Variance in Orca Basin Compound-Specific GDGT Δ13c: Implications for Source, Sink, and Paleoclimate Interpretations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Middle Eocene Claiborne Group, United States Part of the Gulf of Mexico Basin
Geologic Assessment of Undiscovered Conventional Oil and Gas Resources —Middle Eocene Claiborne Group, United States Part of the Gulf of Mexico Basin By Paul C. Hackley U.S. Geological Survey Open-File Report 2012–1144 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia 2012 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., 2012, Geologic assessment of undiscovered conventional oil and gas resources—Middle Eocene Claiborne Group, United States part of the Gulf of Mexico Basin: U.S. Geological Survey Open–File Report 2012–1144, 87 p., available only at http://pubs.usgs.gov/of/2012/1144/. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Abstract ......................................................................................................................................................................... 1 Acknowledgments -
Geology.Gsapubs.Org on 19 September 2009
Downloaded from geology.gsapubs.org on 19 September 2009 Geology History of Laurentide meltwater flow to the Gulf of Mexico during the last deglaciation, as revealed by reworked calcareous nannofossils Thomas M. Marchitto and Kuo-Yen Wei Geology 1995;23;779-782 doi: 10.1130/0091-7613(1995)023<0779:HOLMFT>2.3.CO;2 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geology Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Notes Geological Society of America Downloaded from geology.gsapubs.org on 19 September 2009 History of Laurentide meltwater flow to the Gulf of Mexico during the last deglaciation, as revealed by reworked calcareous nannofossils Thomas M. -
Benchmark 3: Evaluation of Alternatives with Respect to Existing Conditions August 2015
Salton Sea Funding and Feasibility Action Plan Benchmark 3: Evaluation of Alternatives With Respect to Existing Conditions August 2015 Prepared by: Prepared for: This document is prepared as a living document for public review and comment. Comments may be provided to: Salton Sea Authority 82995 Hwy 111, Suite 200 Indio, CA 92201 Email: [email protected] Comments will be reviewed and incorporated as appropriate. If substantive comments are received, a revised document may be produced and distributed. Preferred citation: Salton Sea Authority (2015). Salton Sea Funding and Feasibility Action Plan Benchmark 3 Report: Evaluation of Alternatives With Respect to Existing Conditions, August Report. Revision Record Revisions to this document will be reviewed and approved through the same level of authority as the original document. All changes to the Benchmark 3 Report must be authorized by the Principal in Charge. Date Version Changes January Working Posted on Salton Sea Authority website. 2015 Draft Included changes from draft review by Salton Sea TCT. June 2015 First Updated hydrology section and inflow Complete projections including Figures 48-52, along with Document editorial revisions. August Revision 1 Added this Revision Record. Corrected title of 2015 California Department of Fish and Wildlife and other minor editorial revisions. Updated discussion of historical flows from 2003-present. Tetra Tech, Inc. i August 2015 Executive Summary This report presents a review of Salton Sea restoration alternatives and their components and determine how well they would perform under current and future inflows. Alternatives are considered with respect to existing hydrologic conditions at the Sea, as of 2014, and projected future hydrology. -
Consequences of Drying Lake Systems Around the World
Consequences of Drying Lake Systems around the World Prepared for: State of Utah Great Salt Lake Advisory Council Prepared by: AECOM February 15, 2019 Consequences of Drying Lake Systems around the World Table of Contents EXECUTIVE SUMMARY ..................................................................... 5 I. INTRODUCTION ...................................................................... 13 II. CONTEXT ................................................................................. 13 III. APPROACH ............................................................................. 16 IV. CASE STUDIES OF DRYING LAKE SYSTEMS ...................... 17 1. LAKE URMIA ..................................................................................................... 17 a) Overview of Lake Characteristics .................................................................... 18 b) Economic Consequences ............................................................................... 19 c) Social Consequences ..................................................................................... 20 d) Environmental Consequences ........................................................................ 21 e) Relevance to Great Salt Lake ......................................................................... 21 2. ARAL SEA ........................................................................................................ 22 a) Overview of Lake Characteristics .................................................................... 22 b) Economic -
