Seafloor Spreading and Plate Tectonics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Methane Cold Seeps As Biological Oases in the High‐
LIMNOLOGY and Limnol. Oceanogr. 00, 2017, 00–00 VC 2017 The Authors Limnology and Oceanography published by Wiley Periodicals, Inc. OCEANOGRAPHY on behalf of Association for the Sciences of Limnology and Oceanography doi: 10.1002/lno.10732 Methane cold seeps as biological oases in the high-Arctic deep sea Emmelie K. L. A˚ strom€ ,1* Michael L. Carroll,1,2 William G. Ambrose, Jr.,1,2,3,4 Arunima Sen,1 Anna Silyakova,1 JoLynn Carroll1,2 1CAGE - Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT The Arctic University of Norway, Tromsø, Norway 2Akvaplan-niva, FRAM – High North Research Centre for Climate and the Environment, Tromsø, Norway 3Division of Polar Programs, National Science Foundation, Arlington, Virginia 4Department of Biology, Bates College, Lewiston, Maine Abstract Cold seeps can support unique faunal communities via chemosynthetic interactions fueled by seabed emissions of hydrocarbons. Additionally, cold seeps can enhance habitat complexity at the deep seafloor through the accretion of methane derived authigenic carbonates (MDAC). We examined infaunal and mega- faunal community structure at high-Arctic cold seeps through analyses of benthic samples and seafloor pho- tographs from pockmarks exhibiting highly elevated methane concentrations in sediments and the water column at Vestnesa Ridge (VR), Svalbard (798 N). Infaunal biomass and abundance were five times higher, species richness was 2.5 times higher and diversity was 1.5 times higher at methane-rich Vestnesa compared to a nearby control region. Seabed photos reveal different faunal associations inside, at the edge, and outside Vestnesa pockmarks. Brittle stars were the most common megafauna occurring on the soft bottom plains out- side pockmarks. -
Breakup and Early Seafloor Spreading Between India and Antarctica
Geophys. J. Int. (2007) 170, 151–169 doi: 10.1111/j.1365-246X.2007.03450.x Breakup and early seafloor spreading between India and Antarctica Carmen Gaina,1 R. Dietmar Muller¨ ,2 Belinda Brown,2 Takemi Ishihara3 and Sergey Ivanov4 1Center for Geodynamics, Geological Survey of Norway, Trondheim, Norway 2Earth Byte Group, School of Geosciences, The University of Sydney, Australia 3Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science and Technology, AIST Central 7, Tsukuba, Japan 4Polar Marine Geophysical Research Expedition, St Petersburg Accepted 2007 March 21. Received 2007 March 21; in original form 2006 May 26 SUMMARY We present a tectonic interpretation of the breakup and early seafloor spreading between India and Antarctica based on improved coverage of potential field and seismic data off the east Antarctic margin between the Gunnerus Ridge and the Bruce Rise. We have identified a series of ENE trending Mesozoic magnetic anomalies from chron M9o (∼130.2 Ma) to M2o (∼124.1 Ma) in the Enderby Basin, and M9o to M4o (∼126.7 Ma) in the Princess Elizabeth Trough and Davis Sea Basin, indicating that India–Antarctica and India–Australia breakups were roughly contemporaneous. We present evidence for an abandoned spreading centre south geoscience of the Elan Bank microcontinent; the estimated timing of its extinction corresponds to the early surface expression of the Kerguelen Plume at the Southern Kerguelen Plateau around rine 120 Ma. We observe an increase in spreading rate from west to east, between chron M9 Ma and M4 (38–54 mm yr–1), along the Antarctic margin and suggest the tectono-magmatic segmentation of oceanic crust has been influenced by inherited crustal structure, the kinematics GJI of Gondwanaland breakup and the proximity to the Kerguelen hotspot. -
Coastal and Marine Ecological Classification Standard (2012)
FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ...................................................... -
Grade 3 Unit 2 Overview Open Ocean Habitats Introduction
G3 U2 OVR GRADE 3 UNIT 2 OVERVIEW Open Ocean Habitats Introduction The open ocean has always played a vital role in the culture, subsistence, and economic well-being of Hawai‘i’s inhabitants. The Hawaiian Islands lie in the Pacifi c Ocean, a body of water covering more than one-third of the Earth’s surface. In the following four lessons, students learn about open ocean habitats, from the ocean’s lighter surface to the darker bottom fl oor thousands of feet below the surface. Although organisms are scarce in the deep sea, there is a large diversity of organisms in addition to bottom fi sh such as polycheate worms, crustaceans, and bivalve mollusks. They come to realize that few things in the open ocean have adapted to cope with the increased pressure from the weight of the water column at that depth, in complete darkness and frigid temperatures. Students fi nd out, through instruction, presentations, and website research, that the vast open ocean is divided into zones. The pelagic zone consists of the open ocean habitat that begins at the edge of the continental shelf and extends from the surface to the ocean bottom. This zone is further sub-divided into the photic (sunlight) and disphotic (twilight) zones where most ocean organisms live. Below these two sub-zones is the aphotic (darkness) zone. In this unit, students learn about each of the ocean zones, and identify and note animals living in each zone. They also research and keep records of the evolutionary physical features and functions that animals they study have acquired to survive in harsh open ocean habitats. -
