Stellar Evolution Microcosm of Astrophysics

Total Page:16

File Type:pdf, Size:1020Kb

Stellar Evolution Microcosm of Astrophysics Nature Vol. 278 26 April 1979 Spring books supplement 817 soon realised that they are neutron contrast of the type. In the first half stars. It now seems certain that neutron Stellar of the book there are only a small stars rather than white dwarfs are a number of detailed alterations but later normal end-product of a supernova there are much more substantial explosion. In addition it has been evolution changes, particularly dn chapters 6, 7 realised that sufficiently massive stellar and 8. The book is essentially un­ remnants will be neither white dwarfs R. J. Tayler changed in length, the addition of new nor neutron stars but will be black material being balanced by the removal holes. Rather surprisingly in view of Stellar Evolution. Second edition. By of speculative or unimportant material. the great current interest in close A. J. Meadows. Pp. 171. (Pergamon: Substantial changes in the new binary stars and mass exchange be­ Oxford, 1978.) Hardback £7.50; paper­ edition include the following. A section tween their components, the section back £2.50. has been added on the solar neutrino on this topic has been slightly reduced experiment, the results of which are at in length, although there is a brief THE subject of stellar structure and present the major question mark mention of the possible detection of a evolution is believed to be the branch against the standard view of stellar black hole in Cygnus X-1. of astrophysics which is best under­ structure. There is a completely revised The revised edition of this book stood. Because most parts of physics­ discussion of the evolution of low mass remains a very good non-mathematical such as nuclear physics, atomic physics, stars following the helium flash, the introduction to stellar evolution and the thermodynamics and statistical physics, explosive onset of the conversion of paperback edition is very reasonably electromagnetism and gravitation-are helium into carbon. The major change priced. 0 involved in determining the structure concerns stellar old age and death. of a star, it is a very suitable topic in Shortly after the first edition appeared, R. I. Tayler is Prof,r.vsor of Astronomy at was applied physics to introduce to under­ pulsars were discovered and it the University of Sussex, Brighton, UK. graduates. It is also possible to present the subject to an audi,ence with a often do not succeed in presenting the slighter knowledge of physics and this of more serious aspects of the subject, and is the concern of Professor Meadows. Microcosm their readers might not realise the im­ When the first edition of this book portant part which is played by astron­ was published in 1967, it received a astrophysics omy in postgraduate physics education. warm welcome because of the manner Mitton is a physicist, and emphasises in which it bridged the gap between F. Graham Smith the basic physics throughout, but his very superficial discussions of stellar book is nevertheless a popular book. and evolution in books for He eschews mathematics, and uses not structure The Crab Nebula. By Sill)on Mi.tton. the layman and complex mathematical a single equation. The reader need Pp. 194. (Faber and Faber: London; texts for the professional astronomer. only be moderately numerate, so that Scribners: Totowa, New Jersey, 1979.) Twenty years earlier George Gamow's he can apprecia.te the large powers of £6.50; $14.95. book The Birth and Death of the Sun ten involved in any branch of astro­ had served a similar purpose, but by physics. 1967 this was seriously out of date in THE 900th birthday of the Crab Nebula The decision to exclude mathematics detail. The first edition of Meadows' was celebrated by radio astronmers in reduces the astronomy of the Crab to book gave a clear account of the July 1954. At that time it was almost less than half of the total of astronomy; observed properties of stars and the the only celestial object, apart from the and further choices have been made. manner in which they are obtained. It Sun, where a close link between optical Mitton has chosen to make the book then discussed the principles under­ and radio astronomy had emerged. In readable, straight through, for