Cotton Valley (Upper Jurassic)And Hosston(Lower Cretaceous) Depositional Systemsand Their Influence Onsalt Tectonics Intheeast Texasbasin by Mary K

Total Page:16

File Type:pdf, Size:1020Kb

Cotton Valley (Upper Jurassic)And Hosston(Lower Cretaceous) Depositional Systemsand Their Influence Onsalt Tectonics Intheeast Texasbasin by Mary K Cotton Valley (Upper Jurassic)and Hosston(Lower Cretaceous) Depositional Systemsand Their Influence onSalt Tectonics intheEast TexasBasin By Mary K. McGowen and David W. Harris Reprintedfrom The Jurassic of the Gulf Rim: Proceedingsofthe ThirdAnnualResearch Conference, Gulf Coast Section, Society of Economic Paleontologists and Mineralogists Foundation,1984 1984 BUREAUOFECONOMIC GEOLOGY W. L.Fisher, Director The University of Texas at Austin Austin, Texas 78713 Geological Circular 84-5 Cotton Valley (Upper Jurassic)and Hosston(Lower Cretaceous) Depositional Systemsand Their Influence onSalt Tectonics intheEast TexasBasin By Mary K. McGowen and David W. Harris Assisted by Cynthia Lopez andKeith Pollman Reprintedfrom The Jurassicof the GulfRim,edited by WilliamP.S. Ventress,Don G.Bebout,Bob F.Perkins,and Clyde H.Moore:Proceedingsof the ThirdAnnualResearchConference, GulfCoast Section,SocietyofEconomic Paleontologists and Mineralogists Foundation,1984 Fundingprovided by the U.S. Department of Energyunder Contract No. DE-AC97-80ET46617 1984 BUREAUOFECONOMIC GEOLOGY W. L.Fisher,Director The University of Texas at Austin Austin, Texas 78713 Cotton Valley (Upper Jurassic)and Hosston (Lower Cretaceous) Depositional Systemsand Theirin theInfluenceEast TexasonBasinSalt Tectonics Mary K.McGowen ARCO Oil and Gas Company P.O. Box 2819 Dallas, Texas 75221 David W. Harris Marathon Oil Company P.O. Box 2659 Casper, Wyoming 82602 Abstract mature drainage system had not yet formed. The Cotton Valley Group, which is Correct interpretation of the effect of basin thought to be a fan-delta system, can be sub- infilling on salt mobilization is critical to divided into three types of facies: prodelta understanding salt dome growth and stability. deposits, delta-front deposits, and braided The size of salt structures in the East Texas fluvial deposits. Fan deltas, supplied by Basin is determined by the original thick- braided streams, prograded from the north, ness of the underlying Louann Salt (Middle northwest, and west. Dip-oriented sandstone "Jurassic): that is, salt structures distinct- trends dominate in the northwestern part of ly increase in size toward the interior of the basin and change basinward to northeast the basin. Initial movement of salt appar- to southwest strike-oriented trends. ently occurred in the marginal areas of the During Hosston time, sedimentation in basin during Smackover (Late Jurassic) depo- the northwestern part of the basin was domi- sition. This movement seems to have resulted nantly fluvial. The depositional character- from downward creep that was induced by lead- istics of sediments in this area are typical ing of carbonate units and was enhanced oy of braided streams. In the study area, par- basinward tilting. allel net-sandstone and sediment thicks are During a major shift from carbonate to clearly defined in the distal part of the clastic sedimentation in the Late Jurassic, Cotton Valley but are not as well defined in salt movement became more extensive. This the Hosston. This suggests that ioost deltaic salt migration was caused by uneven sediment sedimentation during Hosston time occurred loading of fluvial-deltaic systems in the basinward of the study area. A major trans- Cotton Valley Group (Upper Jurassic) and the gression at the end of Hosston time resulted Hosston Formation (Lower Cretaceous). Terri- in deposition of the Pettet Limestone. genous source areas to the west and north Apparently, the location of salt domes persisted throughout Cotton Valley and Hoss- and salt anticlines was controlled by the po- ton time. elastics v/ere delivered to the sition of the Smackover-Giimer carbonate East Texas Basin by many small streams, platform. This platform impeded local subsi- rather than by one major stream, because a dence to the extent