Oxygen Isotope Geochemistry of Laurentide Ice-Sheet Meltwater Across Termination I
UC Davis UC Davis Previously Published Works Title Oxygen isotope geochemistry of Laurentide ice-sheet meltwater across Termination I Permalink https://escholarship.org/uc/item/292234zr Authors Vetter, L Spero, HJ Eggins, SM et al. Publication Date 2017-12-15 DOI 10.1016/j.quascirev.2017.10.007 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Quaternary Science Reviews 178 (2017) 102e117 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Oxygen isotope geochemistry of Laurentide ice-sheet meltwater across Termination I * Lael Vetter a, , Howard J. Spero a, Stephen M. Eggins b, Carlie Williams c, Benjamin P. Flower c a Department of Earth and Planetary Sciences, University of California Davis, Davis, CA 95616, USA b Research School of Earth Sciences, The Australian National University, Canberra 0200, ACT, Australia c College of Marine Sciences, University of South Florida, St. Petersburg, FL 33701, USA article info abstract Article history: We present a new method that quantifies the oxygen isotope geochemistry of Laurentide ice-sheet (LIS) Received 3 April 2017 meltwater across the last deglaciation, and reconstruct decadal-scale variations in the d18O of LIS Received in revised form meltwater entering the Gulf of Mexico between ~18 and 11 ka. We employ a technique that combines 1 October 2017 laser ablation ICP-MS (LA-ICP-MS) and oxygen isotope analyses on individual shells of the planktic Accepted 4 October 2017 18 foraminifer Orbulina universa to quantify the instantaneous d Owater value of Mississippi River outflow, which was dominated by meltwater from the LIS. -
What Is a Salt Dome? How Do They Form? 3/2/18, 4:06 PM What Is a Salt Dome?
What is a Salt Dome? How do they form? 3/2/18, 4:06 PM What is a Salt Dome? » » Salt Domes Columns of salt that intrude through overlying sediment units. Middle Jurassic salt: This cross-section shows rocks of the East Texas Basin between the Oklahoma-Texas border (on the left) and the Gulf of Mexico coastline (on the right). The purple rock unit is the Middle Jurassic salt, a rock unit that has the ability to flow under pressure. The salt is overlain by thousands of feet of sediment which place enormous pressure on the surface of the salt and cause it to flow. At numerous locations the salt has intruded upwards into overlying sediments. This has produced small mounds or towering columns of salt that can be thousands of feet tall. The salt columns and smaller mounds are called "salt domes." USGS image [1]. https://geology.com/stories/13/salt-domes/ Page 1 of 12 What is a Salt Dome? How do they form? 3/2/18, 4:06 PM Salt Dome: Cartoon of a salt dome showing piercement through two rock units and deformation of the rock unit immediately above. Growth of the dome is accomplished by migration of salt into the dome from surrounding areas. The salt migrates into the dome because it is compressed by the weight of overlying sediments. What is a Salt Dome? A salt dome is a mound or column of salt that has intruded upwards into overlying sediments. Salt domes can form in a sedimentary basin where a thick layer of salt is overlain by younger sediments of significant thickness. -
Lled Basins of the Red
