NACS2021 01 F.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crisis and Community
Crisis and Community 2020 Annual Report A “I am so thankful that I’m part of a group of people that cares so much about the thoughtful mentoring and education of the next generations of scientists. These are my people.” Cottrell Scholar “It was particularly hard during the pandemic to get in touch with fellow scientists, and I only recognized during the Scialog meeting how much I was missing these interactions. Thanks for making this possible.” Scialog: Negative Emissions Science Fellow B Letter from the President Along with the terrible losses and disruptions of the impact of the pandemic. In response to their We recognize that a return to “normal” will be 2020 came evidence for optimism about human concerns about keeping scientific careers on track neither rapid nor easy. Our support and programs resilience, scientific innovation, and the power at a time when most universities and colleges will continue to focus on basic research in the of partnerships. The community of teacher- severely cut back their faculty hiring plans, we physical sciences, while also paying close attention scholars that the Research Corporation for Science joined with the National Science Foundation to to how we can help improve the lives and careers of Advancement supports adapted to teaching online offer fellowships to senior postdoctoral fellows who faculty in the sciences at universities, colleges, and and to guiding their research groups remotely; in a non-pandemic year would have expected to be research institutes. Please be in touch with your long-term investigations were put on hold as launching independent research programs. -
Iridium Corroles: Synthesis, Properties, and Electronic Structure
IRIDIUM CORROLES: SYNTHESIS, PROPERTIES, AND ELECTRONIC STRUCTURE Thesis by Joshua Palmer In Partial Fulfillment of the Requirements for the degree of Ph. D., Chemistry CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2011 (Defended February 11, 2011) ii 2011 Joshua Palmer All Rights Reserved iii ACKNOWLEDGEMENTS My graduate school experience was something of a festival of collaboration, so there are a great many people to thank for the existence of this thesis. First of all, I have to thank my advisor, Harry Gray, who rolled the dice on me when he barely had space and then let me do almost anything I wanted with my time in his lab. Harry has been a boon and an inspiration to generations of chemists young and old, and I’m proud to count myself among them. I also have to thank my thesis committee: John Bercaw, Brian Stoltz, and Jonas Peters. We didn’t meet very often, but I always got valuable scientific advice from them when we did. Additionally, I would like to acknowledge the aid of Zeev Gross, a professor at the Technion in Haifa, who initially got me interested in corroles and who always has time to discuss an idea, even if it’s just by e-mail. I also have to thank Jay Winkler, director of the Beckman Institute Laser Resource Center, who allowed me to utilize a broad array of extremely expensive laser instruments during my time at Caltech and even purchased one custom-made item for a set of experiments I wanted to perform. I’d like to acknowledge the ongoing influence of my wonderful undergraduate advisor, David I. -
National Academy of Sciences July 1, 1979 Officers
NATIONAL ACADEMY OF SCIENCES JULY 1, 1979 OFFICERS Term expires President-PHILIP HANDLER June 30, 1981 Vice-President-SAUNDERS MAC LANE June 30, 1981 Home Secretary-BRYCE CRAWFORD,JR. June 30, 1983 Foreign Secretary-THOMAS F. MALONE June 30, 1982 Treasurer-E. R. PIORE June 30, 1980 Executive Officer Comptroller Robert M. White David Williams COUNCIL Abelson, Philip H. (1981) Markert,C. L. (1980) Berg, Paul (1982) Nierenberg,William A. (1982) Berliner, Robert W. (1981) Piore, E. R. (1980) Bing, R. H. (1980) Ranney, H. M. (1980) Crawford,Bryce, Jr. (1983) Simon, Herbert A. (1981) Friedman, Herbert (1982) Solow, R. M. (1980) Handler, Philip (1981) Thomas, Lewis (1982) Mac Lane, Saunders (1981) Townes, Charles H. (1981) Malone, Thomas F. (1982) Downloaded by guest on September 30, 2021 SECTIONS The Academyis divided into the followingSections, to which membersare assigned at their own choice: (11) Mathematics (31) Engineering (12) Astronomy (32) Applied Biology (13) Physics (33) Applied Physical and (14) Chemistry Mathematical Sciences (15) Geology (41) Medical Genetics Hema- (16) Geophysics tology, and Oncology (21) Biochemistry (42) Medical Physiology, En- (22) Cellularand Develop- docrinology,and Me- mental Biology tabolism (23) Physiological and Phar- (43) Medical Microbiology macologicalSciences and Immunology (24) Neurobiology (51) Anthropology (25) Botany (52) Psychology (26) Genetics (53) Social and Political Sci- (27) Population Biology, Evo- ences lution, and Ecology (54) Economic Sciences In the alphabetical list of members,the numbersin parentheses, followingyear of election, indicate the respective Class and Section of the member. CLASSES The members of Sections are grouped in the following Classes: I. Physical and Mathematical Sciences (Sections 11, 12, 13, 14, 15, 16). -
E Helsinki Forum and East-West Scientific Exchange
[E HELSINKI FORUM AND EAST-WEST SCIENTIFIC EXCHANGE JOINT HEARING BEFORE THE SUBCOMMITTEE ON SCIENCE, RESEARCH AND TECHNOLOGY OF THE COMMITTEE ON SCIENCE AND TECHNOLOGY AND THE Sul COMMITTEE ON INTERNATIONAL SECURITY AND SCIENTIFIC AFFAIRS OF THE COMMITTEE ON FOREIGN AFFAIRS HOUSE OF REPRESENTATIVES AND THE COMMISSION ON SECURITY AND COOPERATION IN EUROPE NINETY-SIXTH CONGRESS SECOND SESSION JANUARY 31, 1980 [No. 89] (Committee on Science and Technology) ted for the use of the Committee on Science and Technology and the Committee on Foreign Affairs U.S. GOVERNMENT PRINTING OFFICE 421 0 WASHINGTON: 1980 COMMITTEE ON SCIENCE AND TECHNOLOGY DON FUQUA, Florida, Chairman ROBERT A. ROE, New Jersey JOHN W. WYDLER, New York MIKE McCORMACK, Washington LARRY WINN. JR., Kansas GEORGE E. BROWN, JR., California BARRY M. GOLDWATER, JR., California JAMES H. SCHEUER, New York HAMILTON FISH, JS., New York RICHARD L. OTTINGER, New York MANUEL LUJAN, JR., New Mexico TOM HARKIN, Iowa HAROLD C. HOLLENBECK, New Jersey JIM LLOYD, California ROBERT K. DORNAN, California JEROME A. AMBRO, New York ROBERT S. WALKER, Pennsylvania MARILYN LLOYD BOUQUARD, Tennessee EDWIN B. FORSYTHE, NeW Jersey JAMES J. BLANCHARD, Michigan KEN KRAMER, Colorado DOUG WALGREN, Pennsylvania WILLIAM CARNEY, New York RONNIE G. FLIPPO, Alabama ROBERT W. DAVIS, Michigan DAN GLICKMAN, Kansas TOBY ROTH, Wisconsin ALBERT GORE, JR., Tennessee DONALD LAWRENCE RITTER, WES WATKINS, Oklahoma Pennsylvania ROBERT A. YOUNG, Missouri BILL ROYER, California RICHARD C. WHITE, Texas HAROLD L. VOLKMER, Missouri DONALD J. PEASE, Ohio HOWARD WOLPE, Michigan NICHOLAS MAVROULES, Massachusetts BILL NELSON, Florida BERYL ANTHONY, JR., Arkansas STANLEY N. LUNDINE, New York ALLEN E. -
Seminarios Itinerantes
Seminarios itinerantes Paul J. CHIRIK Princeton University, NJ, EE.UU. 25 a 29 de Abril 2016 Catalysis with Earth abundant elements Lunes, 25 de Abril, Universitat Autònoma de Barcelona 12 h, Facultat de Química ([email protected]) Viernes, 29 de Abril, ICIQ, Tarragona 12 h, ICIQ Auditorium ([email protected]) Hydrocarbon functionalization and upgrading with Earth abundant metal catalysts Martes, 26 de Abril, IIQ, CSIC – Universidad de Sevilla 12 h ([email protected]) Jueves, 28 de Abril, ISQCH, CSIC – Universidad de Zaragoza 12 h, Sala de Grados de la Facultad de Ciencias ([email protected]) Catalysis with Earth abundant elements Transition metal catalysis has revolutionized modern society by enabling new chemical transformations with unprecedented activity and control over selectivity. Applications range from the synthesis of new silicone materials, transforming hydrocarbon fuels to accessing new building blocks for pharmaceuticals. Our laboratory has been actively engaged in developing catalysts based on earth abundant elements rather than more traditionally deployed precious metals. The inspirations for this chemistry extend beyond catalyst cost; ultimately we aim to discover new reactivity that exploits the unique electronic structures of first row transition metals. My lecture will focus on two complementary approaches to this challenge. The first explores redox-active ligands, those that engage in reversible radical chemistry with the metal center, while the second employs a more traditional strong field ligand approach to engender more electron rich metal complexes. These two extremes define a continuum of reactivity ranging from new iron catalysts for commercial silicone production (Science 2012, 335, 567) to the asymmetric hydrogenation of alkenes (Science 2013, 342, 1054), C-H functionalization (J. -
