Evolution of Stars
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SHELL BURNING STARS: Red Giants and Red Supergiants
SHELL BURNING STARS: Red Giants and Red Supergiants There is a large variety of stellar models which have a distinct core – envelope structure. While any main sequence star, or any white dwarf, may be well approximated with a single polytropic model, the stars with the core – envelope structure may be approximated with a composite polytrope: one for the core, another for the envelope, with a very large difference in the “K” constants between the two. This is a consequence of a very large difference in the specific entropies between the core and the envelope. The original reason for the difference is due to a jump in chemical composition. For example, the core may have no hydrogen, and mostly helium, while the envelope may be hydrogen rich. As a result, there is a nuclear burning shell at the bottom of the envelope; hydrogen burning shell in our example. The heat generated in the shell is diffusing out with radiation, and keeps the entropy very high throughout the envelope. The core – envelope structure is most pronounced when the core is degenerate, and its specific entropy near zero. It is supported against its own gravity with the non-thermal pressure of degenerate electron gas, while all stellar luminosity, and all entropy for the envelope, are provided by the shell source. A common property of stars with well developed core – envelope structure is not only a very large jump in specific entropy but also a very large difference in pressure between the center, Pc, the shell, Psh, and the photosphere, Pph. Of course, the two characteristics are closely related to each other. -
PP and CNO-Cycle Nucleosynthesis: Kinetics and Numerical Modeling of Competitive Fusion Processes
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work 5-2012 PP and CNO-Cycle Nucleosynthesis: Kinetics and Numerical Modeling of Competitive Fusion Processes Matt Torrico [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Part of the Physical Processes Commons, and the Plasma and Beam Physics Commons Recommended Citation Torrico, Matt, "PP and CNO-Cycle Nucleosynthesis: Kinetics and Numerical Modeling of Competitive Fusion Processes" (2012). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/1557 This Dissertation/Thesis is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. PP and CNO-Cycle Nucleosynthesis: Kinetics and Numerical Modeling of Competitive Fusion Processes M.N. TorricoA, M.W. GuidryA,B A Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA B Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Signed on 21 April 2012 Abstract The very history of matter (and hence Man) is exquisitely coupled to the nuclear fusion processes that power the Sun and other stars. The fusion of hydrogen into helium and other thermonuclear fusion processes (collectively called nucleosynthesis processes) provides us with not only the energy to carry on our lives, but the very materials that constitute our very bodies and our world. -
Astro 404 Lecture 30 Nov. 6, 2019 Announcements
Astro 404 Lecture 30 Nov. 6, 2019 Announcements: • Problem Set 9 due Fri Nov 8 2 3/2 typo corrected in L24 notes: nQ = (2πmkT/h ) • Office Hours: Instructor – after class or by appointment • TA: Thursday noon-1pm or by appointment • Exam: grading elves hard at work Last time: low-mass stars after main sequence Q: burning phases? 1 Q: shell burning “mirror” principle? Low-Mass Stars After Main Sequence unburnt H ⋆ helium core contracts H He H burning in shell around core He outer layers expand → red giant “mirror” effect of shell burning: • core contraction, envelope expansion • total gravitational potential energy Ω roughly conserved core becomes more tightly bound, envelope less bound ⋆ helium ignition degenerate core unburnt H H He runaway burning: helium flash inert He → 12 He C+O 2 then core helium burning 3α C and shell H burning “horizontal branch” star unburnt H H He ⋆ for solar mass stars: after CO core forms inert He He C • helium shell burning begins inert C • hydrogen shell burning continues Q: star path on HR diagram during these phases? 3 Low-Mass Post-Main-Sequence: HR Diagram ⋆ H shell burning ↔ red giant ⋆ He flash marks “tip of the red giant branch” ⋆ core He fusion ↔ horizontal branch ⋆ He + H shell burning ↔ asymptotic giant branch asymptotic giant branch H+He shell burn He flash core He burn L main sequence horizontal branch red giant branch H shell burning Sun Luminosity 4 Temperature T iClicker Poll: AGB Star Intershell Region in AGB phase: burning in two shells, no core fusion unburnt H H He inert He He C Vote your conscience–all -
The Core Helium Flash Revisited
