Toxicological Profile for 2,4-Dichlorophenoxyacetic Acid

Total Page:16

File Type:pdf, Size:1020Kb

Toxicological Profile for 2,4-Dichlorophenoxyacetic Acid 2,4-D A-1 APPENDIX A. ATSDR MINIMAL RISK LEVEL WORKSHEETS MRLs are derived when reliable and sufficient data exist to identify the target organ(s) of effect or the most sensitive health effect(s) for a specific duration for a given route of exposure. An MRL is an estimate of the daily human exposure to a hazardous substance that is likely to be without appreciable risk of adverse noncancer health effects over a specified route and duration of exposure. MRLs are based on noncancer health effects only; cancer effects are not considered. These substance-specific estimates, which are intended to serve as screening levels, are used by ATSDR health assessors to identify contaminants and potential health effects that may be of concern at hazardous waste sites. It is important to note that MRLs are not intended to define clean-up or action levels. MRLs are derived for hazardous substances using the NOAEL/uncertainty factor approach. They are below levels that might cause adverse health effects in the people most sensitive to such chemical- induced effects. MRLs are derived for acute (1–14 days), intermediate (15–364 days), and chronic (≥365 days) durations and for the oral and inhalation routes of exposure. Currently, MRLs for the dermal route of exposure are not derived because ATSDR has not yet identified a method suitable for this route of exposure. MRLs are generally based on the most sensitive substance-induced endpoint considered to be of relevance to humans. Serious health effects (such as irreparable damage to the liver or kidneys, or birth defects) are not used as a basis for establishing MRLs. Exposure to a level above the MRL does not mean that adverse health effects will occur. MRLs are intended only to serve as a screening tool to help public health professionals decide where to look more closely. They may also be viewed as a mechanism to identify those hazardous waste sites that are not expected to cause adverse health effects. Most MRLs contain a degree of uncertainty because of the lack of precise toxicological information on the people who might be most sensitive (e.g., infants, elderly, nutritionally or immunologically compromised) to the effects of hazardous substances. ATSDR uses a conservative (i.e., protective) approach to address this uncertainty consistent with the public health principle of prevention. Although human data are preferred, MRLs often must be based on animal studies because relevant human studies are lacking. In the absence of evidence to the contrary, ATSDR assumes that humans are more sensitive to the effects of hazardous substance than animals and that certain persons may be particularly sensitive. Thus, the resulting MRL may be as much as 100-fold below levels that have been shown to be nontoxic in laboratory animals. 2,4-D A-2 APPENDIX A Proposed MRLs undergo a rigorous review process: Health Effects/MRL Workgroup reviews within the Division of Toxicology and Human Health Sciences, expert panel peer reviews, and agency-wide MRL Workgroup reviews, with participation from other federal agencies and comments from the public. They are subject to change as new information becomes available concomitant with updating the toxicological profiles. Thus, MRLs in the most recent toxicological profiles supersede previously published MRLs. For additional information regarding MRLs, please contact the Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, 1600 Clifton Road NE, Mailstop S102-1, Atlanta, Georgia 30329-4027. 2,4-D A-3 APPENDIX A MINIMAL RISK LEVEL (MRL) WORKSHEET Chemical Name: 2,4-D CAS Numbers: 94-75-7 Date: July 2020 Profile Status: Final Route: Inhalation Duration: Acute MRL Summary: An acute-duration inhalation MRL was not derived for 2,4-D. Rationale for Not Deriving an MRL: No acute-duration inhalation data were available for review. Agency Contacts (Chemical Managers): Obaid Faroon 2,4-D A-4 APPENDIX A MINIMAL RISK LEVEL (MRL) WORKSHEET Chemical Name: 2,4-D CAS Numbers: 94-75-7 Date: July 2020 Profile Status: Final Route: Inhalation Duration: Intermediate MRL Summary: An intermediate-duration inhalation MRL was not derived for 2,4-D. Rationale for Not Deriving an MRL: Only one inhalation study in animals was available for review. In that study, male and female rats were exposed nose-only 6 hours/day, 5 days/week for 28 days to 2,4-D dusts in target concentrations of 0, 50, 100, 300, and 1,000 mg/m3 (EPA 2008). After termination of exposure, controls and rats from the highest exposure concentration group were kept for a 4-week recovery period to assess reversibility of the effects. A significant reduction in reticulocytes occurred in males and females at 2,4-D exposure