Elizabeth Henry Tectonic History Hildebrand Project 1A December 9th, 2016 tectonic features that Hildebrand’s model appears somewhat less outlandish.
    [Show full text]
  • The Kerguelen Plume: What We Have Learned from ~120 Myr of Volcanism
    The Kerguelen Plume: What We Have Learned From ~120 Myr of Volcanism F.A. Frey (1) and D. Weis (2) (1) Earth Atmospheric & Planetary Sciences, MIT, Cambridge, MA 02139, (2) EOS, University of British Columbia, Vancouver, BC V6T1Z4 The Kerguelen Plume has had a major role in creating major volcanic features in the Eastern Indian Ocean over the last ~120 myr. In order to understand this role, igneous basement has been drilled and cored at 9 sites on the Kerguelen Plateau, 2 sites on Broken Ridge and 7 sites on the Ninetyeast Ridge(1,2,3,4). In addition, stratigraphic volcanic sections on the two relatively young islands (Kerguelen and Heard) constructed on the Kerguelen Plateau have been studied(5,6), as well as dredged samples from seamounts defining a linear trend between these islands(7). Major results are: (a) The Kerguelen Plateau began forming at ~120 Ma, after Gondwana breakup. Eruption ages decrease from ~120 Ma in the southern plateau to ~95 Ma in the central plateau. This age range is not consistent with a pulse of volcanism associated with melting of a single, large plume head. (b) The sampled volcanic portion of the plateau is dominantly tholeiitic basalt that formed islands, but the waning stage of volcanism included alkalic basalt and highly evolved, explosively erupted trachytes and rhyolites. (c) At several geographically dispersed locations on the plateau, the Cretaceous tholeiitic basalt has been contaminated by a component derived from continental crust. Geophysical data are consistent with continental crust in the oceanic lithosphere and clasts of ancient garnet-biotite gneiss occur in a conglomerate intercalated with basalt on Elan Bank.
    [Show full text]
  • Aula 4 – Tipos Crustais Tipos Crustais Continentais E Oceânicos
    14/09/2020 Aula 4 – Tipos Crustais Introdução Crosta e Litosfera, Astenosfera Crosta Oceânica e Tipos crustais oceânicos Crosta Continental e Tipos crustais continentais Tipos crustais Continentais e Oceânicos A interação divergente é o berço fundamental da litosfera oceânica: não forma cadeias de montanhas, mas forma a cadeia desenhada pela crista meso- oceânica por mais de 60.000km lineares do interior dos oceanos. A interação convergente leva inicialmente à formação dos arcos vulcânicos e magmáticos (que é praticamente o berço da litosfera continental) e posteriormente à colisão (que é praticamente o fechamento do Ciclo de Wilson, o desparecimento da litosfera oceânica). 1 14/09/2020 Curva hipsométrica da terra A área de superfície total da terra (A) é de 510 × 106 km2. Mostra a elevação em função da área cumulativa: 29% da superfície terrestre encontra-se acima do nível do mar; os mais profundos oceanos e montanhas mais altas uma pequena fração da A. A > parte das regiões de plataforma continental coincide com margens passivas, constituídas por crosta continental estirada. Brito Neves, 1995. Tipos crustais circunstâncias geométrico-estruturais da face da Terra (continentais ou oceânicos); Característica: transitoriedade passar do Tempo Geológico e como forma de dissipar o calor do interior da Terra. Todo tipo crustal adveio de um outro ou de dois outros, e será transformado em outro ou outros com o tempo, toda esta dança expressando a perda de calor do interior para o exterior da Terra. Nenhum tipo crustal é eterno; mais "duráveis" (e.g. velhos Crátons de de "ultra-longa duração"); tipos de curta duração, muitas modificações e rápida evolução potencial (como as bacias de antearco).
    [Show full text]
  • 98-031 Oceanus F/W 97 Final
    A hotspot created the island of Iceland and its characteristic volcanic landscape. Hitting the Hotspots Hotspots are rela- tively small regions on the earth where New Studies Reveal Critical Interactions unusually hot rocks rise from deep inside Between Hotspots and Mid-Ocean Ridges the mantle layer. Jian Lin Associate Scientist, Geology & Geophysics Department he great volcanic mid-ocean ridge system hotspots may play a critical role in shaping the stretches continuously around the globe for seafloor—acting in some cases as strategically T 60,000 kilometers, nearly all of it hidden positioned supply stations that fuel the lengthy beneath the world’s oceans. In some places, how- mid-ocean ridges with magma. ever, mid-ocean ridge volcanoes are so massive that Studies of ridge-hotspot interactions received a they emerge above sea level to create some of the major boost in 1995 when the US Navy declassified most spectacular islands on our planet. Iceland, the gravity data from its Geosat satellite, which flew Azores, and the Galápagos are examples of these from 1985 to 1990. The satellite recorded in unprec- “hotspot” islands—so named because they are edented detail the height of the ocean surface. With believed to form above small regions scattered accuracy within 5 centimeters, it revealed small around the earth where unusually hot rocks rise bumps and dips created by the gravitational pull of from deep inside the mantle layer. dense underwater mountains and valleys. Research- But hotspots may not be such isolated phenom- ers often use precise gravity measurements to probe ena. Exciting advances in satellite oceanography, unseen materials below the ocean floor.
    [Show full text]
  • Presentation on Pacific Plate and Associated Boundaries
    PACIFIC PLATE AND ASSOCIATED BOUNDARIES The Pacific Plate • Pacific Plate is the largest plate and an oceanic plate. • It shares its boundaries with numerous plates namely; North American Plate.(Convergent and transform fault) Philippine Plate.(Convergent) Juan de Fuca Plate.(Convergent) Indo – Australian Plate.(Convergent, Transform Fault) Cocos Plate.(Divergent) Nazca Plate.(Divergent) Antarctic Plate.(Divergent,Transform Fault) Types of Plate Boundaries • Convergent Boundary: Subduction zones where two plates converges. Eg; Aleutian Islands(Alaska) • Divergent Boundary: Spreading centres where two plates move away from each other. Eg; East Pacific Rise (MOR, Pacific Ocean). • Transform Faults: Boundary where two plates slide past each other. For Eg. ; San Andreas Fault. BOUNDARY WITH ANTARCTIC PLATE DIVERGENT BOUNDARY • Pacific – Antarctic Ridge TRANSFORM FAULT • Louisville Seamount Chain Pacific – Antarctic Ridge Pacific – Antarctic Ridge(PAR) is located on the seafloor of the South Pacific Ocean. It is driven by the interaction of a mid oceanic ridge and deep mantle plumes located in the eastern portion of East Pacific Ridge. Louisville Seamount Chain It is the longest line of seamount chain in the Pacific Ocean of about 4,300 km, formed along the transform boundary in the western side between Pacific plate and Antarctic plate. It was formed from the Pacific Plate sliding over a long – lived centre of upwelling magma called the Louisville hotspot. BOUNDARY WITH PHILIPPINE PLATE CONVERGENT BOUNDARY • Izu – Ogasawara Trench • Mariana Trench Izu – Ogasawara Trench It is an oceanic trench in the western Pacific Ocean. It stretches from Japan to northern most section of Mariana Trench. Here, the Pacific Plate is being subducted beneath the Philippine Sea Plate.
    [Show full text]