Waste Minimization and Wastewater Treatment of Metalworking Fluids 7% Book Is Dedicated to Ihe Manypeople in Ouri"Y Who Are Committed to Fmpmvingenvironmentalqualfly

Total Page:16

File Type:pdf, Size:1020Kb

Waste Minimization and Wastewater Treatment of Metalworking Fluids 7% Book Is Dedicated to Ihe Manypeople in Ouri i Waste Minimization and Wastewater Treatment of Metalworking Fluids 7% book is dedicated to ihe manypeople in ouri"y who are committed to fmpmvingenvironmentalqualfly. Waste Minimization and Wastewater Treatment of Metalworking Fluids a publication of the Independent Lubricant Manufacturers Association Research and Development Committee 651 South Washington Street Alexandria, Virginia 22314 Phone 703/684- 5574 Fax 703/836-8503 Research & Development Committee Chair Ralph Kelly, Cincinnati Milacron Research & Development Committee Vice Chair Paul Dacko, Ideas, Inc. Research & Development Project Director Raymond M. Dick, Cincinnati Milacron Copyright 0 1330 Independent Lubricant Manufacturers Association “MetalworkingFluid Additives for Waste Minimization”by Jean C. Childers, Shu-Jen Huang and Michael Romba is reprinted by permission of the Society of Tribologists and Lubrication Engineers. All rights reserved. The information contained herein is being made available by the Independent Lubricant ManufacturersAssou- ation (ILMA) in the interest of disseminating knowledge about waste minimization and wastewater treatment of metalworking fluids. Neither ILMA nor the individual authors make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this publication. ILMA assumes no responsibility for liability or damage which may result from the use of any of this information. Table of Contents Preface ................................................ Introduction ............................................ Chapter One: Definitions of Metalworking Fluids ...................... .1 Definitions ofMetalworking Fluids ....................................... 2 Greg Foltz, Cincinnati Milacron Products Division Metalworking Lubrication Dethitions ..................................... 5 Elliot S. Nachtman, Ph.D., Tower Oil & Technology Co. Chapter 'haEnvironmental Law ............................... .7 Environmental Iaw ................................................ 8 Jeffrey 1. kiter, Fsq., and Robin A. Fastenau, Esq., Collier, Shannon & Scott SARATitleIII .................................................... 12 Brenda Pinkelton, Cincinnati Milacron Products Division Chapter Three: Fluid Management and Waste Minimization ................15 Establishing a Waste Minimization Program At Your Facility ....................... 16 Harry M. Freeman and Mary Ann Curran, US. Environmental Protection Agency Health and Safety ofMetalworking Fluids .................................. .26 Patricia J. Beattie, Ph.D., General Motors Corp. Microbial Control and Its Impact on Waste Minimization of Metalworking Fluids ........... 31 Dianne P. Carmody, Andy B. Law, and Gary L. Willingham, Ph.D., Rohm and Haas Company Selection of Preservatives for Use in Industrial Lubricants and Metalworking Fluids ..........36 Frederick J. Passman, Ph.D., Angus Chemical Co. Biocide Selection for Metalworking Fluids: Factors to Consider ..................... .43 Cheryl B. French, Olin Research Center Cutting Fluids and Odors ............................................ .46 E. 0. Bennett and D. L. Bennett, Department of Biology, University of Houston Metalworking Fluid Additives for Waste Minimization ........................... .51 Jean C. Childers, Climax Performance Materials Corp., and Shu-Jen Huang and Michael Romba, Nalco Chemical Co. An Overview of Filtration Technology .................................... .63 Jean M. Berger and Jill M. Creps, Henry Filters, Inc. Coolant Management: A Users' Introduction and Guide to Waste Minimization ......................... .80 George L. Hoobler, Master Chemical Corp. Chapter Four: Treatment Options ............................... 85 Wastewater Treatment of Metalworking Fluids: Three Options ...................... 86 John M. Burke, Eaton Corp. Treatment and Disposal of Metalworking Fluids .............................. .95 Terrence L. Heller, Mobay Corp. A Recommended Profile for Determining the Environmental Fate of Metalworking Fluids ............................................. .99 Stan Napier, Keil Division, FERRO Corp. V Chapter Five: Chemical Treatment . , . , , , . , . , . , . 