World Ocean Thermocline Weakening and Isothermal Layer Warming
applied sciences Article World Ocean Thermocline Weakening and Isothermal Layer Warming Peter C. Chu * and Chenwu Fan Naval Ocean Analysis and Prediction Laboratory, Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-831-656-3688 Received: 30 September 2020; Accepted: 13 November 2020; Published: 19 November 2020 Abstract: This paper identifies world thermocline weakening and provides an improved estimate of upper ocean warming through replacement of the upper layer with the fixed depth range by the isothermal layer, because the upper ocean isothermal layer (as a whole) exchanges heat with the atmosphere and the deep layer. Thermocline gradient, heat flux across the air–ocean interface, and horizontal heat advection determine the heat stored in the isothermal layer. Among the three processes, the effect of the thermocline gradient clearly shows up when we use the isothermal layer heat content, but it is otherwise when we use the heat content with the fixed depth ranges such as 0–300 m, 0–400 m, 0–700 m, 0–750 m, and 0–2000 m. A strong thermocline gradient exhibits the downward heat transfer from the isothermal layer (non-polar regions), makes the isothermal layer thin, and causes less heat to be stored in it. On the other hand, a weak thermocline gradient makes the isothermal layer thick, and causes more heat to be stored in it. In addition, the uncertainty in estimating upper ocean heat content and warming trends using uncertain fixed depth ranges (0–300 m, 0–400 m, 0–700 m, 0–750 m, or 0–2000 m) will be eliminated by using the isothermal layer. -
The "Lost Inca Plateau": Cause of Flat Subduction Beneath Peru? M.-A
Earth and Planetary Science Letters Archimer http://www.ifremer.fr/docelec/ SEP 1999; 171(3) : 335-341 Archive Institutionnelle de l’Ifremer http://dx.doi.org/10.1016/S0012-821X(99)00153-3 © 1999 Elsevier ailable on the publisher Web site The “lost Inca Plateau”: cause of flat subduction beneath Peru? M. -A. Gutschera, *, J. -L. Olivetb, D. Aslanianb, J. -P. Eissenc and R. Mauryd a Laboratorie de Géophysique et Tectonique, Université Montpellier II, France b IFREMER, Brest, France c IRD, Brest, France d Université de Bretagne Occidentale, Brest, France *: Corresponding author : IRD Centre de Bretagne (ex ORSTOM), B.P. 70, 29280 Plouzane, France. Tel.: +33 blisher-authenticated version is av 298 22 46 68; Fax: +33 298 224514, E-mail: [email protected] Abstract: Since flat subduction of the Nazca Plate beneath Peru was first recognized in the 1970s and 1980s a satisfactory explanation has eluded researchers. We present evidence that a lost oceanic plateau (Inca Plateau) has subducted beneath northern Peru and propose that the combined buoyancy of Inca Plateau and Nazca Ridge in southern Peru supports a 1500 km long segment of the downgoing slab and shuts off arc volcanism. This conclusion is based on an analysis of the seismicity of the subducting Nazca Plate, the structure and geochemistry of the Marquesas Plateau as well as tectonic reconstructions of the Pacific–Farallon spreading center 34 to 43 Ma. These restore three sub–parallel Pacific oceanic plateaus; the Austral, Tuamotu and Marquesas, to two Farallon Plate counterparts; the Iquique and Nazca Ridges. Inca Plateau is apparently the sixth and missing piece in an ensemble of ‘V-shaped' hotspot tracks formed at on-axis positions. -
Ocean Depths: the Mesopelagic and Implications for Global Warming
Current Biology Dispatches Ocean Depths: The Mesopelagic and Implications for Global Warming Mark J. Costello1,* and Sean Breyer2 1Institute of Marine Science, University of Auckland, Auckland, 1142, New Zealand 2ESRI, Redlands, CA 92373, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.cub.2016.11.042 The mesopelagic or ‘twilight zone’ of the oceans occurs too deep for photosynthesis, but is a major part of the world’s carbon cycle. Depth boundaries for the mesopelagic have now been shown on a global scale using the distribution of pelagic animals detected by compiling echo-soundings from ships around the world, and been used to predict the effect of global warming on regional fish production. Depth Zonation Analyses were at 5 m depth intervals to However, it remains to be clearly shown The classical concepts for depth zonation 1,000 m deep, and a spatial resolution of whether the abyssal zone is ecologically [1] in the ocean begin at the seashore 300 km2. distinct from the bathyal. (Table 1). Distinct communities are visible The environment changes less as we The data shown in Figure 1 are global on the rocky seashore, and reflect the go deeper (Figure 1), so we expect the averages, and local exceptions will occur, adaptations of their animals and plants vertical extent of ecological zones to particularly in more enclosed waters such to exposure to air and wave action, increase with depth. While the rocky as the Mediterranean and Black Seas [6]. as well as the effects of grazing and seashore may have distinct habitats only The seabed-resident fauna (benthos) will predation [2]. -