UNITED STATES PATENT OFFICE 2,478,916 REFORMING Process Vladimir Haensel, Clarendon Hills, and Curtis F
Patented Aug. 16, 1949 2.478,916 UNITED STATES PATENT OFFICE 2,478,916 REFORMING PRocess Vladimir Haensel, Clarendon Hills, and Curtis F. Gerald, Riverside, E., assignors to Universa Oil Products Company, Chicago, I., a corporation of Delaware No Drawing. Application December 21, 1946, Serial No. 71,659 13 Claims. (Cl 196-50) 2 This invention relates to a reforming process mally liquid hydrocarbons substantially or con and more particularly to a process for the re pletely into normally gaseous hydrocarbons. forming of a saturated gasoline fraction in the The desired selective cracking generally com presence of a particular catalyst and under se prises the removal of methyl, ethyl and, to a lected conditions of operation. lesser extent, propyl groups, in the form of The saturated gasoline fraction to be treat methane, ethane and propane as will be herein ed in accordance with the present invention after described. However, the removal of these comprise straight run gasolines, natural gaso radicals is controlled so that not more than. One lines, etc. The gasoline fraction may be a full or possibly two of such radicals are removed boiling range gasoline having an initial boiling O from a given molecule. For example, heptane point within the range of about 50 to about may be reduced to hexane, nonane to Octane or 90 F. and an end boiling point within the heptane, etc. On the other hand uncontrolled range of about 375 to about 4.25° F., or it may or non-selective cracking will result in the de be a selected fraction thereof which usually will composition of normally liquid hydrocarbons be a higher boiling fraction, commonly referred into normally gaseous hydrocarbons as, for ex to as naphtha, and generally having an initial ample, by the continued demethylation of nor boiling point of from about 150 to about 250 F. -
Catalysis: Change for the Better
Catalysis: Change for the Better Grade Level petroleum into the high-level fuels that we rely on for nearly all our transportation Elementary through middle school with adult needs. It also produces "aromatic" assistance. petrochemicals, the raw materials used in the manufacture of plastics and fibers. High school This new idea in catalysts, and the ideas Materials that followed, have made our fuel more efficient, environmentally-friendly and easier Ordinary sugar cubes and cheaper to produce. It has also made Matches the plastics industry more environmentally- Ash friendly. Metal plate or can lid In 1998, Vladimir Haensel received the Charles Stark Draper Prize, a $450,000 Discussion award, for his work. This award is the "Nobel Prize" of engineering. it is presented by the Sometimes a chemical reaction won't take National Academy of Engineering, with an place, or will proceed very slowly, unless endowment from the Charles Stark Draper some other substance is added. That other Laboratory. Charles Stark Draper was an substance is called a catalyst, which engineer and "father" of modern inertial hastens the action but is not part of it and guidance systems, used in commercial does not change. Catalysts are widely used aircraft, space vehicles, strategic missiles, in the chemical industry to speed up and submarines. Draper also developed the reactions. An important use of catalysts is in sophisticated navigational system that the making of gasoline from crude oil. landed the Apollo astronauts on the moon and returned them safely to earth. In 1949 at Universal Oil Products (now UOP), chemical engineer Vladimir Haensel developed a revolutionary process called Platforming. -
Aiche Separations Division Newsletter 2019
