Identification and Functional Validation of New Mtdna and Nuclear Gene Variants Responsible for Mitochondrial Disorders

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Functional Validation of New Mtdna and Nuclear Gene Variants Responsible for Mitochondrial Disorders DARIA DIODATO Matr. N°. 745002 Identification and functional validation of new mtDNA and nuclear gene variants responsible for mitochondrial disorders Coordinator: Prof. Andrea Biondi Tutor: Dr. Massimo Zeviani I II A mia madre Francesca e mio padre Ernesto, che stimo immensamente e senza i quali tutto questo non sarebbe stato possibile. A Luca, che ha meravigliosamente cambiato la mia vita. III IV Table of Contents Chapter 1: General Introduction 1.1 Mitochondria page 3 1.1.1 Mitochondrial structure page 4 1.1.2 Mitochondrial genetics page 6 1.1.3 Oxidative phosphorylation system (OXPHOS) page 12 1.1.4 Other mitochondrial functions: ROS production and apoptosis page 17 1.2 Mitochondrial disorders page 23 1.2.1 Diagnosis of mitochondrial disorders page 31 1.2.2 Mitochondrial disorders due to mtDNA mutations page 41 1.2.3 Nuclear gene mutations page 55 V 1.2.3.1 Defects of genes encoding structural or assembly factors of respiratory chain complexes page 56 1.2.3.2 Defects of genes altering the stability of mtDNA page 66 1.2.3.3 Defects of genes encoding factors involved in metabolic pathways influencing the biogenesis of mitochondria including OXPHOS page 80 1.2.3.4 Defects of genes encoding factors involved in the biosynthesis of lipids and cofactors page 100 1.3 Identification of the genetic defect in mitochondrial disorders page 103 1.3.1 Cybrids and mtDNA mutations page 105 1.3.2 Exome sequencing and mitochondrial disorders page 111 1.4 Treatment of the mitochondrial disorders page 119 Scope of the thesis page 125 VI References page 129 Chapter 2: MELAS-like encephalomyopathy caused by a new pathogenic mutation in the mitochondrial DNA encoded cytochrome c oxidase subunit I page 161 Chapter 3: Novel (ovario)leukodystrophy related to AARS2 mutations page 195 Chapter 4: VARS2 and TARS2 mutations in patients with mitochondrial encephalomyopathies page 283 Chapter 5: Summary, conclusions and future perspectives page 351 Summary page 353 VII Discussion and Conclusions page 369 Future Perspectives page 386 References page 397 Abbreviations and WEB resources page 401 VIII CHAPTER 1 General introduction: Mitochondria and mitochondrial medicine 1 2 1.1 Mitochondria Mitochondria are double-membrane organelles ubiquitous in eukaryotes and essential for survival. They are responsible for cell energy supply and have also been shown to play an important role in cell signaling, particularly in the apoptotic process (Letai et al, 2006). Mitochondria host different metabolic pathways, including β-oxidation, the Krebs cycle, and lipid and cholesterol synthesis. Their primary function is to produce adenosine triphosphate (ATP), the energy currency of the cell, through the Oxidative Phosphorylation System (OXPHOS). Given their essential role in the human body, dysfunctions eventually occurring in different aspects of their functioning can result in a multitude of clinical conditions, often 3 configuring very severe disease phenotypes (Schapira, 2006). 1.1.1 Mitochondrial structure Origin of mitochondria date back to primitive bacteria-like organism, which developed an endosymbiotic relationship with eukaryotic cells. Their capacity to generate ATP through OXPHOS made them the main intracellular energy source (Margulis et al. 1976). Mitochondria density varies between different tissues depending on their energy demand. Thus, neurons, cardiac and skeletal muscle cells have a high density of mitochondria, and this explains their sensitivity to energy- dependent defects caused by mitochondrial dysfunctions. Mitochondria are surrounded by a double-membrane; the