Lecture 24 the Oceans Reading: White, Ch 9.1 to 9.7.1 (Or Digital P370-400)
Lecture 24 The Oceans Reading: White, Ch 9.1 to 9.7.1 (or digital p370-400) Last Time 1. The oceans: currents, stratification and chemistry Today 2. the marine carbon cycle GG325 L24, F2013 The Marine Carbon Cycle The marine biosphere and ocean currents control non-conservative chemical signatures in marine water masses. Photosynthetic productivity in the surface waters requires a flux of nutrient- rich waters in to the photic zone. This is variable around the globe. Respirative decomposition of organic matter throughout the marine water column is also variable around the globe. If the oceans did not convect in a semi-steady-state manner, the cycle that controls the concentrations of C, O, N and P in various water masses and the relative biomass that is sustained there would not exist. Today we investigate the movement of carbon in today's oceans. next week we will look to the geologic record to see how past climatic conditions on Earth altered the movement of water masses the motions of carbon through the oceans, plus we consider our future. GG325 L24, F2013 1 Deep Ocean Circulation Effects: The circulation patterns in the 2 oceans that we discussed last time results in what is sometimes referred to as basin-to-basin fractionation. Pacific: deep water inflow is in the south. Return flow is by both upwelling and by diffuse upflow of deep water in the North Pacific. This "in on the bottom out on the top" circulation is like that in most estuaries, thus it is known as estuarine circulation. Atlantic: has deep water formation from This circulation pattern affects nearly every shallow waters: anti- aspect of the marine carbon cycle. -
1. Describe the Principal Oceans of Earth, Including the Following: A
Chapter 1: Upon completion of this chapter, the student should be able to: 1. Describe the principal oceans of Earth, including the following: A. location B. relative size C. land forms that border the ocean 2. Name the deepest ocean trench and describe its exploration by humans. 3. Discuss early ocean exploration and include the contributions of: A. early Pacific islanders (4000 BC– 900 AD) B. the Kon Tiki voyage C. Phoenicians D. Greeks E. Romans 4. Describe the contributions to oceanic exploration during the Middle Ages and the Ming Dynasty, including the: A. Arabs B. Vikings Ming Dynasty (1405–1433) 5. Elaborate on the contributions to oceanic exploration made by European explorers during the Renaissance (Age of Discovery), including: A. Prince Henry the Navigator B. Vasco da Gama C. Christopher Columbus D. John Cabot E. Vasco Nùñez de Balboa F. Ferdinand Magellan G. Juan Sebastian del Caño 6. Discuss the contributions of James Cook to early ocean science. 7. List and describe the systematic steps of the scientific method. 8. Distinguish between a hypothesis and a theory. 9. Describe the formation of the solar system as outlined by the nebular hypothesis. 10. Compare and contrast Protoearth and modern Earth. 11. Describe density stratification in Earth and the resultant chemical structure, including the: A. crust B. mantle C. core 12. Describe the physical structure of Earth, including the: A. inner core B. outer core C. mesosphere D. asthenosphere E. lithosphere 13. Distinguish between continental crust and oceanic crust, including location, chemical, and physical properties of the crust. 14. Differentiate between isostatic adjustment and isostatic rebound. -
Stromatolites Below the Photic Zone in the Northern Arabian Sea Formed by Calcifying Chemotrophic Microbial Mats