AIChE Separations Division Newsletter 2019 Words from the Division Chair The Separations Division has provided knowledge and networking opportunities for AIChE members in the In this issue areas of separation science and technology since 1990. It is one of the biggest AIChE Divisions with more than 500 members and a large programming at the Annual Words from the Division Meeting. The primary objective of the Division Chair …………………………..….1 continues to be the development of technical AIChE Engage - Separations programming for the AIChE Spring and Annual Division ……………………......3 meetings, covering a variety of used and novel separation processes and materials developments in 8 Separations Division major separation areas. At the Spring 2019 Meeting in New Orleans, the Division Awards…………………..….……4 sponsored or co-sponsored 10 oral presentation sessions associated with a Topical Highlights from the 2019 Distillation Symposium. At the Fall 2019 Annual Meeting in Orlando, the Division AIChE Annual sponsored 59 oral presentation sessions, 4 Poster Sessions and 11 co-sponsored Meeting………………………….8 sessions with other Divisions. The programming efforts have been coordinated by the Division Chair along with our eight Area Chairs: Marcus Mello (Area 2), Andrew Sloley 2019 Graduate Student (Area 2A), Seth Huggins (Area 2B), George Goff (Area 2C), Haiqing Li (Area 2D), Stefano Research Awards ………….13 Brandani (Area 2E), Seyi Odueyungbo (Area 2F), Nick Merchant (Area 2G) and Josh Election Results for Thompson (Area 2H). I would like to thank each of the Area Chairs for their service and 2020……………………………..15 efforts to develop a strong programming for our Division and AIChE members in 2019. 2019 Separations Division In addition to the regular oral presentation sessions, the Division hosted 4 poster Officers ………………..……….18 sessions and we had our poster competition reinstated thanks to the initiative and coordination of our 1st Vice-Chair Ranil Wickramasinghe with the help of graduate 2019 Separations Division Area Chairs ……………..…...19 students. -
19788 NAE Bridge V33n1
Spring 2003 The BRIDGE LINKING ENGINEERING AND SOCIETY Computing Meets the Physical World Butler Lampson Autonomous Robot Soccer Teams Manuela Veloso Flying with Animals Part One: Linking Artificial Information-Processing Machines and Living Information-Processing Machines Chris Diorio Part Two: Interfacing Computer Electronics with Biology Thomas Daniel Entering the Brain: New Tools for Precision Surgery Eric Grimson Promoting the technological welfare of the nation by marshalling the knowledge and insights of eminent members of the engineering profession. The BRIDGE NATIONAL ACADEMY OF ENGINEERING George M.C. Fisher, Chair Wm. A. Wulf, President Sheila E. Widnall, Vice President W. Dale Compton, Home Secretary Harold K. Forsen, Foreign Secretary William L. Friend, Treasurer Editor-in-Chief George Bugliarello (Interim) Managing Editor: Carol R. Arenberg Production Assistants: Penelope Gibbs, Kimberly West The Bridge (USPS 551-240) is published quarterly by the National Academy of Engineering, 2101 Constitution Avenue, N.W., Washington, DC 20418. Periodicals postage paid at Washington, D.C. Vol. 33, No. 1 Spring 2003 Postmaster: Send address changes to The Bridge, 2101 Constitution Avenue, N.W., Washington, DC 20418. Papers are presented in The Bridge on the basis of general interest and time- liness. They reflect the views of the authors and not necessarily the position of the National Academy of Engineering. The Bridge is printed on recycled paper. © 2003 by the National Academy of Sciences. All rights reserved. A complete copy of each issue of The Bridge is available in PDF format at http://www.nae.edu/TheBridge. Some of the articles in this issue are also available as HTML documents and may contain links to related sources of information, multimedia files, or other content. -
Dr. Christopher Nicholas (Honeywell UOP) “Well-Defined Materials for Hydrocarbon Transformations: Zeolite Structure / Property Relationships for Catalysis”
2019 - 2020 October 14, 2019 Prof. Jason Hicks (University of Notre Dame) ”Plasma-Assisted Catalytic Activation of N2 for Ammonia Synthesis” November 11, 2019 Prof. Ian Tonks (University of Minnesota) “Ti-Catalyzed Nitrene Transfer Reactions: Harnessing the TiII/TiIV Redox Couple for New Transformations” December 9, 2019 Prof. Damien Guironnet (University of Illinois) “Engineering the Shape of Macromolecules Through Catalytic Polymerizations and Reactor Engineering” January 13, 2020 Meeting Cancelled February 10, 2020 Prof. Elizabeth Biddinger (City College of New York) “Electrosynthesis of Chemicals and Fuels: Electrochemistry at the Biorefinery” March 9, 2020 Prof. Abhaya K. Datye (University of New Mexico) “Atom Trapping: Key to the