103 Chemical Treatment of Metalworking Fluids . , . , . , , , . ,104 Jean M. Gucciardi, Betz MetChem, The Metal Chemicals Division of Betz Laboratories, Inc. Chapter Six: Physical Treatment . , . 109 Recycling SyntheticFluids Using Ultratlne Fi1tration: an Effective Approach to AchievingWaste Minimization Goals . , . , , . .110 Edward E. Heidenreich, EdjeTech Services, Inc. Waste Minimization and Wastewater Treatment of Metalworking Fluids . ,116 George Skells, Castrol Industrial Central Inc., and Robert H. Brandt, Brandt & Associates, Inc. Evaporative Reduction of Waste coolants and Oily Water . , . , , , , . ,119 Richard J. Bigda, Technotreat Corporation Evaporation: Evaporate the Water Portion of CooIants/Water- Based Was- . ,123 Gary Dixon, Samsco Inc. Introduction to Ultratlltration and Reverse Osmosis , . , . , . ,128 David B. Rubin, Sanborn Chapter Seven: Biological Treatment , , , . , , . , , . 131 Biological Wastewater Treatment of Metalworking Fluids , . ,132 Terry M. Williams, Ph.D., and Ann M. Potcher, Rohm and Haas Company Chapter Eight: Recycling and Disposal of Oils . 137 Recovery and Conservation of Oil-Based Metalworking and Industrial Lubricants ThroughReclamatlon .,.,......,, .................................. 138 Ike Tripp, Jr., Etna Products, Inc. Treatment and Disposal of Oils , , , , , . , . , , , . , , , . , . , , , , . , . , . ,144 Derek Wilkinson and David Peel, BresLube Division of Safety-Kleen Canada, Inc. Chapter Nine: Recycling and Disposal of Solvents . ~ . , . 149 Handling and Disposal ofSpent Organic Parts Cleaner Solvents . , , , , . ,150 Paul Dittmar, Safety-Kleen Corp. Safe Recovery of Solvents by Conductivity Heat Transfer . 155 Peter B. Scantlebury, Finish Engineering Co. Chapter Ten: Container Management , , . 159 Responsible Container Management . , . , , . , . , , . , . ,160 Daniel W. Barber, Daniel W. Barber, Inc. Glossary of Terms . , . , , , , , , . , . , , , , , , , , . 163 Appendix: For Further Information . , , , . , , , . 164 vi Preface The Independent Lubricant Manufacturers Association (ILMA), established in 1948, is a national trade association whose 160 Regular member companies manufacture high quality automotive, industrial and metalworking lubricants and greases. Independent lubricant manufacturers are neither owned nor controlled by the companies that explore for, own, or refine crude oil used to produce lubricant base stocks. Independent lubricant manufacturers blend and compound over a quarter of the total volume of all lubricants sold in the U.S. each year. In the highly specialized area of metalworking lubricants, ILMA members manufacture more than two-thirds of the U.S.’s needs. In 1986, Dr. Elliot Nachtman, Tower Oil & Technology Co., established an ad hoc Research and Development Committee within ILMA. In 1988 this ad hoc committee was constituted a full standing committee of the association, and Dr. Nachunan was appointed its first chair. The objective of the committee is to promote and support research and development programs that improve and advance the operations of association members, suppliers and customers. This manual, WasteMtnimtzafionand Wastewater Treatment of Metalworhing Fluids, is one of the first contributions of this committee. These papers provide a single source of information useful in controlling costs, protecting the environment, promoting healthful operating practices as well as complying with federal, state and local laws and regulations. Decisions concerning the choice of clarification, recycling and disposal technology depend upon specific metalworking operating conditions. The papers by experts in the field which comprise the contents of this manual will provide guidance for devebping a waste minimization plan with the ultimate goal of “zero discharge.” This publication was conceived, produced and published by the ILMA Research and Development Committee under the leadership of Chair Ralph Kelly, Cincinnati Milacron; Vice Chair Paul Dacko, Ideas; and Was~eMinimizatlonProjectDirector Raymond Dick, Cincinnati Milacron. The publication was edited by Messrs. Kelly, Dacko and Dick, with assistance from many industry experts and from the ILMA staff. The R & D Committee expresses its thanks to the authors for the papers in this