anyone lying the structure of stars, the source these days, when such links have ap­ with an undergraduate level of physics of the energy radiated from stellar sur­ peared throughout astronomy, the or astronomy. Others, with less expert faces, the manner in which this energy Crab still has a unique importance, and knowledge, will enjoy at least the his­ travels from the centre to the surface annual celebrations of the supernova torical accounts of the supernova of a star, and the physical state of the explosion would still be appropr-iate. explosion, gleaned from Chinese and matter inside stars. The remainder of Geoffrey Burbridge once said that Japanese records of the "guest star", the book was concerned with the evolu­ astronomy could be divided into two and the more recent history of dis­ tion of stars from their birth as dense parts : the astronomy of the Crab coveries-notably of the pulsar which condensations in interstellar gas clouds, Nebula and the astronomy of every­ remains the centre of the nebula, pro­ through the major part of their life as thing else. There are indeed links viding the powerhouse for the energy main sequence stars (the present state between the Crab and almost every­ to keep the nebular shining. For the of the Sun) and subsequently as red thing else in astronomy, so that a dis­ physicist, the -exposition of the basic giants, to their death as white dwarfs, course on the Crab can he used as an concepts of degeneracy in white dwarfs possibly after a supernova explosion. introduction, for example, to astron­ and neutron stars, and of superconduc­ It was then difficult to see how our omy, stellar evolution, cosmology and tivity, will have a strong appeal, as they knowledge of stellar evolution could be interstellar matter; including the Crab show most clearly the connection be­ treated in a significantly clearer manner Pulsar extends the list to the physics of tween terrestrial and celestial solid­ without the introduction of mathe­ condensed matter, high energy electro­ state physics. matical detail, which was completely dynamics, superconductivity, and many Mitton is an enthusiast. In conveying absent frt'm Meadows' book. other aspects of quantum physics. his enthusiasm he does sometimes over­ The first edition has now been This microcosm of astrophysics can step the mark, in such purple passages revised to take account of developments therefore he used as a general introduc­ as his description of synchrotron radia­ in the suhject. Most of the book has tion to astronomy, which should appeal tion : "photon screeches from very been photographically reproduced from to any scientist and which may per­ energetic electrons as they wrap them­ the first edition and in most places it is suade some that astronomy is a very selves round the ambient magnetic possible to sec where ,·hangcs have been useful means of education in basic field". He refers -to the giant pulses made hrcause of a slight variation in physics. Popular books on astronomy from the pulsar as "jumbo", he tells us IC Macmillan Journals Ltd 1979 .
Recommended publications
  • Spectroscopic Analysis of Accretion/Ejection Signatures in the Herbig Ae/Be Stars HD 261941 and V590 Mon T Moura, S
    Spectroscopic analysis of accretion/ejection signatures in the Herbig Ae/Be stars HD 261941 and V590 Mon T Moura, S. Alencar, A. Sousa, E. Alecian, Y. Lebreton To cite this version: T Moura, S. Alencar, A. Sousa, E. Alecian, Y. Lebreton. Spectroscopic analysis of accretion/ejection signatures in the Herbig Ae/Be stars HD 261941 and V590 Mon. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2020, 494 (3), pp.3512-3535. 10.1093/mnras/staa695. hal-02523038 HAL Id: hal-02523038 https://hal.archives-ouvertes.fr/hal-02523038 Submitted on 16 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MNRAS 000,1–24 (2019) Preprint 27 February 2020 Compiled using MNRAS LATEX style file v3.0 Spectroscopic analysis of accretion/ejection signatures in the Herbig Ae/Be stars HD 261941 and V590 Mon T. Moura1?, S. H. P. Alencar1, A. P. Sousa1;2, E. Alecian2, Y. Lebreton3;4 1Universidade Federal de Minas Gerais, Departamento de Física, Av. Antônio Carlos 6627, 31270-901, Brazil 2Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France 3LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ.