that fan-delta sediments GCSSEPM Foundation Third Annual Research Conference Proceedings, March 1984 213 214 The Jurassic of the Gulf Rim of the Cotton Valley Group spread laterally west and north into the basin (McGowen and across the shelf rather than stacked verti- Harris, 1981) and second, because deep-well- cally. Sediment depocenters formed prefer- control, seismic, and gravity data were entially basinward of the platform, resulting available. in migration of the underlying salt into Salt movement began at different times ridges that fronted the prograding sediment in different parts of the basin. The earli- wedge. As the salt was depleted under these est movement occurred around the margins of depocenters, subsidence slowed and thereby the basin during Smackover deposition (Jack- allowed the fan deltas to override the salt son and Harris, 1981). At that time, in- ridges. This resulted in a basinward progra- creased subsidence toward the center of the dation of deltaic depocenters and produced basin caused basinward tilting that, induced younger depocenters toward the interior of by downward creep, mobilized salt. the basin. Further salt migration and dif- More extensive salt movement occurred ferentiation of salt ridges produced the after the influx of Cotton Valley clastic present complex array of salt domes and anti- sediment during the Late Jurassic (Fig. 1). clines of the East Texas Basin. Seismic and Before that time, deposition in the East Tex- gravity data clearly demonstrate the exis- as Basin was dominated by carbonates, evapor- tence of these salt ridges and intervening ites, and marine mudstones and claystones. sediment thicks. Salt movement apparently was controlled by differential loading of Upper Jurassic and Lower Cretaceous fluvial-deltaic systems, as Introduction well as by the position of the subjacent Smackover-Gilmer carbonate shelf complex The Cotton Valley Group (Upper Jurassic) (Jackson and Harris, 1981; McGowen and Har- and Hosston Formation (Lower Cretaceous) were ris, 1981) . studied as part of the East Texas Waste Iso- lation project being conducted by the Bureau Data Base of Economic Geology for the U. S. Department of Energy. The purpose of the project is to Electric logs from 232 wells (Fig. 2) , assess the suitability of salt domes in the supplemented by Bouguer residual gravity maps East Texas Basin as potential repositories and two dip-oriented, six-fold conventional for nuclear waste; this suitability is con- CDP seismic profiles, served as a data base tingent on the tectonic stability of the for this study. When possible, well data domes. The objective of the present analysis were integrated with seismic data by using was to investigate the effect of early basin velocity conversion tables. Five seismic re- infilling on salt mobilization in the East flectors within the Mesozoic were used, in- Texas Basin. Understanding the mechanisms cluding the base of the Louann Salt, the top responsible for early salt movement is essen- of the Louann Salt, the top of the Gilmer tial to predicting domal growth evolution and Limestone (Cotton Valley Limestone) (Forgotson ultimate stability. and Forgotson, 1976), and the top of the Pet- An area in the northwestern part of the tet Limestone (Table 1). The fifth reflect- East — Texas Basin consisting of seven coun- or, which we believe is the top of the Mas- ties Hunt, Hopkins, Wood,— Rains, Kaufman, sive Anhydrite, was used in the northern part Van Zandt, and Henderson was selected for of the basin, where the Pettet Formation the study of the relationship between salt changes lithologically from a limestone fa- movement and the influx of Upper Jurassic cies to a sandy facies and thereby loses its terrigenous clastic sediment. The study area character as a distinct seismic reflector. was chosen for two reasons: first, because The Louann Salt is characterized by prominent preliminary studies indicated the presence of boundary reflections (Jackson and Harris, a fan-delta system prograding from the north- 1981). Its inferred thickness, based on McGowen and Harris/Depositional Systems in the East Texas Basin 215 Table 1. Seismic reflectors and seismic units in the northwestern part of the East Texas Basin SEISMIC REFLECTOR SEISMIC UNIT Upper Navarro Marl Top of the Pecan Gap Chalk Top of the Austin Chalk Top of the Buda Limestone *Top of the Massive Anhydrite?