book, without whose outstanding efforts this book would not exist; to the industry volunteers who helped with every step of this publication; and to ILMA President Armen Hampar of Lubricating Specialties Company and the ILMA Board of Directors, for their confidence and support. ILMA Research & Development Committee Chair M.S. in Microbiology From the Univ. of Cincinnati. In addition to his active role in ILMA, Mr. Kelly’s membership include STLE, Board of Directors of Seven Hills Neighborhood Houses, Inc., Ken-Si1 Baseball Assoc., and past member, Cincinnati United Way Board. Mr. Kelly has published ten technical papers and holds 15 patents Cincinnati Milacron is a world leader in advanced manufacturing technologies (machinery, computer controls, software, cells and systems) for the metalworking and plastics processing industries; and in robotics, metrology, inspection, controls and information technologies for Factory automation in general. The company is Ralph Kelly joined Cincinnati imacron as a Senior Microbiologist also a leading producer ofprecision
Recommended publications
  • United States Patent (19) 11 4,395,569 Lewis Et Al
    United States Patent (19) 11 4,395,569 Lewis et al. (45) "Jul. 26, 1983 (54) METHOD OF PREPARNG SULFONCACD 58) Field of Search ................... 560/87, 88, 193, 196, SALTS OF ACYLOXYALKYLAMINES AND 560/220, 221, 222, 127, 38, 49, 155, 169, 171, POLYMERS AND COMPOUNDS 74, 80, 153, 154; 54.6/321 THEREFROM (56) References Cited (75) Inventors: Sheldon N. Lewis, Willow Grove; U.S. PATENT DOCUMENTS Jerome F. Levy, Dresher, both of Pa. 2,628,249 2/1953 Bruno . 2,871,258 1/1959 Hidalgo et al. 73) Assignee: Rohm and Haas Company, 3,211,781 10/1965 Taub et al. Philadelphia, Pa. 3,256,318 7/1966 Brotherton et al. 3,459,786 8/1969 Brotherton et al. * Notice: The portion of the term of this patent 3,468,934 9/1969 Emmons et al. subsequent to Mar. 18, 1997, has been 3,729,416 4/1973 Bruning et al. disclaimed. 4,194,052 3/1980 Lewis et al. ........................ 560/222 FOREIGN PATENT DOCUMENTS 21 Appl. No.: 104,256 1351368 2/1964 France . 22 Filed: Dec. 17, 1979 1507036 12/1967 France . Primary Examiner-Natalie Trousof Assistant Examiner-L. Hendriksen Related U.S. Application Data Attorney, Agent, or Firm-Terence P. Strobaugh; (60) Division of Ser. No. 821,068, May 1, 1969, Pat. No. George W. F. Simmons 4,194,052, which is a continuation-in-part of Ser. No. 740,480, Jun. 27, 1968, Pat. No. 4,176,232. 57 ABSTRACT A sulfonic acid salt of an acyloxyalkylamine is prepared (51) Int, C. ..................... C07C 67/08; C07C 101/00 by reaction of an organic acid or amino-acid with a (52) U.S.
    [Show full text]
  • Emerging New Types of Absorbents for Postcombustion Carbon Capture
    Faculty Scholarship 2017 Emerging New Types of Absorbents for Postcombustion Carbon Capture Quan Zhuang Natural Resources Canada Bruce Clements CanmetENERGY Bingyun Li West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications Part of the Engineering Commons Digital Commons Citation Zhuang, Quan; Clements, Bruce; and Li, Bingyun, "Emerging New Types of Absorbents for Postcombustion Carbon Capture" (2017). Faculty Scholarship. 1245. https://researchrepository.wvu.edu/faculty_publications/1245 This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. ProvisionalChapter chapter 4 Emerging New TypesTypes ofof AbsorbentsAbsorbents for for Postcombustion Carbon Capture Postcombustion Carbon Capture Quan Zhuang, Bruce Clements and Bingyun Li Quan Zhuang, Bruce Clements and Bingyun Li Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/65739 Abstract Carbon capture is the most probable technology in combating anthropogenic increase of CO2 in the atmosphere. Works on developing emerging absorbents for improving carbon capture performance and reducing process energy consumption are actively going on. The most worked‐on emerging absorbents, including liquid‐liquid biphasic, liquid‐solid biphasic, enzymatic, and encapsulated absorbents, already show encouraging results in improved energy efficiency, enhanced CO2 absorption kinetics, increased cyclic CO2 loading, or reduced regeneration temperature. In this chapter, the latest research and development progress of these emerging absorbents are reviewed along with the future directions in moving these technologies to higher‐technology readiness levels.