    [Show full text]
  • X-Ray Sun SDO 4500 Angstroms: Photosphere
    ASTR 8030/3600 Stellar Astrophysics X-ray Sun SDO 4500 Angstroms: photosphere T~5000K SDO 1600 Angstroms: upper photosphere T~5x104K SDO 304 Angstroms: chromosphere T~105K SDO 171 Angstroms: quiet corona T~6x105K SDO 211 Angstroms: active corona T~2x106K SDO 94 Angstroms: flaring regions T~6x106K SDO: dark plasma (3/27/2012) SDO: solar flare (4/16/2012) SDO: coronal mass ejection (7/2/2012) Aims of the course • Introduce the equations needed to model the internal structure of stars. • Overview of how basic stellar properties are observationally measured. • Study the microphysics relevant for stars: the equation of state, the opacity, nuclear reactions. • Examine the properties of simple models for stars and consider how real models are computed. • Survey (mostly qualitatively) how stars evolve, and the endpoints of stellar evolution. Stars are relatively simple physical systems Sound speed in the sun Problem of Stellar Structure We want to determine the structure (density, temperature, energy output, pressure as a function of radius) of an isolated mass M of gas with a given composition (e.g., H, He, etc.) Known: r Unknown: Mass Density + Temperature Composition Energy Pressure Simplifying assumptions 1. No rotation à spherical symmetry ✔ For sun: rotation period at surface ~ 1 month orbital period at surface ~ few hours 2. No magnetic fields ✔ For sun: magnetic field ~ 5G, ~ 1KG in sunspots equipartition field ~ 100 MG Some neutron stars have a large fraction of their energy in B fields 3. Static ✔ For sun: convection, but no large scale variability Not valid for forming stars, pulsating stars and dying stars. 4.
    [Show full text]
  • Plotting Variable Stars on the H-R Diagram Activity
    Pulsating Variable Stars and the Hertzsprung-Russell Diagram The Hertzsprung-Russell (H-R) Diagram: The H-R diagram is an important astronomical tool for understanding how stars evolve over time. Stellar evolution can not be studied by observing individual stars as most changes occur over millions and billions of years. Astrophysicists observe numerous stars at various stages in their evolutionary history to determine their changing properties and probable evolutionary tracks across the H-R diagram. The H-R diagram is a scatter graph of stars. When the absolute magnitude (MV) – intrinsic brightness – of stars is plotted against their surface temperature (stellar classification) the stars are not randomly distributed on the graph but are mostly restricted to a few well-defined regions. The stars within the same regions share a common set of characteristics. As the physical characteristics of a star change over its evolutionary history, its position on the H-R diagram The H-R Diagram changes also – so the H-R diagram can also be thought of as a graphical plot of stellar evolution. From the location of a star on the diagram, its luminosity, spectral type, color, temperature, mass, age, chemical composition and evolutionary history are known. Most stars are classified by surface temperature (spectral type) from hottest to coolest as follows: O B A F G K M. These categories are further subdivided into subclasses from hottest (0) to coolest (9). The hottest B stars are B0 and the coolest are B9, followed by spectral type A0. Each major spectral classification is characterized by its own unique spectra.
    [Show full text]
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • • Classifying Stars: HR Diagram • Luminosity, Radius, and Temperature • “Vogt-Russell” Theorem • Main Sequence • Evolution on the HR Diagram
    Stars • Classifying stars: HR diagram • Luminosity, radius, and temperature • “Vogt-Russell” theorem • Main sequence • Evolution on the HR diagram Classifying stars • We now have two properties of stars that we can measure: – Luminosity – Color/surface temperature • Using these two characteristics has proved extraordinarily effective in understanding the properties of stars – the Hertzsprung- Russell (HR) diagram If we plot lots of stars on the HR diagram, they fall into groups These groups indicate types of stars, or stages in the evolution of stars Luminosity classes • Class Ia,b : Supergiant • Class II: Bright giant • Class III: Giant • Class IV: Sub-giant • Class V: Dwarf The Sun is a G2 V star Luminosity versus radius and temperature A B R = R R = 2 RSun Sun T = T T = TSun Sun Which star is more luminous? Luminosity versus radius and temperature A B R = R R = 2 RSun Sun T = T T = TSun Sun • Each cm2 of each surface emits the same amount of radiation. • The larger stars emits more radiation because it has a larger surface. It emits 4 times as much radiation. Luminosity versus radius and temperature A1 B R = RSun R = RSun T = TSun T = 2TSun Which star is more luminous? The hotter star is more luminous. Luminosity varies as T4 (Stefan-Boltzmann Law) Luminosity Law 2 4 LA = RATA 2 4 LB RBTB 1 2 If star A is 2 times as hot as star B, and the same radius, then it will be 24 = 16 times as luminous. From a star's luminosity and temperature, we can calculate the radius.