Deep-Sea Research I 46 (1999) 1779}1792 Hydrographic changes during 20 years in the brine-"lled basins of the Red Sea Pierre Anschutz! *,GeH rard Blanc!, Fabienne Chatin", Magali Geiller", Marie-Claire Pierret" !De& partement de Ge& ologie et Oce&anographie (D.G.O.), Universite& Bordeaux 1, CNRS UMR 5805, 33405 Talence Cedex, France "Centre de Ge& ochimie de la Surface, Institut de Ge&ologie, Universite& Louis Pasteur, CNRS UMR 7517, 67084, Strasbourg, France Received 16 June 1998; accepted 8 February 1999 Abstract Many of the deep basins "lled by hot brines in the Red Sea have not been investigated since their discovery in the early 1970s. Twenty years later, in September 1992, six of these deeps were revisited. The temperature and salinity of the Suakin, Port Sudan, Chain B, and Nereus deeps ranged from 23.25 to 44.603C and from 144 to 270&. These values were approximately the same in 1972, indicating that the budget of heat and salt was quite balanced. We measured strong gradients of properties in the transition zone between brines and overlying seawater. The contribution of salinity to the density gradient was more than one order of magnitude higher than the opposite contribution of temperature across the seawater}brine interface. Therefore the interface was extemely stable, and the transfer of properties across it was considered to be controlled mostly by molecular di!usion. We calculate that the di!usional transport of salt from the brines to seawater cannot a!ect signi"cantly the salinity of the brines over a 20 year period, which agrees with the observations. -
Ocean Storage
277 6 Ocean storage Coordinating Lead Authors Ken Caldeira (United States), Makoto Akai (Japan) Lead Authors Peter Brewer (United States), Baixin Chen (China), Peter Haugan (Norway), Toru Iwama (Japan), Paul Johnston (United Kingdom), Haroon Kheshgi (United States), Qingquan Li (China), Takashi Ohsumi (Japan), Hans Pörtner (Germany), Chris Sabine (United States), Yoshihisa Shirayama (Japan), Jolyon Thomson (United Kingdom) Contributing Authors Jim Barry (United States), Lara Hansen (United States) Review Editors Brad De Young (Canada), Fortunat Joos (Switzerland) 278 IPCC Special Report on Carbon dioxide Capture and Storage Contents EXECUTIVE SUMMARY 279 6.7 Environmental impacts, risks, and risk management 298 6.1 Introduction and background 279 6.7.1 Introduction to biological impacts and risk 298 6.1.1 Intentional storage of CO2 in the ocean 279 6.7.2 Physiological effects of CO2 301 6.1.2 Relevant background in physical and chemical 6.7.3 From physiological mechanisms to ecosystems 305 oceanography 281 6.7.4 Biological consequences for water column release scenarios 306 6.2 Approaches to release CO2 into the ocean 282 6.7.5 Biological consequences associated with CO2 6.2.1 Approaches to releasing CO2 that has been captured, lakes 307 compressed, and transported into the ocean 282 6.7.6 Contaminants in CO2 streams 307 6.2.2 CO2 storage by dissolution of carbonate minerals 290 6.7.7 Risk management 307 6.2.3 Other ocean storage approaches 291 6.7.8 Social aspects; public and stakeholder perception 307 6.3 Capacity and fractions retained -
Oxygen Isotope Geochemistry of Laurentide Ice-Sheet Meltwater Across Termination I
Quaternary Science Reviews 178 (2017) 102e117 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Oxygen isotope geochemistry of Laurentide ice-sheet meltwater across Termination I * Lael Vetter a, , Howard J. Spero a, Stephen M. Eggins b, Carlie Williams c, Benjamin P. Flower c a Department of Earth and Planetary Sciences, University of California Davis, Davis, CA 95616, USA b Research School of Earth Sciences, The Australian National University, Canberra 0200, ACT, Australia c College of Marine Sciences, University of South Florida, St. Petersburg, FL 33701, USA article info abstract Article history: We present a new method that quantifies the oxygen isotope geochemistry of Laurentide ice-sheet (LIS) Received 3 April 2017 meltwater across the last deglaciation, and reconstruct decadal-scale variations in the d18O of LIS Received in revised form meltwater entering the Gulf of Mexico between ~18 and 11 ka. We employ a technique that combines 1 October 2017 laser ablation ICP-MS (LA-ICP-MS) and oxygen isotope analyses on individual shells of the planktic Accepted 4 October 2017 18 foraminifer Orbulina universa to quantify the instantaneous d Owater value of Mississippi River outflow, which was dominated by meltwater from the LIS. For each individual O. universa shell, we measure Mg/ Ca (a proxy for temperature) and Ba/Ca (a proxy for salinity) with LA-ICP-MS, and then analyze the same 18 18 O. universa for d O using the remaining material from the shell. From these proxies, we obtain d Owater and salinity estimates for each individual foraminifer. Regressions through data obtained from discrete 18 18 core intervals yield d Ow vs. -
Okeanos Explorer Rov Dive Summary