concentrations ≥300 mg/m3 and a significant increase in serum alkaline phosphatase was reported in females at ≥300 mg/m3. Histopathologic examination of a comprehensive set of organs and tissues revealed no sign of 2,4-D exposure-related systemic effects. The most salient effect was the occurrence of squamous/squamoid epithelial metaplasia with hyperkeratosis in the larynx of all exposed groups, with increasing severity as the exposure concentration increased. The lesions persisted during the recovery period, but with reduced severity. Therefore, the exposure concentration of 50 mg/m3 represents the study LOAEL, a portal-of-entry LOAEL. Although this is a well-conducted study that examined a comprehensive number of end points, the database is insufficient for MRL derivation. It would be important to determine a NOAEL for the portal-of-entry effects. Agency Contacts (Chemical Managers): Obaid Faroon 2,4-D A-5 APPENDIX A MINIMAL RISK LEVEL (MRL) WORKSHEET Chemical Name: 2,4-D CAS Numbers: 94-75-7 Date: July 2020 Profile Status: Final Route: Inhalation Duration: Chronic MRL Summary: A chronic-duration inhalation MRL was not derived for 2,4-D Rationale for Not Deriving an MRL: No chronic-duration inhalation data were available for review. Agency Contacts (Chemical Managers): Obaid Faroon 2,4-D A-6 APPENDIX A MINIMAL RISK LEVEL (MRL) WORKSHEET Chemical Name: 2,4-D CAS Numbers: 94-75-7 Date: July 2020 Profile Status: Final Route: Oral Duration: Acute MRL Summary: An acute-duration oral MRL was not derived for 2,4-D. Rationale for Not Deriving an MRL: No adequate acute-duration human data were located. Information regarding health effects in humans following acute-duration exposure to 2,4-D is limited to case reports of intentional or accidental ingestion of herbicide formulations containing 2,4-D. Effects that have been reported following oral exposure to high amounts of 2,4-D include tachypnea, tachycardia, vomiting, leukocytosis, liver and kidney congestion in fatal cases, metabolic acidosis, and death (Dudley et al. 1972; Durakovic et al. 1992; Keller et al. 1994; Nielsen et al. 1965; Smith and Lewis 1987). While some of these studies provided estimates of amounts of 2,4-D ingested, the reported effects represent the result of exposure to a chemical mixture consisting of 2,4-D and other substances present in the commercial formulations (i.e., solvents, other herbicides), which is the exposure that most humans experience. Yet, the common exposure reported across studies was to 2,4-D. In two studies designed to evaluate the pharmacokinetics of 2,4-D in volunteers, administration of 5 mg 2,4-D/kg once in a gelatin capsule resulted in no ill effects during 144–168 hours post-dosing (Kohli et al. 1974; Sauerhoff et al. 1977). The information available in humans is inadequate for MRL derivation. Two animal studies defined LOAELs of 50 mg/kg/day. In one of these studies, doses of 50 mg/kg/day (lowest dose tested) induced significant weight loss in pregnant Wistar rats when administered by gavage in water on GDs 6–15 (Fofana et al. 2000). It is not totally clear, however, whether the investigators meant that the final weight was lower than the starting weight or whether treated rats just gained less weight than control rats. In another developmental study, administration of 2,4-D at 50 mg/kg/day by gavage in corn oil to pregnant Sprague-Dawley rats, also on GDs 6–15, did not affect maternal weight (terminal weight similar in treated and controls), but induced a statistically significant reduction in fetal weight (approximately 7%) measured on GD 20 and increased the incidence of some soft-tissue anomalies and skeletal malformations; the NOAEL was 25 mg/kg/day (Schwetz et al. 1971). Long-term oral studies suggest that the kidney is a target for 2,4-D toxicity; however, only one acute-duration study conducted microscopic examinations of the kidneys. The paucity of information regarding the effects of acute-duration oral exposure to 2,4-D in experimental animals precludes deriving an acute-duration oral MRL for 2,4-D. Agency Contacts (Chemical Managers): Obaid Faroon 2,4-D A-7 APPENDIX A MINIMAL RISK LEVEL (MRL) WORKSHEET Chemical Name: 2,4-D CAS Numbers: 94-75-7 Date: July 2020 Profile Status: Final Route: Oral Duration: Intermediate MRL: 0.2 mg/kg/day Critical Effect: Increased kidney weight, histopathologic kidney lesions Reference: Marty et al. 2013 Point of Departure: 16.6 mg/kg/day (NOAEL) Uncertainty Factor: 100 LSE Graph Key: 33 Species: Rat MRL Summary: An MRL of 0.2 mg/kg/day has been derived for intermediate-duration oral exposure to 2,4-D based on a NOAEL of 16.6 mg/kg/day and a LOAEL of 45.3 mg/kg/day for increased kidney weight and slight proximal tubule degeneration in the kidney of male Sprague-Dawley rats receiving 2,4-D from food for up to 11 weeks (Marty et al.