outer membrane is porous and allows diffusion of low molecular 4 weight substances between the cytosol and the intermembrane space (IMS). They have always been considered as non-communicative organelles, but recently an opposite true is emerging: they are involved in frequent fission and fusion events and in exchange of mtDNA (Margineantu et al, 2002). The inner mitochondrial membrane (IM) separates the IMS from the mitochondrial matrix and contains the complexes of the mitochondrial respiratory chain (MRC); it functions also as a barrier to ionic diffusion, thus allowing the formation of the proton gradient necessary to produce ATP. The mitochondrial matrix hosts several enzymes involved in different pathways (i.e. tricarboxylic acid-TCA- cycle and oxidation) and the mitochondrial deoxyribonucleic acid (mtDNA) (Fig.1). 5 1.1.2 Mitochondrial genetics Mitochondria contain their own DNA, a circular double-strand molecule of 16569 base pairs found in multiple copies within the mitochondrial matrix. MtDNA is much smaller than most nuclear genes and extremely compact, containing no introns and small non- coding regions; it codes for 13 protein of the OXPHOS system and for 2 ribosomal and 22 transfer RNAs, necessary for the mitochondrial protein synthesis (Fig.1). Although human mtDNA encodes the rRNAs and tRNAs for protein synthesis, it completely depends upon the nucleus for the provision of the majority of structural MRC proteins and the enzymes for replication, repair, transcription and translation. Recently has been shown that mtDNA co- localizes with various proteins responsible for 6 their maintenance in structures called nucleoids, thought to provide the perfect microenviroment to protect and repair the mtDNA molecules from insults (Garrido et al, 2003). Fig.1 Mitochondrial structure (from Encyclopaedia Britannica, 1998) 7 Fig.2 Mitochondrial DNA (from www.ganfyd.org) MtDNA replicates continuously, in an independent manner from the nucleus, in dividing as well as in non-dividing cells (Chinnery and Samuels, 1999). It is transcribed polycistronically and translated by mitochondrial ribosomes. 8 MtDNA replication requires several nuclear encoded factors such as DNA polymerase gamma (POLG), mitochondrial transcription factor A (mtTFA), mt single-strand binding protein (mtSSB) and enzymes important for the supply of deoxynucleotides, such as thymidine kinase 2 (TK2) and deoxy- guanosine kinase (dGUOK). After fertilization, sperm mtDNA is degraded; therefore mtDNA is inherited exclusively from the mother. Only in one case has been reported a paternal inheritance of a microdeletion in a mtDNA complex I gene (Schwartz and Vissing, 2002) but this possibility has been studied and excluded in several further studies (Filosto et al, 2003; Taylor et al, 2003). There are thousands of mtDNA molecules per cell; these copies can be identical (a condition called homoplasmy) or differ for the presence 9 of one or more variants, inherited or accumulated during the ageing process (heteroplasmy). The percentage of a mutant variant (level of heteroplasmy) can vary between different cells and tissues, because mitochondria are randomly segregated at every cell division. A bottleneck effect is active in primordial female germinal cells (primary oogonia) when wild type and mutant mtDNA molecules are randomly partitioned between oocytes and drastically reduced. This means that in the final oocyte population some cells would carry a high percentage of mutation, others intermediate or low percentages, with important implications for disease severity in the offspring. Neutral mtDNA variants (polymorphisms) are usually homoplasmic, whereas pathogenic changes are usually, but no invariably, 10 heteroplasmic. The percentage of mutated mtDNA will result in a pathogenic phenotype after exceeding a certain threshold, related to the energy