- — — — > *Top of the Pettet Limestone ■ D —" *Top of the Gilmer Limestone — C | B *Top of the Louann Salt ______ ~" *Base of the Louann Salt A *Seismic reflectors used in this study. gravity data. Zones of thicker salt general- ly coincide with gravity lows, whereas areas of thinner salt correspond to gravity highs (Jackson and Harris, 1981) (Fig. 3). Isopach, net-sandstone, and sandstone- percent maps of the Cotton Valley Group and the Hosston Formation were prepared. The boundary between the two was based on scout card information and regional correlations within the East Texas Basin. Using the Pet- tet Limestone as a datum, nine stratigraphic cross sections were constructed within the study area; selected sections are included in this report (Fig. 2). Limitations of this data base include the following: First, although well spacing within individual oil and gas fields is good, overall spacing is poor, precluding detailed mapping of the Cotton Valley Group and Hos- ston Formation on a regional scale. Second, because conventional-core data were not available to verify environmental interpreta- tions, facies designations were based entire- ly on electric log response and on sand-body geometry determined from net-sandstone maps, sandstone-percent maps, and textural and com- Figure 1. Stratigraphic succession and no- positional features observed
Recommended publications
  • Middle Eocene Claiborne Group, United States Part of the Gulf of Mexico Basin
    Geologic Assessment of Undiscovered Conventional Oil and Gas Resources —Middle Eocene Claiborne Group, United States Part of the Gulf of Mexico Basin By Paul C. Hackley U.S. Geological Survey Open-File Report 2012–1144 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia 2012 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., 2012, Geologic assessment of undiscovered conventional oil and gas resources—Middle Eocene Claiborne Group, United States part of the Gulf of Mexico Basin: U.S. Geological Survey Open–File Report 2012–1144, 87 p., available only at http://pubs.usgs.gov/of/2012/1144/. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Abstract ......................................................................................................................................................................... 1 Acknowledgments
    [Show full text]
  • What Is a Salt Dome? How Do They Form? 3/2/18, 4:06 PM What Is a Salt Dome?
    What is a Salt Dome? How do they form? 3/2/18, 4:06 PM What is a Salt Dome? » » Salt Domes Columns of salt that intrude through overlying sediment units. Middle Jurassic salt: This cross-section shows rocks of the East Texas Basin between the Oklahoma-Texas border (on the left) and the Gulf of Mexico coastline (on the right). The purple rock unit is the Middle Jurassic salt, a rock unit that has the ability to flow under pressure. The salt is overlain by thousands of feet of sediment which place enormous pressure on the surface of the salt and cause it to flow. At numerous locations the salt has intruded upwards into overlying sediments. This has produced small mounds or towering columns of salt that can be thousands of feet tall. The salt columns and smaller mounds are called "salt domes." USGS image [1]. https://geology.com/stories/13/salt-domes/ Page 1 of 12 What is a Salt Dome? How do they form? 3/2/18, 4:06 PM Salt Dome: Cartoon of a salt dome showing piercement through two rock units and deformation of the rock unit immediately above. Growth of the dome is accomplished by migration of salt into the dome from surrounding areas. The salt migrates into the dome because it is compressed by the weight of overlying sediments. What is a Salt Dome? A salt dome is a mound or column of salt that has intruded upwards into overlying sediments. Salt domes can form in a sedimentary basin where a thick layer of salt is overlain by younger sediments of significant thickness.