Recommended publications
  • United States Patent (19) 11 4,395,569 Lewis Et Al
    United States Patent (19) 11 4,395,569 Lewis et al. (45) "Jul. 26, 1983 (54) METHOD OF PREPARNG SULFONCACD 58) Field of Search ................... 560/87, 88, 193, 196, SALTS OF ACYLOXYALKYLAMINES AND 560/220, 221, 222, 127, 38, 49, 155, 169, 171, POLYMERS AND COMPOUNDS 74, 80, 153, 154; 54.6/321 THEREFROM (56) References Cited (75) Inventors: Sheldon N. Lewis, Willow Grove; U.S. PATENT DOCUMENTS Jerome F. Levy, Dresher, both of Pa. 2,628,249 2/1953 Bruno . 2,871,258 1/1959 Hidalgo et al. 73) Assignee: Rohm and Haas Company, 3,211,781 10/1965 Taub et al. Philadelphia, Pa. 3,256,318 7/1966 Brotherton et al. 3,459,786 8/1969 Brotherton et al. * Notice: The portion of the term of this patent 3,468,934 9/1969 Emmons et al. subsequent to Mar. 18, 1997, has been 3,729,416 4/1973 Bruning et al. disclaimed. 4,194,052 3/1980 Lewis et al. ........................ 560/222 FOREIGN PATENT DOCUMENTS 21 Appl. No.: 104,256 1351368 2/1964 France . 22 Filed: Dec. 17, 1979 1507036 12/1967 France . Primary Examiner-Natalie Trousof Assistant Examiner-L. Hendriksen Related U.S. Application Data Attorney, Agent, or Firm-Terence P. Strobaugh; (60) Division of Ser. No. 821,068, May 1, 1969, Pat. No. George W. F. Simmons 4,194,052, which is a continuation-in-part of Ser. No. 740,480, Jun. 27, 1968, Pat. No. 4,176,232. 57 ABSTRACT A sulfonic acid salt of an acyloxyalkylamine is prepared (51) Int, C. ..................... C07C 67/08; C07C 101/00 by reaction of an organic acid or amino-acid with a (52) U.S.
    [Show full text]
  • Emerging New Types of Absorbents for Postcombustion Carbon Capture
    Faculty Scholarship 2017 Emerging New Types of Absorbents for Postcombustion Carbon Capture Quan Zhuang Natural Resources Canada Bruce Clements CanmetENERGY Bingyun Li West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications Part of the Engineering Commons Digital Commons Citation Zhuang, Quan; Clements, Bruce; and Li, Bingyun, "Emerging New Types of Absorbents for Postcombustion Carbon Capture" (2017). Faculty Scholarship. 1245. https://researchrepository.wvu.edu/faculty_publications/1245 This Article is brought to you for free and open access by The Research Repository @ WVU. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. ProvisionalChapter chapter 4 Emerging New TypesTypes ofof AbsorbentsAbsorbents for for Postcombustion Carbon Capture Postcombustion Carbon Capture Quan Zhuang, Bruce Clements and Bingyun Li Quan Zhuang, Bruce Clements and Bingyun Li Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/65739 Abstract Carbon capture is the most probable technology in combating anthropogenic increase of CO2 in the atmosphere. Works on developing emerging absorbents for improving carbon capture performance and reducing process energy consumption are actively going on. The most worked‐on emerging absorbents, including liquid‐liquid biphasic, liquid‐solid biphasic, enzymatic, and encapsulated absorbents, already show encouraging results in improved energy efficiency, enhanced CO2 absorption kinetics, increased cyclic CO2 loading, or reduced regeneration temperature. In this chapter, the latest research and development progress of these emerging absorbents are reviewed along with the future directions in moving these technologies to higher‐technology readiness levels.