    [Show full text]
  • And Intramolecular Cooperativity Effects in Alkanolamine
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article Cite This: ACS Omega 2019, 4, 1110−1117 http://pubs.acs.org/journal/acsodf Inter- and Intramolecular Cooperativity Effects in Alkanolamine- Based Acid−Base Heterogeneous Organocatalysts Jingwei Xie, Nathan C. Ellebracht,* and Christopher W. Jones* School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States *S Supporting Information ABSTRACT: Intramolecular cooperativity in heterogeneous organocatalysts is investigated using alkanolamine-functionalized silica acid−base catalysts for the aldol condensation reaction of 4-nitrobenzaldehyde and acetone. Two series of catalysts, one with and one without silanol-capping, are synthesized with varied alkyl linker lengths (two to five) connecting secondary amine and terminal hydroxyl functionalities. The reactivity of these catalysts is assessed to determine the relative potential for intermolecular (silane amine−surface silanol) vs intramolecular (amine−hydroxyl within a single silane) cooperativity, the impact of inhibitory surface−silane interactions, and the role of alkyl linker length and flexibility. For the array of catalysts tested, those with longer linker lengths generally give increased catalytic activity, although the turnover frequency trends differ between catalysts with and without surface silanol capping. Catalysts with alkyl-substituted
    [Show full text]
  • Industrial Hydrocarbon Processes
    Handbook of INDUSTRIAL HYDROCARBON PROCESSES JAMES G. SPEIGHT PhD, DSc AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Gulf Professional Publishing is an imprint of Elsevier Gulf Professional Publishing is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA First edition 2011 Copyright Ó 2011 Elsevier Inc. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/ permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made British Library Cataloguing in Publication Data
    [Show full text]
  • Dimethylethanolamine (DMAE) [108-01-0] and Selected Salts
    Dimethylethanolamine (DMAE) [108-01-0] and Selected Salts and Esters DMAE Aceglutamate [3342-61-8] DMAE p-Acetamidobenzoate [281131-6] and [3635-74-3] DMAE Bitartrate [5988-51-2] DMAE Dihydrogen Phosphate [6909-62-2] DMAE Hydrochloride [2698-25-1] DMAE Orotate [1446-06-6] DMAE Succinate [10549-59-4] Centrophenoxine [3685-84-5] Centrophenoxine Orotate [27166-15-0] Meclofenoxate [51-68-3] Review of Toxicological Literature (Update) November 2002 Dimethylethanolamine (DMAE) [108-01-0] and Selected Salts and Esters DMAE Aceglutamate [3342-61-8] DMAE p-Acetamidobenzoate [281131-6] and [3635-74-3] DMAE Bitartrate [5988-51-2] DMAE Dihydrogen Phosphate [6909-62-2] DMAE Hydrochloride [2698-25-1] DMAE Orotate [1446-06-6] DMAE Succinate [10549-59-4] Centrophenoxine [3685-84-5] Centrophenoxine Orotate [27166-15-0] Meclofenoxate [51-68-3] Review of Toxicological Literature (Update) Prepared for Scott Masten, Ph.D. National Institute of Environmental Health Sciences P.O. Box 12233 Research Triangle Park, North Carolina 27709 Contract No. N01-ES-65402 Submitted by Karen E. Haneke, M.S. Integrated Laboratory Systems, Inc. P.O. Box 13501 Research Triangle Park, North Carolina 27709 November 2002 Toxicological Summary for Dimethylethanolamine and Selected Salts and Esters 11/2002 Executive Summary Nomination Dimethylethanolamine (DMAE) was nominated by the NIEHS for toxicological characterization, including metabolism, reproductive and developmental toxicity, subchronic toxicity, carcinogenicity and mechanistic studies. The nomination is based on the potential for widespread human exposure to DMAE through its use in industrial and consumer products and an inadequate toxicological database. Studies to address potential hazards of consumer (e.g. dietary supplement) exposures, including use by pregnant women and children, and the potential for reproductive effects and carcinogenic effects are limited.