A&A 520, A114 (2010) Astronomy DOI: 10.1051/0004-6361/201014461 & c ESO 2010 Astrophysics The core helium flash revisited III. From Population I to Population III stars M. Mocák1,S.W.Campbell2,3,E.Müller4, and K. Kifonidis4 1 Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, 1050 Brussels, Belgium e-mail: [email protected] 2 Departament de Física i Enginyeria Nuclear, EUETIB, Universitat Politécnica de Catalunya, C./Comte d’Urgell 187, 08036 Barcelona, Spain e-mail: [email protected] 3 Centre for Stellar and Planetary Astrophysics, School of Mathematical Sciences, Monash University, Melbourne 3800, Australia 4 Max-Planck-Institut für Astrophysik, Postfach 1312, 85741 Garching, Germany Received 18 March 2010 / Accepted 13 June 2010 ABSTRACT Context. Degenerate ignition of helium in low-mass stars at the end of the red giant branch phase leads to dynamic convection in their helium cores. One-dimensional (1D) stellar modeling of this intrinsically multi-dimensional dynamic event is likely to be inadequate. Previous hydrodynamic simulations imply that the single convection zone in the helium core of metal-rich Pop I stars grows during the flash on a dynamic timescale. This may lead to hydrogen injection into the core and to a double convection zone structure as known from one-dimensional core helium flash simulations of low-mass Pop III stars. Aims. We perform hydrodynamic simulations of the core helium flash in two and three dimensions to better constrain the nature of these events. To this end we study the hydrodynamics of convection within the helium cores of a 1.25 M metal-rich Pop I star (Z = 0.02), and, for the first time, a 0.85 M metal-free Pop III star (Z = 0) near the peak of the flash. -
Announcements
Announcements • Next Session – Stellar evolution • Low-mass stars • Binaries • High-mass stars – Supernovae – Synthesis of the elements • Note: Thursday Nov 11 is a campus holiday Red Giant 8 100Ro 10 years L 10 3Ro, 10 years Temperature Red Giant Hydrogen fusion shell Contracting helium core Electron Degeneracy • Pauli Exclusion Principle says that you can only have two electrons per unit 6-D phase- space volume in a gas. DxDyDzDpxDpyDpz † Red Giants • RG Helium core is support against gravity by electron degeneracy • Electron-degenerate gases do not expand with increasing temperature (no thermostat) • As the Temperature gets to 100 x 106K the “triple-alpha” process (Helium fusion to Carbon) can happen. Helium fusion/flash Helium fusion requires two steps: He4 + He4 -> Be8 Be8 + He4 -> C12 The Berylium falls apart in 10-6 seconds so you need not only high enough T to overcome the electric forces, you also need very high density. Helium Flash • The Temp and Density get high enough for the triple-alpha reaction as a star approaches the tip of the RGB. • Because the core is supported by electron degeneracy (with no temperature dependence) when the triple-alpha starts, there is no corresponding expansion of the core. So the temperature skyrockets and the fusion rate grows tremendously in the `helium flash’. Helium Flash • The big increase in the core temperature adds momentum phase space and within a couple of hours of the onset of the helium flash, the electrons gas is no longer degenerate and the core settles down into `normal’ helium fusion. • There is little outward sign of the helium flash, but the rearrangment of the core stops the trip up the RGB and the star settles onto the horizontal branch. -
Stellar Evolution
AccessScience from McGraw-Hill Education Page 1 of 19 www.accessscience.com Stellar evolution Contributed by: James B. Kaler Publication year: 2014 The large-scale, systematic, and irreversible changes over time of the structure and composition of a star. Types of stars Dozens of different types of stars populate the Milky Way Galaxy. The most common are main-sequence dwarfs like the Sun that fuse hydrogen into helium within their cores (the core of the Sun occupies about half its mass). Dwarfs run the full gamut of stellar masses, from perhaps as much as 200 solar masses (200 M,⊙) down to the minimum of 0.075 solar mass (beneath which the full proton-proton chain does not operate). They occupy the spectral sequence from class O (maximum effective temperature nearly 50,000 K or 90,000◦F, maximum luminosity 5 × 10,6 solar), through classes B, A, F, G, K, and M, to the new class L (2400 K or 3860◦F and under, typical luminosity below 10,−4 solar). Within the main sequence, they break into two broad groups, those under 1.3 solar masses (class F5), whose luminosities derive from the proton-proton chain, and higher-mass stars that are supported principally by the carbon cycle. Below the end of the main sequence (masses less than 0.075 M,⊙) lie the brown dwarfs that occupy half of class L and all of class T (the latter under 1400 K or 2060◦F). These shine both from gravitational energy and from fusion of their natural deuterium. Their low-mass limit is unknown. -