    [Show full text]
  • And Intramolecular Cooperativity Effects in Alkanolamine
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article Cite This: ACS Omega 2019, 4, 1110−1117 http://pubs.acs.org/journal/acsodf Inter- and Intramolecular Cooperativity Effects in Alkanolamine- Based Acid−Base Heterogeneous Organocatalysts Jingwei Xie, Nathan C. Ellebracht,* and Christopher W. Jones* School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0100, United States *S Supporting Information ABSTRACT: Intramolecular cooperativity in heterogeneous organocatalysts is investigated using alkanolamine-functionalized silica acid−base catalysts for the aldol condensation reaction of 4-nitrobenzaldehyde and acetone. Two series of catalysts, one with and one without silanol-capping, are synthesized with varied alkyl linker lengths (two to five) connecting secondary amine and terminal hydroxyl functionalities. The reactivity of these catalysts is assessed to determine the relative potential for intermolecular (silane amine−surface silanol) vs intramolecular (amine−hydroxyl within a single silane) cooperativity, the impact of inhibitory surface−silane interactions, and the role of alkyl linker length and flexibility. For the array of catalysts tested, those with longer linker lengths generally give increased catalytic activity, although the turnover frequency trends differ between catalysts with and without surface silanol capping. Catalysts with alkyl-substituted
    [Show full text]
  • Industrial Hydrocarbon Processes
    Handbook of INDUSTRIAL HYDROCARBON PROCESSES JAMES G. SPEIGHT PhD, DSc AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Gulf Professional Publishing is an imprint of Elsevier Gulf Professional Publishing is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA First edition 2011 Copyright Ó 2011 Elsevier Inc. All rights reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/ permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug dosages should be made British Library Cataloguing in Publication Data
    [Show full text]
  • Dimethylethanolamine (DMAE) [108-01-0] and Selected Salts
    Dimethylethanolamine (DMAE) [108-01-0] and Selected Salts and Esters DMAE Aceglutamate [3342-61-8] DMAE p-Acetamidobenzoate [281131-6] and [3635-74-3] DMAE Bitartrate [5988-51-2] DMAE Dihydrogen Phosphate [6909-62-2] DMAE Hydrochloride [2698-25-1] DMAE Orotate [1446-06-6] DMAE Succinate [10549-59-4] Centrophenoxine [3685-84-5] Centrophenoxine Orotate [27166-15-0] Meclofenoxate [51-68-3] Review of Toxicological Literature (Update) November 2002 Dimethylethanolamine (DMAE) [108-01-0] and Selected Salts and Esters DMAE Aceglutamate [3342-61-8] DMAE p-Acetamidobenzoate [281131-6] and [3635-74-3] DMAE Bitartrate [5988-51-2] DMAE Dihydrogen Phosphate [6909-62-2] DMAE Hydrochloride [2698-25-1] DMAE Orotate [1446-06-6] DMAE Succinate [10549-59-4] Centrophenoxine [3685-84-5] Centrophenoxine Orotate [27166-15-0] Meclofenoxate [51-68-3] Review of Toxicological Literature (Update) Prepared for Scott Masten, Ph.D. National Institute of Environmental Health Sciences P.O. Box 12233 Research Triangle Park, North Carolina 27709 Contract No. N01-ES-65402 Submitted by Karen E. Haneke, M.S. Integrated Laboratory Systems, Inc. P.O. Box 13501 Research Triangle Park, North Carolina 27709 November 2002 Toxicological Summary for Dimethylethanolamine and Selected Salts and Esters 11/2002 Executive Summary Nomination Dimethylethanolamine (DMAE) was nominated by the NIEHS for toxicological characterization, including metabolism, reproductive and developmental toxicity, subchronic toxicity, carcinogenicity and mechanistic studies. The nomination is based on the potential for widespread human exposure to DMAE through its use in industrial and consumer products and an inadequate toxicological database. Studies to address potential hazards of consumer (e.g. dietary supplement) exposures, including use by pregnant women and children, and the potential for reproductive effects and carcinogenic effects are limited.