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 10
    29. REGIONAL ASPECTS OF DEEP SEA DRILLING IN THE GULF OF MEXICO LEG 10 J. Lamar Worzel, Earth and Planetary Sciences, Marine Biomedical Institute, University of Texas at Galveston, Texas and William R. Bryant, Texas A&M University, College Station, Texas INTRODUCTION creasing amounts of gases. Beacon failure, causing loss of Leg 10 extended the drilling information in the Gulf of ability to properly control position while drilling, caused Mexico begun on Leg 1. The summary of results for Leg termination of Site 96 because there was only one effec- 1 in the Gulf of Mexico is reported by Ewing, Worzel, and tive beacon left, and it was deemed more important to drill Burk, (1969, p. 624). Figure 1 (reproduced from that re- Site 97 than to continue Site 96. Site 97 was most difficult port) shows the most important physiographic features of because of beacon troubles and the strong currents, no the Gulf including the known regions of salt domes and doubt associated with the Gulf Stream. Although the cur- the three holes drilled in the Gulf of Mexico during Leg rent charts indicated we should expect strong currents 1. As a short resume, Site 1, drilled to a subbottom depth from the northwest, we experienced 4- to 5-knot currents of 770.5 meters near the foot of the Sigsbee Scarp, encoun- from the southwest for the 2.5 days we were on station. tered only Pleistocene and Holocene sediments with abun- The thrusters were not adequate to keep the ship on sta- dant evidence that most, if not all, of the section drilled tion, so the computer program for position keeping had to was slump material.
    [Show full text]
  • 35 Madof Etal. (2017).Pdf
    Marine and Petroleum Geology 80 (2017) 492e516 Contents lists available at ScienceDirect Marine and Petroleum Geology journal homepage: www.elsevier.com/locate/marpetgeo Research paper Unreciprocated sedimentation along a mud-dominated continental margin, Gulf of Mexico, U.S.A.: Implications for sequence stratigraphy in muddy settings devoid of depositional sequences Andrew S. Madof a, *, Nicholas Christie-Blick b, Mark H. Anders c, Lawrence A. Febo a a Chevron Energy Technology Company, Houston, TX 77002-7308, USA b Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000, USA c Department of Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, VA 22030, USA article info abstract Article history: According to widely accepted sequence stratigraphic and fill-and-spill models, sedimentary cyclicity Received 6 July 2015 along continental margins is modulated by relative sea-level change, whereas smaller-scale intraslope Received in revised form accommodation is controlled by the filling of pre-existing bathymetric depressions. Although these 24 December 2016 concepts are presumed to apply to shelf-to-slope settings regardless of grain size, we have tested both Accepted 24 December 2016 hypotheses in the mud-prone lower Pliocene to Holocene of offshore Louisiana, Gulf of Mexico, and reach Available online 26 December 2016 different conclusions. We determine that over the last ~3.7 Myr, differential accumulation and accom- panying salt tectonism dislocated the fine-grained shelf and slope, prevented the development of Keywords: e fi Gulf of Mexico sedimentary reciprocity at 10 100 kyr time scales, and inhibited ll-and-spill accumulation.
    [Show full text]
  • Report 365 Chapter 2
    Chapter 2 Geology of the Gulf Coast Aquifer, Texas Ali H. Chowdhury, Ph.D., P.G.1 and Mike J. Turco2 Introduction The Gulf Coast aquifer in Texas extends over 430 miles from the Texas-Louisiana border in the northeast to the Texas-Mexico border in the south (Figure 2-1). Over 1.1 million acre-feet of groundwater are annually pumped from this aquifer in Texas. A large portion of this water supply is used for irrigation and drinking water purposes by the fast growing communities along the Texas Gulf Coast. The geology of the Gulf Coast aquifer in Texas is complex due to cyclic deposition of sedimentary facies. Sediments of the Gulf Coast aquifer were mainly deposited in the coastal plains of the Gulf of Mexico Basin. These sediments were deposited under a fluvial-deltaic to shallow-marine environments during the Miocene to the Pleistocene periods. Repeated sea-level changes and natural basin subsidence produced discontinuous beds of sand, silt, clay, and gravel. Six major sediment dispersal systems that sourced large deltas distributed sediments from erosion of the Laramide Uplift along the Central and southern Rockies and Sierra Madre Oriental (Galloway and others, 2000; Galloway, 2005). Geographic locations of the various fluvial systems remained relatively persistent, but the locations of the depocenters where the thickest sediment accumulations occurred shifted at different times (Solis, 1981). Stratigraphic classification of the Gulf Coast aquifer in Texas is complex and controversial, with more than seven classifications proposed. However, Baker’s (1979) classification based on fauna, electric logs, facies associations, and hydraulic properties of the sediments has received widespread acceptance.