    [Show full text]
  • SHELL BURNING STARS: Red Giants and Red Supergiants
    SHELL BURNING STARS: Red Giants and Red Supergiants There is a large variety of stellar models which have a distinct core – envelope structure. While any main sequence star, or any white dwarf, may be well approximated with a single polytropic model, the stars with the core – envelope structure may be approximated with a composite polytrope: one for the core, another for the envelope, with a very large difference in the “K” constants between the two. This is a consequence of a very large difference in the specific entropies between the core and the envelope. The original reason for the difference is due to a jump in chemical composition. For example, the core may have no hydrogen, and mostly helium, while the envelope may be hydrogen rich. As a result, there is a nuclear burning shell at the bottom of the envelope; hydrogen burning shell in our example. The heat generated in the shell is diffusing out with radiation, and keeps the entropy very high throughout the envelope. The core – envelope structure is most pronounced when the core is degenerate, and its specific entropy near zero. It is supported against its own gravity with the non-thermal pressure of degenerate electron gas, while all stellar luminosity, and all entropy for the envelope, are provided by the shell source. A common property of stars with well developed core – envelope structure is not only a very large jump in specific entropy but also a very large difference in pressure between the center, Pc, the shell, Psh, and the photosphere, Pph. Of course, the two characteristics are closely related to each other.
    [Show full text]
  • The Endpoints of Stellar Evolution Answer Depends on the Star’S Mass Star Exhausts Its Nuclear Fuel - Can No Longer Provide Pressure to Support Itself
    The endpoints of stellar evolution Answer depends on the star’s mass Star exhausts its nuclear fuel - can no longer provide pressure to support itself. Gravity takes over, it collapses Low mass stars (< 8 Msun or so): End up with ‘white dwarf’ supported by degeneracy pressure. Wide range of structure and composition!!! Answer depends on the star’s mass Star exhausts its nuclear fuel - can no longer provide pressure to support itself. Gravity takes over, it collapses Higher mass stars (8-25 Msun or so): get a ‘neutron star’ supported by neutron degeneracy pressure. Wide variety of observed properties Answer depends on the star’s mass Star exhausts its nuclear fuel - can no longer provide pressure to support itself. Gravity takes over, it collapses Above about 25 Msun: we are left with a ‘black hole’ Black holes are astounding objects because of their simplicity (consider all the complicated physics to set all the macroscopic properties of a star that we have been through) - not unlike macroscopic elementary particles!! According to general relativity, the black hole properties are set by two numbers: mass and spin change of photon energies towards the gravitating mass the opposite when emitted Pound-Rebka experiment used atomic transition of Fe Important physical content for BH studies: general relativity has no intrisic scale instead, all important lengthscales and timescales are set by - and become proportional to the mass. Trick… Examine the energy… Why do we believe that black holes are inevitably created by gravitational collapse? Rather astounding that we go from such complicated initial conditions to such “clean”, simple objects! .