    [Show full text]
  • The Design and Synthesis of Peptidomimetic Serine-Based Prodrugs As 14-3-3 Inhibitors
    Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations 2013 The esiD gn And Synthesis Of Peptidomimetic Serine-Based Prodrugs As 14-3-3 Inhibitors Eric Drake Jones Purdue University, [email protected] Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Part of the Chemistry Commons Recommended Citation Jones, Eric Drake, "The eD sign And Synthesis Of Peptidomimetic Serine-Based Prodrugs As 14-3-3 Inhibitors" (2013). Open Access Theses. 46. https://docs.lib.purdue.edu/open_access_theses/46 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School ETD Form 9 (Revised 12/07) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Eric Drake Jones Entitled The Design and Synthesis of Peptidomimetic Serine-Based Prodrugs as 14-3-3 Inhibitors. Master of Science For the degree of Is approved by the final examining committee: Richard F. Borch Chair Mark S. Cushman Robert L. Geahlen To the best of my knowledge and as understood by the student in the Research Integrity and Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Approved by Major Professor(s): ____________________________________Richard F. Borch ____________________________________ Approved by: Richard F. Borch 11/5/2013 Head of the Graduate Program Date THE DESIGN AND SYNTHESIS OF PEPTIDOMIMETIC SERINE-BASED PRODRUGS AS 14-3-3 INHIBITORS A Thesis Submitted to the Faculty of Purdue University by Eric Drake Jones In Partial Fulfillment of the Requirements for the Degree of Masters of Science December 2013 Purdue University West Lafayette, Indiana ii ACKNOWLEDGMENTS First, I would like to thank Dr.
    [Show full text]
  • Advanced Amino Acid-Based Technologies
    Review Cite This: Ind. Eng. Chem. Res. 2019, 58, 20181−20194 pubs.acs.org/IECR Advanced Amino Acid-Based Technologies for CO2 Capture: A Review Vida Sang Sefidi and Patricia Luis* Materials & Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium *S Supporting Information ABSTRACT: Capture and utilization or storage of CO2 have been considered as the primary options to reduce the impact on the climate caused by CO2 emissions. Several technological approaches have been proposed depending on the point of actuation (precombustion, postcombustion, or oxyfuel combustion), but absorption processes are still the most extended solution implemented in the industry. Alkanol- amines are typical solvents used for CO2 capture, even though they have a noticeable negative impact on the environment. Amino acids and their salts have been appointed as alternative solvents since their functional group is similar to that of alkanolamines but presenting better properties. In addition, they show very good performance in CO2 capture. This manuscript reviews the state of the art of the use of amino acids in CO2 capture and the main technologies involving the application of these solvents. ■ INTRODUCTION disadvantages that cannot be neglected, such as low CO2 Emission of greenhouse gases has a significant impact on the loading, high energy requirements for regeneration, degrada- 1 tion through oxidation of the amine, vaporization losses due to environment. The rise of global temperature has already 15,16 caused an increase in the polar ice melting and provoked a high vapor pressure, and high viscosity. In addition, they 2 can cause operational problems such as corrosion, foaming, change in the climate.