Lecture 7: "Basics of Star Formation and Stellar Nucleosynthesis" Outline
Lecture 7: "Basics of Star Formation and Stellar Nucleosynthesis" Outline 1. Formation of elements in stars 2. Injection of new elements into ISM 3. Phases of star-formation 4. Evolution of stars Mark Whittle University of Virginia Life Cycle of Matter in Milky Way Molecular clouds New clouds with gravitationally collapse heavier composition to form stellar clusters of stars are formed Molecular cloud Stars synthesize Most massive stars evolve He, C, Si, Fe via quickly and die as supernovae – nucleosynthesis heavier elements are injected in space Solar abundances • Observation of atomic absorption lines in the solar spectrum • For some (heavy) elements meteoritic data are used Solar abundance pattern: • Regularities reflect nuclear properties • Several different processes • Mixture of material from many, many stars 5 SolarNucleosynthesis abundances: key facts • Solar• Decreaseabundance in abundance pattern: with atomic number: - Large negative anomaly at Be, B, Li • Regularities reflect nuclear properties - Moderate positive anomaly around Fe • Several different processes 6 - Sawtooth pattern from odd-even effect • Mixture of material from many, many stars Origin of elements • The Big Bang: H, D, 3,4He, Li • All other nuclei were synthesized in stars • Stellar nucleosynthesis ⇔ 3 key processes: - Nuclear fusion: PP cycles, CNO bi-cycle, He burning, C burning, O burning, Si burning ⇒ till 40Ca - Photodisintegration rearrangement: Intense gamma-ray radiation drives nuclear rearrangement ⇒ 56Fe - Most nuclei heavier than 56Fe are due to neutron -
Today's Outline
Today's outline Review High and low mass Low-mass Stars Summary of evolution Main sequence Hydrogen Exhaustion Review: Clusters, Birth of Stars Giant phase Helium flash Horizontal Branch Evolution of low mass stars Helium Exhaustion Planetary Nebula I Low and high mass stars Summary again I Interior of a giant star I Phases of burning I White dwarf formation Review High and low mass Low-mass Stars Summary of evolution Main sequence Evolution of low mass stars Hydrogen Exhaustion Giant phase I Low and high mass stars Helium flash Horizontal Branch Helium Exhaustion I Interior of a giant star Planetary Nebula Summary again I Phases of burning I White dwarf formation Reference stars Low Mass: Review I Sun - low-mass "dwarf" High and low mass Low-mass Stars I Vega - low-mass "dwarf" Summary of evolution Main sequence I Sirius - low-mass "dwarf" Hydrogen Exhaustion Giant phase Helium flash I Arcturus - low-mass giant Horizontal Branch Helium Exhaustion I Sirius B - white dwarf (very small) Planetary Nebula Summary again High Mass: I Rigil - high-mass (blue) giant I Betelgeuse - high-mass (red) giant High and low mass stars Black hole Review "high−mass" High and low mass Low-mass Stars (hydrogen burning) Neutron Star Summary of evolution Main Sequence Main sequence 8 Hydrogen Exhaustion Giants Giant phase Protostar Helium flash Horizontal Branch "low−mass" Helium Exhaustion Planetary Nebula 2 White dwarf Summary again Birth Mass Time Stars generally classified by their end-of-life I Low mass { form white dwarf stars, no supernova I High mass { form -
Astronomy 103 Exam 2 Review
Astronomy 103 Exam 2 Review Spring 2009 Which star is hoer, a G4 main sequence star or a G4 giant? A. The main sequence star B. The giant C. Both have the same temperature D. Cannot be determined from informaon given Which star is hoer, a G4 main sequence star or a G4 giant? A. The main sequence star B. The giant C. Both have the same temperature D. Cannot be determined from informaon given What would be an immediate indicator the Sun had stopped fusing hydrogen? A. The light we see would shi wavelengths into the ultraviolet. B. The Sun would blow off its outer layers as a planetary nebula. C. Solar observatories would see that the Sun’s core was rapidly shrinking. D. The amount of neutrinos observed from the Sun would suddenly change. What would be an immediate indicator the Sun had stopped fusing hydrogen? A. The light we see would shi wavelengths into the ultraviolet. B. The Sun would blow off its outer layers as a planetary nebula. C. Solar observatories would see that the Sun’s core was rapidly shrinking. D. The amount of neutrinos observed from the Sun would suddenly change. A helium flash: A. Occurs to all stars B. Occurs only if the star’s core is degenerate C. Creates a planetary nebula D. None of the above A helium flash: A. Occurs to all stars B. Occurs only if the star’s core is degenerate C. Creates a planetary nebula D. None of the above The main sequence is: A. The most stable phase of a star’s life B. -