    [Show full text]
  • Summary Report on the Regional Geology, Petroleum Potential, Environmental Consideration for Development, and Estimates of Undis
    UNITED STATES DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY AND U.S. MINERALS MANAGEMENT SERVICE Summary report on the regional geology, petroleum potential, environmental consideration for development, and estimates of undiscovered recoverable oil and gas resources of the United States Gulf of Mexico Continental Margin in the area of proposed Oil and Gas Lease Sales Nos. 81 and 84 Edited by Richard Q. Foote U.S. GEOLOGICAL SURVEY OPEN-FILE REPORT 84- 33*} This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. Use of trade names is for descriptive purposes only and does not constitute endorsement by the USGS. CONTENTS Page iW M . Introduction 0-1 References 0-4 J. xXiis tratxons - "*" - _ » _i - » __»m-r -i.. T- _i . _ .___ u <_,__ -. A.- -m (j j Chapter I: Regional Geologic Framework: Central and Western Gulf of Mexico OCS regions, by Ray G. Martin 1-1 Regional Geologic Setting 1-1 Origin and early evolution 1-2 Mesozoic and Cenozoic depositional history 1-5 Structural framework 1-7 Geologic Framework of Proposed Sale Areas 1-9 Stratigraphy 1-10 Structural features 1-14 ]?O'FOY"QTIV Cl. C I. CLlV*COtlf»d<3 . il~ "I ___ "I .^M -L-"l-__I__MI_ .m L^!_- ^^ «»M»M»^^_______ U__ -- ___WW«» ___U__- ^ - «___ - ___ __L--I ___ _T_U MLaLOL ML ___ ML _. OL J- T»J. fc*? UA Illustrations 1-32 Chapter II: Petroleum Geology: OCS Lease Sales 81 and 84 Planning Areas, by R.Q.
    [Show full text]
  • 2019 Program and Abstracts for the GCSSEPM Perkins-Rosen
    Salt Tectonics, Associated Processes, and Exploration Potential: Revisited: 1989–2019 37th Annual Gulf Coast Section SEPM Foundation Perkins-Rosen Research Conference 2019 Program and Abstracts Charles Davidson Hall, Noble Energy Houston, Texas December 3–6, 2019 Edited by J. Carl Fiduk Norman C. Rosen Copyright © 2019 by the Gulf Coast Section SEPM Foundation www.gcssepm.org Published December 2019 ii Program and Abstracts Foreword “It was 20 years ago today, Sgt. Pepper taught ground-penetrating radar. Yes, we have left the 1980s the band to play.” Well no, that is not quite correct. Yet behind. The key message is that there is a lot to learn it was 30 years ago that the first conference on salt tec- from all the world’s salt basins. By opening our eyes to tonics was held as the Tenth Annual GCSSEPM these other salt basins worldwide we can shorten our Foundation Research Conference. The conference time on the learning curve. Every salt basin has some- held in 1989 emphasized the basics as known at the thing valuable to teach us. time: the rift origin of the Gulf of Mexico, the extent of This is not to say that the Gulf of Mexico is now autochthonous and allochthonous salt, the delineation “mature” and that we know everything there is to know of regional salt provinces, descriptions of salt structural about it. That is far from the truth. Although our current styles, limited understanding of internal salt character- understanding of the northern Gulf of Mexico is light istics, and simple salt-sediment interactions. It was years ahead of where it was 30 years ago, the papers dominated by observations made in the northern Gulf to be presented here highlight how much is still of Mexico although there were papers on West Africa unknown and yet to be discovered in this basin.