    [Show full text]
  • The Design and Synthesis of Peptidomimetic Serine-Based Prodrugs As 14-3-3 Inhibitors
    Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations 2013 The esiD gn And Synthesis Of Peptidomimetic Serine-Based Prodrugs As 14-3-3 Inhibitors Eric Drake Jones Purdue University, [email protected] Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Part of the Chemistry Commons Recommended Citation Jones, Eric Drake, "The eD sign And Synthesis Of Peptidomimetic Serine-Based Prodrugs As 14-3-3 Inhibitors" (2013). Open Access Theses. 46. https://docs.lib.purdue.edu/open_access_theses/46 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School ETD Form 9 (Revised 12/07) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Eric Drake Jones Entitled The Design and Synthesis of Peptidomimetic Serine-Based Prodrugs as 14-3-3 Inhibitors. Master of Science For the degree of Is approved by the final examining committee: Richard F. Borch Chair Mark S. Cushman Robert L. Geahlen To the best of my knowledge and as understood by the student in the Research Integrity and Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Approved by Major Professor(s): ____________________________________Richard F. Borch ____________________________________ Approved by: Richard F. Borch 11/5/2013 Head of the Graduate Program Date THE DESIGN AND SYNTHESIS OF PEPTIDOMIMETIC SERINE-BASED PRODRUGS AS 14-3-3 INHIBITORS A Thesis Submitted to the Faculty of Purdue University by Eric Drake Jones In Partial Fulfillment of the Requirements for the Degree of Masters of Science December 2013 Purdue University West Lafayette, Indiana ii ACKNOWLEDGMENTS First, I would like to thank Dr.
    [Show full text]
  • Advanced Amino Acid-Based Technologies
    Review Cite This: Ind. Eng. Chem. Res. 2019, 58, 20181−20194 pubs.acs.org/IECR Advanced Amino Acid-Based Technologies for CO2 Capture: A Review Vida Sang Sefidi and Patricia Luis* Materials & Process Engineering (iMMC-IMAP), UCLouvain, Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium *S Supporting Information ABSTRACT: Capture and utilization or storage of CO2 have been considered as the primary options to reduce the impact on the climate caused by CO2 emissions. Several technological approaches have been proposed depending on the point of actuation (precombustion, postcombustion, or oxyfuel combustion), but absorption processes are still the most extended solution implemented in the industry. Alkanol- amines are typical solvents used for CO2 capture, even though they have a noticeable negative impact on the environment. Amino acids and their salts have been appointed as alternative solvents since their functional group is similar to that of alkanolamines but presenting better properties. In addition, they show very good performance in CO2 capture. This manuscript reviews the state of the art of the use of amino acids in CO2 capture and the main technologies involving the application of these solvents. ■ INTRODUCTION disadvantages that cannot be neglected, such as low CO2 Emission of greenhouse gases has a significant impact on the loading, high energy requirements for regeneration, degrada- 1 tion through oxidation of the amine, vaporization losses due to environment. The rise of global temperature has already 15,16 caused an increase in the polar ice melting and provoked a high vapor pressure, and high viscosity. In addition, they 2 can cause operational problems such as corrosion, foaming, change in the climate.