demand of different tissues and organs (Schapira 2006, DiMauro and Schon, 2001) and variable amongst different mutations (Fig.3). Leber hereditary optic neuropathy (LHON), the first disorder associated to mitochondrial DNA mutation (Wallace et al. 1988), is caused by homoplasmic mtDNA mutations. Fig. 3 Mitochondrial mtDNA transmission (from www.mitoresearch.org) 11 1.1.3 Oxidative Phosphorylation System Mitochondria main role is to generate ATP trough the oxidative phosphorylation system (OXPHOS). This is carried out by the MRC composed of five multiheteromeric complexes located in the IMM (complex I, CI; complex II, CII; complex III, CIII; complex IV, CIV or cytochrome c oxidase, COX; complex V, CV, or ATP synthase), and two mobile electron shuttles, ubiquinone (Coenzyme Q, CoQ), a lipoidal quinone, and cytochrome c (cyt c), a heme-containing small polypeptide (Fig.4). The electron flow through these components generates an electrical gradient (ΔΨ) and a pH gradient across the IMM. These gradients constitute the driving proton motive force for the phosphorylation of ADP to ATP, operated by CV, and for several other processes, such as 12 Ca++ import inside mitochondria, heat production and protein translocation. Complex I (NADH-ubiquinone oxidoreductase) is the largest complex in the OXPHOS system, composed of ≈45 subunits with a total molecular mass of 1000kDa (Carroll et al. 2006). Seven subunits (ND1- ND6, ND4L) are encoded by mtDNA, the others by nuclear genes. It catalyzes the oxidation of NADH, derived from the oxidation of pyruvate, fatty acids, and amino acids, by ubiquinone (CoQ). Complex II (succinate dehydrogenase ubiquinone–ubiquinol reductase) is the smallest MRC complex and the only membrane-bound member of the tricarboxylic acid (TCA) cycle. It is composed of four subunits all encoded by nuclear genes (SDHA, SDHB, SDHC, and SDHD). CII acts as a 13 succinate dehydrogenase (SDH) and catalyzes the oxidation and dehydration of succinate to fumarate; it takes part in the MRC by coupling this reaction to the reduction of ubiquinone to ubiquinol thus transfer electrons to
Recommended publications
  • Mice Lacking the Mitochondrial Exonuclease MGME1 Accumulate Mtdna Deletions Without Developing Progeria
    ARTICLE DOI: 10.1038/s41467-018-03552-x OPEN Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria Stanka Matic1, Min Jiang1, Thomas J. Nicholls2, Jay P. Uhler2, Caren Dirksen-Schwanenland1, Paola Loguercio Polosa3, Marie-Lune Simard1, Xinping Li4, Ilian Atanassov 4, Oliver Rackham 5, Aleksandra Filipovska5, James B. Stewart 1, Maria Falkenberg2, Nils-Göran Larsson 1,6 & Dusanka Milenkovic 1 1234567890():,; Replication of mammalian mitochondrial DNA (mtDNA) is an essential process that requires high fidelity and control at multiple levels to ensure proper mitochondrial function. Mutations in the mitochondrial genome maintenance exonuclease 1 (MGME1) gene were recently reported in mitochondrial disease patients. Here, to study disease pathophysiology, we generated Mgme1 knockout mice and report that homozygous knockouts develop depletion and multiple deletions of mtDNA. The mtDNA replication stalling phenotypes vary drama- tically in different tissues of Mgme1 knockout mice. Mice with MGME1 deficiency accumulate a long linear subgenomic mtDNA species, similar to the one found in mtDNA mutator mice, but do not develop progeria. This finding resolves a long-standing debate by showing that point mutations of mtDNA are the main cause of progeria in mtDNA mutator mice. We also propose a role for MGME1 in the regulation of replication and transcription termination at the end of the control region of mtDNA. 1 Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany. 2 Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 405 30, Sweden. 3 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari 70125, Italy.