Stromatolites below the photic zone in the northern Arabian Sea formed by calcifying chemotrophic microbial mats Tobias Himmler1*, Daniel Smrzka2, Jennifer Zwicker2, Sabine Kasten3,4, Russell S. Shapiro5, Gerhard Bohrmann1, and Jörn Peckmann2,6 1MARUM–Zentrum für Marine Umweltwissenschaften und Fachbereich Geowissenschaften, Universität Bremen, 28334 Bremen, Germany 2Department für Geodynamik und Sedimentologie, Erdwissenschaftliches Zentrum, Universität Wien, 1090 Wien, Austria 3Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany 4Fachbereich Geowissenschaften, Universität Bremen, 28359 Bremen, Germany 5Geological and Environmental Sciences Department, California State University–Chico, Chico, California 95929, USA 6Institut für Geologie, Centrum für Erdsystemforschung und Nachhaltigkeit, Universität Hamburg, 20146 Hamburg, Germany − − + 2− + ABSTRACT reduction: HS + NO3 + H + H2O → SO4 + NH4 (cf. Fossing et al., 1995; Chemosynthesis increases alkalinity and facilitates stromatolite Otte et al., 1999). The effect of this process, referred to as nitrate-driven growth at methane seeps in 731 m water depth within the oxygen sulfide oxidation (ND-SO), is amplified when it takes place near hotspots minimum zone (OMZ) in the northern Arabian Sea. Microbial fab- of SD-AOM (Siegert et al., 2013). Therefore, it has been hypothesized rics, including mineralized filament bundles resembling the sulfide- that fossilization of sulfide-oxidizing bacteria may occur during seep- oxidizing bacterium Thioploca, mineralized extracellular polymeric carbonate formation (Bailey et al., 2009). Yet, seep carbonates resulting substances, and fossilized rod-shaped and filamentous cells, all pre- from the putative interaction of sulfide-oxidizing bacteria with the SD- served in 13C-depleted authigenic carbonate, suggest that biofilm cal- AOM consortium have, to the best of our knowledge, only been recognized cification resulted from nitrate-driven sulfide oxidation (ND-SO) and in ancient seep deposits (Peckmann et al., 2004). -
Chapter 51. Biological Communities on Seamounts and Other Submarine Features Potentially Threatened by Disturbance
Chapter 51. Biological Communities on Seamounts and Other Submarine Features Potentially Threatened by Disturbance Contributors: J. Anthony Koslow, Peter Auster, Odd Aksel Bergstad, J. Murray Roberts, Alex Rogers, Michael Vecchione, Peter Harris, Jake Rice, Patricio Bernal (Co-Lead members) 1. Physical, chemical, and ecological characteristics 1.1 Seamounts Seamounts are predominantly submerged volcanoes, mostly extinct, rising hundreds to thousands of metres above the surrounding seafloor. Some also arise through tectonic uplift. The conventional geological definition includes only features greater than 1000 m in height, with the term “knoll” often used to refer to features 100 – 1000 m in height (Yesson et al., 2011). However, seamounts and knolls do not appear to differ much ecologically, and human activity, such as fishing, focuses on both. We therefore include here all such features with heights > 100 m. Only 6.5 per cent of the deep seafloor has been mapped, so the global number of seamounts must be estimated, usually from a combination of satellite altimetry and multibeam data as well as extrapolation based on size-frequency relationships of seamounts for smaller features. Estimates have varied widely as a result of differences in methodologies as well as changes in the resolution of data. Yesson et al. (2011) identified 33,452 seamount and guyot features > 1000 m in height and 138,412 knolls (100 – 1000 m), whereas Harris et al. (2014) identified 10,234 seamount and guyot features, based on a stricter definition that restricted seamounts to conical forms. Estimates of total abundance range to >100,000 seamounts and to 25 million for features > 100 m in height (Smith 1991; Wessel et al., 2010). -
The Kerguelen Plume: What We Have Learned from ~120 Myr of Volcanism
The Kerguelen Plume: What We Have Learned From ~120 Myr of Volcanism F.A. Frey (1) and D. Weis (2) (1) Earth Atmospheric & Planetary Sciences, MIT, Cambridge, MA 02139, (2) EOS, University of British Columbia, Vancouver, BC V6T1Z4 The Kerguelen Plume has had a major role in creating major volcanic features in the Eastern Indian Ocean over the last ~120 myr. In order to understand this role, igneous basement has been drilled and cored at 9 sites on the Kerguelen Plateau, 2 sites on Broken Ridge and 7 sites on the Ninetyeast Ridge(1,2,3,4). In addition, stratigraphic volcanic sections on the two relatively young islands (Kerguelen and Heard) constructed on the Kerguelen Plateau have been studied(5,6), as well as dredged samples from seamounts defining a linear trend between these islands(7). Major results are: (a) The Kerguelen Plateau began forming at ~120 Ma, after Gondwana breakup. Eruption ages decrease from ~120 Ma in the southern plateau to ~95 Ma in the central plateau. This age range is not consistent with a pulse of volcanism associated with melting of a single, large plume head. (b) The sampled volcanic portion of the plateau is dominantly tholeiitic basalt that formed islands, but the waning stage of volcanism included alkalic basalt and highly evolved, explosively erupted trachytes and rhyolites. (c) At several geographically dispersed locations on the plateau, the Cretaceous tholeiitic basalt has been contaminated by a component derived from continental crust. Geophysical data are consistent with continental crust in the oceanic lithosphere and clasts of ancient garnet-biotite gneiss occur in a conglomerate intercalated with basalt on Elan Bank.