    [Show full text]
  • Alkanolamine Hydroxy-Capped Epoxy for Cathodic Electrocoat
    Europaisches Patentamt European Patent Office @ Publication number: 0 198 783 A2 Office europeen des brevets EUROPEAN PATENT APPLICATION Application number: 86630025.4 ® int. ci- C 09 D 5/44, C 09 D 17/00, C08G 59/50 Date of filing: 13.02.86 §) Priority: 15.04.85 US 723586 S) Applicant: INMONT CORPORATION, 1255 Broad Street, Clifton New Jersey 07015 (US) Inventor: Debroy, Tapan K., 25691 Strathhaven Drive, © Date of publication of application: 22.10.86 Novi Michigan 48052 (US) Bulletin 86/43 Inventor: Chung, Ding-Yu, 28228 Gettysburg Road, Farmington Hills Michigan 48018 (US) Representative : Schmitz, Jean-Marie et al, Office Dennemeyer S.a.r.l. 21 -25 Allee Scheff er P.O. Box 41 , @ Designated Contracting States : BE DE FR GB IT NL SE L-2010 Luxembourg (LU) @ Alkanolamine hydroxy-capped epoxy for cathodic electrocoat. Improved electrodepositable resin compositions com- prising the reaction product of a polyepoxide, and, the reac- tion product of a ketone and an alkanolamine. The introduc- tion of the primary amine into the epoxide molecule can be simultaneously done, optionally, with chain extension. The resin compositions can also be used as grind resins. Technical Field The field of art to which this invention pertains is epoxy resins, and, more specifically, epoxy resin compositions containing crosslinking agents for use in cathodic electrocoat processes. Background Art The use of electro depositable resin compositions in aqueous baths to coat objects is well known in the art. Typically, a resin emulsion is prepared by initially adducting an epoxy resin with an amine. The adduct is then mixed with a crosslinking agent and salted to form an aqueous emulsion.
    [Show full text]
  • A Critical Review of Carbon Quantum Dots
    materials Review A Critical Review of Carbon Quantum Dots: From Synthesis toward Applications in Electrochemical Biosensors for the Determination of a Depression-Related Neurotransmitter Jingying Xu 1, Jiangang Tao 1, Lili Su 2, Jidong Wang 3,* and Tifeng Jiao 3,4,* 1 Mental Health Service Center and College of Marxism, Yanshan University, Qinhuangdao 066004, China; [email protected] (J.X.); [email protected] (J.T.) 2 Li Ren College, Yanshan University, Qinhuangdao 066004, China; [email protected] 3 Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China 4 State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China * Correspondence: [email protected] (J.W.); [email protected] (T.J.); Tel.: +86-335-805-6854 (T.J.) Abstract: Depression has become the leading cause of disability worldwide and is a global health burden. Quantitative assessment of depression-related neurotransmitter concentrations in human fluids is highly desirable for diagnosis, monitoring disease, and therapeutic interventions of de- pression. In this review, we focused on the latest strategies of CD-based electrochemical biosensors for detecting a depression-related neurotransmitter. We began this review with an overview of the microstructure, optical properties and cytotoxicity of CDs. Next, we introduced the development of synthetic methods of CDs, including the “Top-down” route and “Bottom-up” route. Finally, we Citation: Xu, J.; Tao, J.; Su, L.; Wang, highlighted detecting an application of CD-based electrochemical sensors in a depression-related J.; Jiao, T. A Critical Review of Carbon neurotransmitter. Moreover, challenges and future perspectives on the recent progress of CD-based Quantum Dots: From Synthesis toward electrochemical sensors in depression-related neurotransmitter detection were discussed.
    [Show full text]
  • United States Patent Office
    3,836,671 Patented Sept. 17, 1974 United States Patent Office 2 A suitable value for R1 is, for example, alkyl or hy 3,836,671 droxyalkyl each of 3, 4 or 5 carbon atoms, which prefer ALKANOLAMINE DERVATIVES FOR PRODUC ING g-ADRENERGIC BLOCKADE ably is branched at the cy-carbon atom, for example iso Arthur Michael Barrett, Leeds, and John Carter, Roy propyl, S-butyl, t-butyl, 2-hydroxy-1,1-dimethylethyl or Hull, David James Le Count, and Christopher John 5 2-hydroxy-1-methylethyl. Particularly preferred values for Squire, Macclesfield, England, assignors to imperial Rare isopropyl and t-butyl. Chemical Industries Limited, London, England A suitable value for R is for example, acetyl, propi No Drawing. Continuation-in-part of application Ser. No. onyl, methoxycarbonyl, ethoxycarbonyl, cyano, carbam 9,451, Feb. 6, 1970, now Patent No. 3,663,607, which Oyl, carbazoyl, methylcarbamoyl, isopropylcarbamoyl, n is a continuation-in-part of abandoned application Ser. butylcarbamoyl or allylcarbamoyl. No. 199,011, Nov. 5, 1971. This application Mar. 10, A suitable value for A is, for example, methylene, 1972, Ser. No. 233,781 ethylene, ethylidene Claims priority, application Great Britain, Nov. 19, 1970, 55,028/70; Nov. 18, 1971, 53,544/71; Sept. 24, 1969, GH, 47,048/69; Feb. 21, 1969, 9,445/69 -C- int. C. A6k 27/00 trimethylene or vinylene. U.S. C. 424-324 5 Claims A suitable value for R3 is, for example, hydrogen, fluorine, chlorine, bromine, iodine, nitro, hydroxy, cy ABSTRACT OF THE DISCLOSURE ano, phenyl, phenoxy, benzyl, o-phenylethyl, benzyloxy, 1-(electronegatively - substituted - alkyl- or alkenyl 20 cyclopropyl, cyclobutyl, cyclopentyl, methyl, n-propyl, s phenoxy)-3-alkylamino-2-propanol derivatives, for exam butyl, allyl, acetyl, propionyl, methoxycarbonyl, ethoxy ple 1-p-carbamoylmethylphenoxy-3-isopropylamino-2-pro carbonyl, methylthio, methoxy, isopropoxy, allyloxy, hy panol and pharmaceutical compositions containing them droxymethyl, methoxymethyl or trifluoromethyl.