    [Show full text]
  • Alkanolamine Hydroxy-Capped Epoxy for Cathodic Electrocoat
    Europaisches Patentamt European Patent Office @ Publication number: 0 198 783 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION Application number: 86630025.4 ® int. ci- C 09 D 5/44, C 09 D 17/00, C08G 59/50 Date of filing: 13.02.86 §) Priority: 15.04.85 US 723586 S) Applicant: INMONT CORPORATION, 1255 Broad Street, Clifton New Jersey 07015 (US) Inventor: Debroy, Tapan K., 25691 Strathhaven Drive, © Date of publication of application: 22.10.86 Novi Michigan 48052 (US) Bulletin 86/43 Inventor: Chung, Ding-Yu, 28228 Gettysburg Road, Farmington Hills Michigan 48018 (US) Representative : Schmitz, Jean-Marie et al, Office Dennemeyer S.a.r.l. 21 -25 Allee Scheff er P.O. Box 41 , @ Designated Contracting States : BE DE FR GB IT NL SE L-2010 Luxembourg (LU) @ Alkanolamine hydroxy-capped epoxy for cathodic electrocoat. Improved electrodepositable resin compositions com- prising the reaction product of a polyepoxide, and, the reac- tion product of a ketone and an alkanolamine. The introduc- tion of the primary amine into the epoxide molecule can be simultaneously done, optionally, with chain extension. The resin compositions can also be used as grind resins. Technical Field The field of art to which this invention pertains is epoxy resins, and, more specifically, epoxy resin compositions containing crosslinking agents for use in cathodic electrocoat processes. Background Art The use of electro depositable resin compositions in aqueous baths to coat objects is well known in the art. Typically, a resin emulsion is prepared by initially adducting an epoxy resin with an amine. The adduct is then mixed with a crosslinking agent and salted to form an aqueous emulsion.
    [Show full text]
  • A Critical Review of Carbon Quantum Dots
    materials Review A Critical Review of Carbon Quantum Dots: From Synthesis toward Applications in Electrochemical Biosensors for the Determination of a Depression-Related Neurotransmitter Jingying Xu 1, Jiangang Tao 1, Lili Su 2, Jidong Wang 3,* and Tifeng Jiao 3,4,* 1 Mental Health Service Center and College of Marxism, Yanshan University, Qinhuangdao 066004, China; [email protected] (J.X.); [email protected] (J.T.) 2 Li Ren College, Yanshan University, Qinhuangdao 066004, China; [email protected] 3 Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China 4 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China * Correspondence: [email protected] (J.W.); [email protected] (T.J.); Tel.: +86-335-805-6854 (T.J.) Abstract: Depression has become the leading cause of disability worldwide and is a global health burden. Quantitative assessment of depression-related neurotransmitter concentrations in human fluids is highly desirable for diagnosis, monitoring disease, and therapeutic interventions of de- pression. In this review, we focused on the latest strategies of CD-based electrochemical biosensors for detecting a depression-related neurotransmitter. We began this review with an overview of the microstructure, optical properties and cytotoxicity of CDs. Next, we introduced the development of synthetic methods of CDs, including the “Top-down” route and “Bottom-up” route. Finally, we Citation: Xu, J.; Tao, J.; Su, L.; Wang, highlighted detecting an application of CD-based electrochemical sensors in a depression-related J.; Jiao, T. A Critical Review of Carbon neurotransmitter. Moreover, challenges and future perspectives on the recent progress of CD-based Quantum Dots: From Synthesis toward electrochemical sensors in depression-related neurotransmitter detection were discussed.
    [Show full text]
  • United States Patent Office
    3,836,671 Patented Sept. 17, 1974 United States Patent Office 2 A suitable value for R1 is, for example, alkyl or hy 3,836,671 droxyalkyl each of 3, 4 or 5 carbon atoms, which prefer ALKANOLAMINE DERVATIVES FOR PRODUC ING g-ADRENERGIC BLOCKADE ably is branched at the cy-carbon atom, for example iso Arthur Michael Barrett, Leeds, and John Carter, Roy propyl, S-butyl, t-butyl, 2-hydroxy-1,1-dimethylethyl or Hull, David James Le Count, and Christopher John 5 2-hydroxy-1-methylethyl. Particularly preferred values for Squire, Macclesfield, England, assignors to imperial Rare isopropyl and t-butyl. Chemical Industries Limited, London, England A suitable value for R is for example, acetyl, propi No Drawing. Continuation-in-part of