    [Show full text]
  • Basement Tectonics and Origin of the Sabine Uplift
    Basement Tectonics and Origin of the Sabine Uplift Richard L. Adams Carr Resources, Inc., 305 S. Broadway Ave., Tyler, Texas 75702 ABSTRACT The same processes that formed the Gulf of Mexico Basin formed the Sabine Uplift. The Sabine Uplift is supported by a large rhombic area of basement fault blocks that originated as a mid-rift high during the Triassic rifting phase of the opening of the Gulf of Mexico. Sometimes referred to as a basement block, it covers an area that is 90 miles long (northwest-southeast) and 60 miles wide (southwest-northeast). Across the uplift the depth to magnetic basement is up to 10,000 ft shallower than in the middle of the East Texas Salt Basin. The northeast and southwest boundaries of this basement high are major transform fault systems that parallel the opening of the Gulf of Mexico. The northwest boundary is the East Texas Salt rift basin and the southeast side steps down into the South Louisiana Salt Basin. Within this mid-rift high, multiple smaller trans- form faults with horst and graben structures are evident by mapping the base of the Louann Salt from seismic data. Within the overall uplift area, these internal structures have influenced sedimentation on a smaller scale. Further uplift of this mid-rift high occurred during the middle to late Cretaceous and also during the Paleocene-Eocene. While the mid-rift high has a thin Louann Salt cover, an estimated 5,000 to 7,000 feet of salt was deposited off this high in the East Texas Salt Basin. Salt isochrons infer both the external and internal shape of the mid-rift high.
    [Show full text]
  • 3 Overview of the Jurassic of the Northern Gulf of Mexico Basin……………………
    ____________________________________________________ Cote Blanche Island Mine, St. Mary Parish, Louisiana: Salt Diapirism and Geology of the Louann Salt (Jurassic) 14 October 2016 Guidebook Number 68 The Southeastern Geological Society (SEGS) P.O. Box 1636 Tallahassee, FL 32302 Published by the Society _____________________________________________________________________________________ Cote Blanche Island Mine, St. Mary Parish, Louisiana Salt Diapirism and Geology of the Louann Salt (Jurassic) A Field Trip of the Southeastern Geological Society 14 October 2016 Prepared by Jonathan R. Bryan Northwest Florida State College _____________________________________________________________________________________ Table of Contents Introduction to Fieldtrip and Acknowledgements…………………………………… 2 Schedule and Driving Directions………………………………………………………..2 Cote Blanche and the Five Islands of the Louisiana Coast…….……………………...3 Overview of the Jurassic of the Northern Gulf of Mexico Basin…………………….. 6 Geology and Mineralogy of the Louann Salt…………………………………….........11 Salt Diapirism in the Northern Gulf of Mexico Basin………………………………...16 Salt Domes and Coral Reefs in the Northern Gulf of Mexico Basin…………………21 Mining and Economic Geology at Cote Blanche.……………………………………...22 Salt Life—Field Notes for the Descent……….……………………………………….…25 References…………………………………………………………………………………27 Appendix I—Cote Blanche Fact Sheet Appendix II—Welcome to Cote Blanche Appendix III—Cote Blanche Mine Overview—Michael Nixon, Mine Engineer _____________________________________________________________________________________ *On the Cover—Two students from Northwest Florida State College in Cote Blanche Mine, 14 November 2014 Introduction to Fieldtrip and Acknowledgements For most of us, visiting a deep, subsurface mine is something like an otherworldly experience. When I first entered Cote Blanche Salt Dome, after a 2-minute, 1,500-foot (0.28 mile) vertical descent down the mine shaft, I was immediately struck by the deep silence of the mine.