Design of Thermally Stable and Regenerable Single Atom Catalysts” April 13, 2020 Professor Omar Farha (Northwestern University) “Smart and Programmable Sponges” August 27, 2020 Spring Symposium 2019 Pines Award Address – Dr. Christopher Nicholas (Honeywell UOP) “Well-Defined Materials for Hydrocarbon Transformations: Zeolite Structure / Property Relationships for Catalysis” Keynote Speaker – Prof. Yogesh Surendranath (Massachusetts Institute of Technology) “Bridging Molecular and Heterogeneous Electrocatalysis Through Graphite Conjugation” Keynote Address – Dr. Daniel Ruddy (National Renewable Energy Laboratory) “Molybdenum carbide catalysts for biomass upgrading – from bulk to nanoscale” Previous Years' Programs Catalysis Club of Chicago 2018 - 2019 October 8, 2018 Professor Ray Gorte (University of Pennsylvania) -
Paul Chirik 292 Frick Laboratory, Department of Chemistry, Princeton, New Jersey, 08544 Phone: 609-254-4130 E-Mail: [email protected]
Paul Chirik 292 Frick Laboratory, Department of Chemistry, Princeton, New Jersey, 08544 Phone: 609-254-4130 E-Mail: [email protected] Education Ph.D. California Institute of Technology, June 2000 Advisor: John E. Bercaw, Thesis: Ancillary Ligand Effects on Fundamental Transformations in Metallocene Catalyzed Olefin Polymerization. B.S. Virginia Tech, Magna Cum Laude, In Honors, May 1995 Advisor: Joseph S. Merola, Thesis: Studies in to Iridium- and Rhodium- Hydrogenation Catalysts for Alkene Hydrogenation in Aqueous Solution. Experience • Edwards S. Sanford Professor, Princeton University 2011-present • Peter J. W. DeBye Professor, Cornell University 2009-2011 • Associate Professor, Cornell University 2006-2009 • Assistant Professor, Cornell University 2001-2006 • Postdoctoral Fellow, Massachusetts Institute of Technology 2000-2001 Selected Honors and Awards • Rylander Award in Catalysis Sponsored by BASF 2020 • Eni Award, Advanced Environmental Solutions Prize 2019 • ACS Catalysis Lectureship for Advancement of Catalysis Science 2017 • Presidential Green Chemistry Challenge Award 2016 • First JSCC International Award for Creative Work 2015 • Closs Lecturer, University of Chicago 2014 • Blavatnik Award for Young Scientists, NYAS 2009 • Arthur C. Cope Scholar Award, American Chemical Society 2009 • Bessel Fellow of the Alexander von Humboldt Foundation 2008 • Camille Dreyfus-Teacher Scholar 2006 • Stephen and Margery Russell Distinguished Teaching Award 2005 • David and Lucile Packard Fellow in Science and Engineering 2004 • NSF CAREER -
ACS Division of Inorganic Chemistry
American Chemical Society Division of Inorganic Chemistry DIC Web- Site: http://membership.acs.org/i/ichem/index.html Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842-3012 979 845-5235, [email protected] 2004 Officers Prepared by Kim R. Dunbar, Secretary Al Sattelberger Chair Clifford P. Kubiak 1. ELECTION 2004 Chair-Elect Following is the list of offices to be filled and the candidates for each: Kim Dunbar Secretary • Chair-Elect: Peter C. Ford and Thomas B. Rauchfuss William E. Buhro • Treasurer-Elect: Donald H. Berry and Mary P. Neu Secretary-Elect Bryan Eichhorn • Executive Committee Member at Large: Treasurer Kristen Bowman-James and George G. Stanley Subdivision Chairs • Councilors (2 will be elected: William B. Tolman Jeffrey R. Long, Philip P. Power, Gregory H. Robinson and Lawrence R. Sita Bioinorganic • Alternate Councilors (2 will be elected): Janet Morrow Bioinorganic-Elect Sonya J. Franklin, François P. Gabbaï, Jonas C. Peters and John D. Protasiewicz Patricia A. Shapley • Chair-Elect, Bioinorganic: A.S. Borovik and Joan B. Broderick Organometallic • Chair-Elect, Organometallic: R. Morris Bullock and Gerard Parkin Klaus H. Theopold Organometallic-Elect • Chair-Elect, Solid State and Materials Chemistry: Hanno zur Loye David C. Johnson and Omar M. Yaghi Solid State • Chair-Elect, Nanoscience: Thomas E. Mallouk and Chad A. Mirkin Edward G. Gillan Solid State-Elect Peidong Yang 2. MESSAGE FROM THE CHAIR – Al Sattelberger Nanoscience This summer's International Conference on Coordination Chemistry (ICCC-36) was James E. Hutchison Nanoscience-Elect a major accomplishment for the DIC. Over 1100 participants representing inorganic chemistry programs from around the world attended the conference in Merida, Executive Committee Mexico on July 18-23.