application Ser. No. onyl, methoxycarbonyl, ethoxycarbonyl, cyano, carbam 9,451, Feb. 6, 1970, now Patent No. 3,663,607, which Oyl, carbazoyl, methylcarbamoyl, isopropylcarbamoyl, n is a continuation-in-part of abandoned application Ser. butylcarbamoyl or allylcarbamoyl. No. 199,011, Nov. 5, 1971. This application Mar. 10, A suitable value for A is, for example, methylene, 1972, Ser. No. 233,781 ethylene, ethylidene Claims priority, application Great Britain, Nov. 19, 1970, 55,028/70; Nov. 18, 1971, 53,544/71; Sept. 24, 1969, GH, 47,048/69; Feb. 21, 1969, 9,445/69 -C- int. C. A6k 27/00 trimethylene or vinylene. U.S. C. 424-324 5 Claims A suitable value for R3 is, for example, hydrogen, fluorine, chlorine, bromine, iodine, nitro, hydroxy, cy ABSTRACT OF THE DISCLOSURE ano, phenyl, phenoxy, benzyl, o-phenylethyl, benzyloxy, 1-(electronegatively - substituted - alkyl- or alkenyl 20 cyclopropyl, cyclobutyl, cyclopentyl, methyl, n-propyl, s phenoxy)-3-alkylamino-2-propanol derivatives, for exam butyl, allyl, acetyl, propionyl, methoxycarbonyl, ethoxy ple 1-p-carbamoylmethylphenoxy-3-isopropylamino-2-pro carbonyl, methylthio, methoxy, isopropoxy, allyloxy, hy panol and pharmaceutical compositions containing them droxymethyl, methoxymethyl or trifluoromethyl.
    [Show full text]
  • Phase Change Amino Acid Salt Separates Into CO2-Rich and CO2-Lean Phases Upon Interacting with CO2 Xianfeng Wang A,B,C,D, Novruz G
    Applied Energy 161 (2016) 41–47 Contents lists available at ScienceDirect Applied Energy journal homepage: www.elsevier.com/locate/apenergy Phase change amino acid salt separates into CO2-rich and CO2-lean phases upon interacting with CO2 Xianfeng Wang a,b,c,d, Novruz G. Akhmedov e, David Hopkinson d, James Hoffman d, Yuhua Duan d, ⇑ Adefemi Egbebi f, Kevin Resnik f, Bingyun Li a,d, a Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, United States b State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China c Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China d National Energy Technology Laboratory-Regional University Alliance (NETL-RUA), Morgantown, WV 26506, United States e Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States f URS, Pittsburgh, PA 15236, United States highlights graphical abstract Innovative phase change amino acid salt solvent is developed for CO2 capture. Amino acid salt solution is turned into aCO2-rich phase and a CO2-lean phase upon simple bubbling with CO2. The developed solvent captures the most CO2 (90%) in the CO2-rich phase. NMR spectroscopy was used to identify the species in the solution. article info abstract Article history: Concerns over global climate change have led to strong research emphasis worldwide on reducing the Received 29 July 2015 emission of greenhouse gases like CO2. One avenue for carbon emission reduction is using CO2 capture Received in revised form 1 September 2015 and storage from industrial sources.
    [Show full text]
  • An Evaluation of the Enantiomeric Recognition of Amino Acid Based
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 An evaluation of the enantiomeric recognition of amino acid based polymeric surfactants and cyclodextrins using spectroscopic and chromatographic methods Bertha Cedillo Valle Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Valle, Bertha Cedillo, "An evaluation of the enantiomeric recognition of amino acid based polymeric surfactants and cyclodextrins using spectroscopic and chromatographic methods" (2005). LSU Doctoral Dissertations. 3349. https://digitalcommons.lsu.edu/gradschool_dissertations/3349 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. AN EVALUATION OF THE ENANTIOMERIC RECOGNITION OF AMINO ACID BASED POLYMERIC SURFACTANTS AND CYCLODEXTRINS USING SPECTROSCOPIC AND CHROMATOGRAPHIC METHODS A Dissertation Submitted to the graduate Faculty of the Louisiana State University and Agricultural and Mechanical College In partial fulfillment of the Requirements for the degree of Doctor of Philosophy in The Department of Chemistry By Bertha Cedillo Valle B.S. Texas Tech University, 1998 December 2005 DEDICATION I want to dedicate this work to my husband, Larry, and my immediate siblings, Octavio Jorge, Martha, and Silvia, along with their respective spouses. You guys were a constant driving force for me and were always there to support me financially and/or emotionally. I appreciate your support more than words can say.
    [Show full text]