    [Show full text]
  • Regional Stress Regime Study of East Texas Based on Orientation of Fractures in the Weches Formation
    Stephen F. Austin State University SFA ScholarWorks Electronic Theses and Dissertations Spring 4-2-2018 REGIONAL STRESS REGIME STUDY OF EAST TEXAS BASED ON ORIENTATION OF FRACTURES IN THE WECHES FORMATION Cory D. Ellison Stephen F Austin State University, [email protected] Follow this and additional works at: https://scholarworks.sfasu.edu/etds Part of the Geology Commons, Geomorphology Commons, Geophysics and Seismology Commons, Sedimentology Commons, and the Tectonics and Structure Commons Tell us how this article helped you. Repository Citation Ellison, Cory D., "REGIONAL STRESS REGIME STUDY OF EAST TEXAS BASED ON ORIENTATION OF FRACTURES IN THE WECHES FORMATION" (2018). Electronic Theses and Dissertations. 164. https://scholarworks.sfasu.edu/etds/164 This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. REGIONAL STRESS REGIME STUDY OF EAST TEXAS BASED ON ORIENTATION OF FRACTURES IN THE WECHES FORMATION Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/164 REGIONAL STRESS REGIME STUDY OF EAST TEXAS BASED ON ORIENTATION OF FRACTURES IN THE WECHES FORMATION By CORY DEAN ELLISON, Bachelor of Science Presented to the Faculty of the Graduate School of Stephen F. Austin State University In Partial Fulfillment Of the Requirements For the degree of Master of Science STEPHEN F. AUSTIN STATE UNIVERSITY May 2018 REGIONAL STRESS REGIME STUDY OF EAST TEXAS BASED ON ORIENTATION OF FRACTURES IN THE WECHES FORMATION By CORY DEAN ELLISON, Bachelor of Science APPROVED: __________________________________ Dr.
    [Show full text]
  • The Nature and Origin of Caprock Overlying Gulf Coast Salt Domes
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1972 The aN ture and Origin of Caprock Overlying Gulf Coast Salt Domes. Charles William Walker Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Walker, Charles William, "The aN ture and Origin of Caprock Overlying Gulf Coast Salt Domes." (1972). LSU Historical Dissertations and Theses. 2255. https://digitalcommons.lsu.edu/gradschool_disstheses/2255 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION t o u sers This dissertation was produced fr0m a mjCrofilm cc^y c r the original document. While the most advanced techno| 0gjca| means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target for pages apparently lacking from the document photographed is M'Ssing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This rqay have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image °n the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Summary of Rock Salt Deposits in the United States As Possible Storage Sites for Radioactive Waste Materials
    Summary of Rock Salt Deposits in the United States as Possible Storage Sites for Radioactive Waste Materials GEOLOGICAL SURVEY BULLETIN 1148 Prepared on behalf of the U.S. Atomic Energy Commission QE1S n Summary of Rock Salt Deposits in the United States as Possible Storage Sites for Radioactive Waste Materials £y W. G. PIERCE and E. I. RICH Prepared on behalf of the U.S. .Atomic Energy Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: Pierce, William Gamewell, 1904- Summary of rock salt deposits in the United States as possible storage sites for radioactive waste materials, by W. G. Pierce and E. I. Rich. Washington, U.S. Govt. Print. Off., 1962. v, 91 p. maps (part fold., 1 col. in pocket) diagrs., tables. 23 cm. (U.S. Geological Survey. Bulletin 1148) Prepared on behalf of the U.S. Atomic Energy Commission. Bibliography: p. 78-87. 1. Salt U.S. 2. Radioactive waste disposal. I. Rich, Ernest Isaac, 1922-joint author. II. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Abstract__ _ _.._.__._____---_---_-___---------------------__---- 1 Introduction- _________-_____----__----------_---------_------__--- 4 Northeastern States _______--_-__--___------_--_-----_---_-_._--- 5 Silurian salt deposits____________-_____--------_--_-----.-_--_- 5 Stratigraphy. __________-________--------_-_-----______---_ 7 New York___________.-.
    [Show full text]