    [Show full text]
  • Stars IV Stellar Evolution Attendance Quiz
    Stars IV Stellar Evolution Attendance Quiz Are you here today? Here! (a) yes (b) no (c) my views are evolving on the subject Today’s Topics Stellar Evolution • An alien visits Earth for a day • A star’s mass controls its fate • Low-mass stellar evolution (M < 2 M) • Intermediate and high-mass stellar evolution (2 M < M < 8 M; M > 8 M) • Novae, Type I Supernovae, Type II Supernovae An Alien Visits for a Day • Suppose an alien visited the Earth for a day • What would it make of humans? • It might think that there were 4 separate species • A small creature that makes a lot of noise and leaks liquids • A somewhat larger, very energetic creature • A large, slow-witted creature • A smaller, wrinkled creature • Or, it might decide that there is one species and that these different creatures form an evolutionary sequence (baby, child, adult, old person) Stellar Evolution • Astronomers study stars in much the same way • Stars come in many varieties, and change over times much longer than a human lifetime (with some spectacular exceptions!) • How do we know they evolve? • We study stellar properties, and use our knowledge of physics to construct models and draw conclusions about stars that lead to an evolutionary sequence • As with stellar structure, the mass of a star determines its evolution and eventual fate A Star’s Mass Determines its Fate • How does mass control a star’s evolution and fate? • A main sequence star with higher mass has • Higher central pressure • Higher fusion rate • Higher luminosity • Shorter main sequence lifetime • Larger
    [Show full text]
  • The Hr Diagram for Late-Type Nearby Stars
    379 THE H-R DIAGRAM FOR LATE-TYPE NEARBY STARS AS A FUNCTION OF HELIUM CONTENT AND METALLICITY 1 2 3 2 1 1 Y. Lebreton , M.-N. Perrin ,J.Fernandes ,R.Cayrel ,G.Cayrel de Strob el , A. Baglin 1 Observatoire de Paris, Place J. Janssen - 92195 Meudon Cedex, France 2 Observatoire de Paris, 61 Avenue de l'Observatoire - 75014 Paris, France 3 Observat orio Astron omico da Universidade de Coimbra, 3040 Coimbra, Portugal Key words: Galaxy: solar neighb ourho o d; stars: ABSTRACT abundances; stars: low-mass; stars: HR diagram; Galaxy: abundances. Recent theoretical stellar mo dels are used to discuss the helium abundance of a numberoflow-mass stars for which the p osition in the Hertzsprung-Russell di- 1. INTRODUCTION agram and the metallicity are known with high accu- racy. The knowledge of the initial helium abundance of Hipparcos has provided very high quality parallaxes stars b orn in di erent sites with di erent metallicities of a sample of a hundred disk stars, of typeFtoK,lo- is of great imp ortance for many astrophysical stud- cated in the solar neighb ourho o d. Among these stars ies. The lifetime of a star and its internal structure we have carefully selected those for which detailed very much dep end on its initial helium content and sp ectroscopic analysis has provided e ective temp er- this has imp ortant consequences not only for stellar ature and [Fe/H] ratio with a high accuracy. astrophysics but also in cosmology or in studies of the chemical evolution of galaxies. Wehave calculated evolved stellar mo dels and their Direct measurement of the helium abundance in the asso ciated iso chrones in a large range of mass, for photosphere of a low mass star cannot b e made since several values of the metallicity and of the helium there are no helium lines in the sp ectra.
    [Show full text]
  • Stellar Structure and Evolution
    Lecture Notes on Stellar Structure and Evolution Jørgen Christensen-Dalsgaard Institut for Fysik og Astronomi, Aarhus Universitet Sixth Edition Fourth Printing March 2008 ii Preface The present notes grew out of an introductory course in stellar evolution which I have given for several years to third-year undergraduate students in physics at the University of Aarhus. The goal of the course and the notes is to show how many aspects of stellar evolution can be understood relatively simply in terms of basic physics. Apart from the intrinsic interest of the topic, the value of such a course is that it provides an illustration (within the syllabus in Aarhus, almost the first illustration) of the application of physics to “the real world” outside the laboratory. I am grateful to the students who have followed the course over the years, and to my colleague J. Madsen who has taken part in giving it, for their comments and advice; indeed, their insistent urging that I replace by a more coherent set of notes the textbook, supplemented by extensive commentary and additional notes, which was originally used in the course, is directly responsible for the existence of these notes. Additional input was provided by the students who suffered through the first edition of the notes in the Autumn of 1990. I hope that this will be a continuing process; further comments, corrections and suggestions for improvements are most welcome. I thank N. Grevesse for providing the data in Figure 14.1, and P. E. Nissen for helpful suggestions for other figures, as well as for reading and commenting on an early version of the manuscript.