    [Show full text]
  • Phase Change Amino Acid Salt Separates Into CO2-Rich and CO2-Lean Phases Upon Interacting with CO2 Xianfeng Wang A,B,C,D, Novruz G
    Applied Energy 161 (2016) 41–47 Contents lists available at ScienceDirect Applied Energy journal homepage: www.elsevier.com/locate/apenergy Phase change amino acid salt separates into CO2-rich and CO2-lean phases upon interacting with CO2 Xianfeng Wang a,b,c,d, Novruz G. Akhmedov e, David Hopkinson d, James Hoffman d, Yuhua Duan d, ⇑ Adefemi Egbebi f, Kevin Resnik f, Bingyun Li a,d, a Biomaterials, Bioengineering & Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, United States b State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China c Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China d National Energy Technology Laboratory-Regional University Alliance (NETL-RUA), Morgantown, WV 26506, United States e Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States f URS, Pittsburgh, PA 15236, United States highlights graphical abstract Innovative phase change amino acid salt solvent is developed for CO2 capture. Amino acid salt solution is turned into aCO2-rich phase and a CO2-lean phase upon simple bubbling with CO2. The developed solvent captures the most CO2 (90%) in the CO2-rich phase. NMR spectroscopy was used to identify the species in the solution. article info abstract Article history: Concerns over global climate change have led to strong research emphasis worldwide on reducing the Received 29 July 2015 emission of greenhouse gases like CO2. One avenue for carbon emission reduction is using CO2 capture Received in revised form 1 September 2015 and storage from industrial sources.
    [Show full text]
  • An Evaluation of the Enantiomeric Recognition of Amino Acid Based
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2005 An evaluation of the enantiomeric recognition of amino acid based polymeric surfactants and cyclodextrins using spectroscopic and chromatographic methods Bertha Cedillo Valle Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemistry Commons Recommended Citation Valle, Bertha Cedillo, "An evaluation of the enantiomeric recognition of amino acid based polymeric surfactants and cyclodextrins using spectroscopic and chromatographic methods" (2005). LSU Doctoral Dissertations. 3349. https://digitalcommons.lsu.edu/gradschool_dissertations/3349 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. AN EVALUATION OF THE ENANTIOMERIC RECOGNITION OF AMINO ACID BASED POLYMERIC SURFACTANTS AND CYCLODEXTRINS USING SPECTROSCOPIC AND CHROMATOGRAPHIC METHODS A Dissertation Submitted to the graduate Faculty of the Louisiana State University and Agricultural and Mechanical College In partial fulfillment of the Requirements for the degree of Doctor of Philosophy in The Department of Chemistry By Bertha Cedillo Valle B.S. Texas Tech University, 1998 December 2005 DEDICATION I want to dedicate this work to my husband, Larry, and my immediate siblings, Octavio Jorge, Martha, and Silvia, along with their respective spouses. You guys were a constant driving force for me and were always there to support me financially and/or emotionally. I appreciate your support more than words can say.
    [Show full text]