OKEANOS EXPLORER ROV DIVE SUMMARY Site Name GB907 Expedition Kelley Elliott/ Coordinator/ Brian Bingham ROV Lead Stephanie Farrington (Biology) Science Team Leads Jamie Austin (Geology) General Area Gulf of Mexico Descriptor Cruise Season Leg Dive Number ROV Dive Name EX1402 3 DIVE02 ROV: Deep Discoverer Equipment Deployed Camera Platform: Seirios CTD Depth Altitude Scanning Sonar USBL Position Heading ROV Measurements Pitch Roll HD Camera 1 HD Camera 2 Low Res Cam 1 Low Res Cam 2 Low Res Cam 3 Low Res Cam 4 Low Res Cam 2 Equipment N/A Malfunctions Dive Summary: EX1402L3_DIVE02 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ In Water at: 2014-04-13T13:45:38.439000 27°, 05.899' N ; 092°, 37.310' W Out Water at: 2014-04-13T19:12:34.841000 27°, 05.096' N ; 092°, 36.588' W ROV Dive Summary Off Bottom at: 2014-04-13T18:24:04.035000 (From processed ROV 27°, 05.455' N ; 092°, 36.956' W data) On Bottom at: 2014-04-13T14:31:16.507000 27°, 05.519' N ; 092°, 37.099' W Dive duration: 5:26:56 Bottom Time: 3:52:47 Max. depth: 1266.7 m Special Notes Primary Jamie Austin, EX, UT Austin, [email protected] Stephanie Farrington, EX, HBOI/FAU, [email protected] Andrea Quattrini, Temple, Temple, [email protected] Scientists Involved Bernie Ball, Duke, Duke, [email protected] (please provide name / Brian Kinlan, NOAA NMFS, [email protected] location / affiliation / email) Carolyn Ruppel, Woods Hole, USGS, [email protected] Erik Cordes, Temple, Temple, [email protected] Larry Mayer, UNH, UNH CCOM, [email protected] Michael Vecchione, -
A Phytoremediation Pilot Project at the LCP Chemicals
Case Study LCP Chemicals Site Phytoremediation Pilot Project Shea Jones Remedial Project Manager EPA Region 4 Outline of Presentation z Background Information z Groundwater Quality z Groundwater Seeps z Project Goal z Implementation of Project z Community and Agency Concerns z Current Status z Next Steps z Lessons Learned Background Information z 550-acre site z Former oil refinery, paint manufacturing co., power plant, and chlor-alkali facility operated from 1919- 1994 z Significant PRP-led removal actions in 1999 ($60 million) z Soil and sediment contaminated with lead, mercury, and PCBs z Fish advisories z Currently in RI/FS phase Groundwater Quality z Multiple rounds of horizontal and vertical well data z Hg levels as high as 330 ppb and Pb as high as 120 ppb z Hg found below a sandstone layer z Caustic Brine Pool below old cell buildings z Removal Action Groundwater Seeps z During conditions of high water table, seepage of groundwater occurs along portions of the shoreline that separates the upland soils from the tidal marsh z Dark brown color z Some COCs present at elevated levels (74 ppb Hg and 60 ppb Pb) Project Goal z To locally suppress the groundwater table (0.9 ft) and therefore, prevent the seeps from recontaminating the marsh z Secondary Goals – Create a root zone that will degrade organic contaminants through microbial degradation – Stabilize metals and take them up (lower mobility and availability) z Insert first scanned picture showing seep location z Insert scanned pics showing conceptual site model Plant Selection z List of potentially applicable plants was examined z List narrowed based on tolerance to site conditions (i.e. -
Routing of Meltwater from the Laurentide Ice Sheet During The
LETTERS TO NATURE very high sulphate concentrations (Fig. 1). Thus, differences in P release has yet to prove the mechanism behind this relation P cycling between fresh waters and salt waters may also influence ship. If sediment P release were controlled largely by sulphur, the switch in nutrient limitation. our view of the lakes that are being affected by atmospheric A further implication of our findings is a possible effect of S pollution could be altered. It is believed generally that anthropogenic S pollution on P cycling in lakes. Our data lakes with well-buffered watersheds are insensitive to the effects indicate that aquatic systems with low sulphate concentrations of atmospheric S pollution. However, because changing have low RPR under either oxic or anoxic conditions; systems atmospheric S inputs can alter the sulfate concentration in with only slightly elevated sulphate concentrations have sig surface waters22 independent of acid neutralization in the water nificantly elevated RPR, particularly under anoxic conditions shed, the P cycle of even so-called 'insensitive' lakes may be (Fig. 1). Work on the relationship between sulphate loading and affected. D Received 22 February; accepted 15 August 1987. 17. Nurnberg. G. Can. 1 Fish. aquat. Sci. 43, 574-560 (1985). 18. Curtis, P. J. Nature 337, 156-156 (1989). 1. Bostrom, B .. Jansson. M. & Forsberg, G. Arch. Hydrobiol. Beih. Ergebn. Limno/. 18, 5-59 (1982). 19. Carignan, R. & Tessier, A. Geochim. cosmochim. Acta 52, 1179-1188 (1988). 2. Mortimer. C. H. 1 Ecol. 29, 280-329 (1941). 20. Howarth, R. W. & Cole, J. J. Science 229, 653-655 (1985).