    [Show full text]
  • Astro 404 Lecture 30 Nov. 6, 2019 Announcements
    Astro 404 Lecture 30 Nov. 6, 2019 Announcements: • Problem Set 9 due Fri Nov 8 2 3/2 typo corrected in L24 notes: nQ = (2πmkT/h ) • Office Hours: Instructor – after class or by appointment • TA: Thursday noon-1pm or by appointment • Exam: grading elves hard at work Last time: low-mass stars after main sequence Q: burning phases? 1 Q: shell burning “mirror” principle? Low-Mass Stars After Main Sequence unburnt H ⋆ helium core contracts H He H burning in shell around core He outer layers expand → red giant “mirror” effect of shell burning: • core contraction, envelope expansion • total gravitational potential energy Ω roughly conserved core becomes more tightly bound, envelope less bound ⋆ helium ignition degenerate core unburnt H H He runaway burning: helium flash inert He → 12 He C+O 2 then core helium burning 3α C and shell H burning “horizontal branch” star unburnt H H He ⋆ for solar mass stars: after CO core forms inert He He C • helium shell burning begins inert C • hydrogen shell burning continues Q: star path on HR diagram during these phases? 3 Low-Mass Post-Main-Sequence: HR Diagram ⋆ H shell burning ↔ red giant ⋆ He flash marks “tip of the red giant branch” ⋆ core He fusion ↔ horizontal branch ⋆ He + H shell burning ↔ asymptotic giant branch asymptotic giant branch H+He shell burn He flash core He burn L main sequence horizontal branch red giant branch H shell burning Sun Luminosity 4 Temperature T iClicker Poll: AGB Star Intershell Region in AGB phase: burning in two shells, no core fusion unburnt H H He inert He He C Vote your conscience–all
    [Show full text]
  • Evolution, Mass Loss and Variability of Low and Intermediate-Mass Stars What Are Low and Intermediate Mass Stars?
    Evolution, Mass Loss and Variability of Low and Intermediate-Mass Stars What are low and intermediate mass stars? Defined by properties of late stellar evolutionary stages Intermediate mass stars: ~1.9 < M/Msun < ~7 Develop electron-degenerate cores after core helium burning and ascending the red giant branch for the second time i.e. on the Asymptotic Giant Branch (AGB). AGB Low mass stars: M/Msun < ~1.9 Develop electron-degenerate cores on leaving RGB the main-sequence and ascending the red giant branch for the first time i.e. on the Red Giant Branch (RGB). Maeder & Meynet 1989 Stages in the evolution of low and intermediate-mass stars These spikes are real The AGB Surface enrichment Pulsation Mass loss The RGB Surface enrichment RGB Pulsation Mass loss About 108 years spent here Most time spent on the main-sequence burning H in the core (~1010 years) Low mass stars: M < ~1.9 Msun Intermediate mass stars: Wood, P. R.,2007, ASP Conference Series, 374, 47 ~1.9 < M/Msun < ~7 Stellar evolution and surface enrichment The Red giant Branch (RGB) zHydrogen burns in a shell around an electron-degenerate He core, star evolves to higher luminosity. zFirst dredge-up occurs: The convection in the envelope moves in when the stars is near the bottom of the RGB and "dredges up" material that has been through partial hydrogen burning by the CNO cycle and pp chains. From John Lattanzio But there's more: extra-mixing What's the evidence? Various abundances and isotopic ratios vary continuously up the RGB. This is not predicted by a single first dredge-up alone.
    [Show full text]