Stellar Evolution Microcosm of Astrophysics
Nature Vol. 278 26 April 1979 Spring books supplement 817 soon realised that they are neutron contrast of the type. In the first half stars. It now seems certain that neutron Stellar of the book there are only a small stars rather than white dwarfs are a number of detailed alterations but later normal end-product of a supernova there are much more substantial explosion. In addition it has been evolution changes, particularly dn chapters 6, 7 realised that sufficiently massive stellar and 8. The book is essentially un remnants will be neither white dwarfs R. J. Tayler changed in length, the addition of new nor neutron stars but will be black material being balanced by the removal holes. Rather surprisingly in view of Stellar Evolution. Second edition. By of speculative or unimportant material. the great current interest in close A. J. Meadows. Pp. 171. (Pergamon: Substantial changes in the new binary stars and mass exchange be Oxford, 1978.) Hardback £7.50; paper edition include the following. A section tween their components, the section back £2.50. has been added on the solar neutrino on this topic has been slightly reduced experiment, the results of which are at in length, although there is a brief THE subject of stellar structure and present the major question mark mention of the possible detection of a evolution is believed to be the branch against the standard view of stellar black hole in Cygnus X-1. of astrophysics which is best under structure. There is a completely revised The revised edition of this book stood. -
Post-Main Sequence Stellar Evolution
Ay 20 - Lecture 9 Post-Main Sequence Stellar Evolution This file has many figures missing, in order to keep it a reasonable size. Main Sequence and the Range of Stellar Masses • MS is defined as the locus where stars burn H into He in their cores • Objects which cannot reach the necessary [T,r] to ignite this fusion, because of their low mass (M! < 0.08 Mù) are called brown dwarfs (however, they may burn the trace amounts of primordial deuterium) • Not obvious why should stars form a (nearly) 1-dim. family of objects with the mass as the dominant param. • The high-mass end of the stellar family is set by the Eddington limit The Eddington Limit Radiation is important: • inside stars, as a source of energy transport • outside stars and other sources, from its effect on surrounding gas Consider force which photons exert on surrounding gas when a fraction of them are absorbed: Source of radiation: • Luminosity L • Spherically symmetric emission • Energy flux at distance r: L 2 r 4pr • Each photon has momentum p=E/c • Momentum flux: L 4pcr2 † (From P. Armitage) † If the source is surrounded by gas with opacity k, then in traveling a distance ds the fraction of radiation absorbed is: dI = -k ¥ rds I column density of gas Can therefore† interpret k as being the fraction of radiation absorbed by unit column density of gas. Force exerted by radiation on that gas is then: kL frad = outward force 4pcr 2 Force due to gravity on that gas (unit mass): GM inward, toward star of f = † grav r2 mass M (From P. -
Pp-Chain and CNO Cycle
10 – pp-chain and CNO cycle introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 pp chain reaction in the Sun introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 2 10.1 - Hydrogen burning – ppI chain As a star forms from a giant cloud in the interstellar medium (protostar), density and temperature increase in its center. Fusion of hydrogen (1H) is the first long term nuclear energy source that can ignite. With only hydrogen available (for example, a first generation star) the ppI chain (see previous slide) is the only possible sequence of reactions. (other reaction chains require catalyst nuclei). The ppI chain proceeds as follows: 2 Step 1: p + p → He This does not work because 2He is unstable + (10.1) p + p → d + e + ve 3 (10.2) Step 2: d + p → He d d 4 He This does not work because the d abundance is + → too low. d + p leads to rapid destruction of d. 3 4 Step 3: He + p → Li Does not work because 4Li is unstable 3 He + d → 4 He + n Does not work because d abundance is too low 3 He + 3 He → 4 He + 2p (10.3) Last reaction is OK because Y3He gets large as there is no other rapid destruction. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 3 10.1.1 - S-factors for the pp chain All reactions in the pp-chain are charge-dependent. The cross section has the form given by Eq. (9.49) which can be cast in the form b − where 1 E σ ∝ e (10.4) A1A2 E b 31.28 Z Z A1/2 keV A = = 1 2 (10.5) A1 + A2 (10.6) Typical units for S(E) are keV barn.