    [Show full text]
  • Loss-Of-Function Mutations in MGME1 Impair Mtdna Replication and Cause Multisystemic Mitochondrial Disease
    LETTERS Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease Cornelia Kornblum1,13, Thomas J Nicholls2,13, Tobias B Haack3,13, Susanne Schöler4,5, Viktoriya Peeva4,5, Katharina Danhauser3, Kerstin Hallmann4,5, Gábor Zsurka4,5, Joanna Rorbach2, Arcangela Iuso3, Thomas Wieland3, Monica Sciacco6, Dario Ronchi7, Giacomo P Comi7, Maurizio Moggio6, Catarina M Quinzii8, Salvatore DiMauro8, Sarah E Calvo9–11, Vamsi K Mootha9–11, Thomas Klopstock12, Tim M Strom3, Thomas Meitinger3, Michal Minczuk2, Wolfram S Kunz4,5 & Holger Prokisch3 Known disease mechanisms in mitochondrial DNA (mtDNA) maintenance disorders. Their clinical manifestations range from maintenance disorders alter either the mitochondrial severe multiorgan involvement in early childhood to tissue- replication machinery (POLG, POLG2 and C10orf2)1–3 or specific manifestations, for example, myopathies, in late adulthood. the biosynthesis pathways of deoxyribonucleoside Progressive external ophthalmoplegia (PEO) is commonly associated 5′-triphosphates for mtDNA synthesis4–11. However, in many with these disorders, particularly the late-onset phenotypes. of these disorders, the underlying genetic defect has yet to We identified a Lebanese family (family I) with three chil- be discovered. Here, we identify homozygous nonsense and dren affected by a severe multisystemic mitochondrial disorder missense mutations in the orphan gene C20orf72 in three (Supplementary Fig. 1a). Initial symptoms included ptosis in child- families with a mitochondrial syndrome characterized by hood followed by mild PEO, diffuse skeletal muscle wasting and external ophthalmoplegia, emaciation and respiratory weakness, profound emaciation and respiratory distress. Skeletal failure. Muscle biopsies showed mtDNA depletion and muscle biopsies showed scattered cytochrome c oxidase (COX)- multiple mtDNA deletions. C20orf72, hereafter MGME1 negative fibers and ragged red fibers (RRFs) in all affected individu- (mitochondrial genome maintenance exonuclease 1), encodes als.
    [Show full text]
  • Roles of the Mitochondrial Replisome in Mitochondrial DNA Deletion Formation
    Genetics and Molecular Biology, 43, 1(suppl 1), e20190069 (2020) Copyright © 2020, Sociedade Brasileira de Genética. DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2019-0069 Review Article Roles of the mitochondrial replisome in mitochondrial DNA deletion formation Marcos T. Oliveira1 , Carolina de Bovi Pontes2 and Grzegorz L. Ciesielski2 1Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências Agrárias e Veterinárias, Departamento de Tecnologia, Jaboticabal, SP, Brazil. 2Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, U.S.A. Abstract Mitochondrial DNA (mtDNA) deletions are a common cause of human mitochondrial diseases. Mutations in the genes encoding components of the mitochondrial replisome, such as DNA polymerase gamma (Pol g) and the mtDNA helicase Twinkle, have been associated with the accumulation of such deletions and the development of pathological conditions in humans. Recently, we demonstrated that changes in the level of wild-type Twinkle pro- mote mtDNA deletions, which implies that not only mutations in, but also dysregulation of the stoichiometry between the replisome components is potentially pathogenic. The mechanism(s) by which alterations to the replisome func- tion generate mtDNA deletions is(are) currently under debate. It is commonly accepted that stalling of the replication fork at sites likely to form secondary structures precedes the deletion formation. The secondary structural elements can be bypassed by the replication-slippage mechanism. Otherwise, stalling of the replication fork can generate sin- gle- and double-strand breaks, which can be repaired through recombination leading to the elimination of segments between the recombination sites. Here, we discuss aberrances of the replisome in the context of the two debated outcomes, and suggest new mechanistic explanations based on replication restart and template switching that could account for all the deletion types reported for patients.
    [Show full text]
  • Oxygen Tension Modulates the Mitochondrial Genetic Bottleneck and Influences the Segregation of a Heteroplasmic Mtdna Variant in Vitro
    ARTICLE https://doi.org/10.1038/s42003-021-02069-2 OPEN Oxygen tension modulates the mitochondrial genetic bottleneck and influences the segregation of a heteroplasmic mtDNA variant in vitro Mikael G. Pezet1,2,6, Aurora Gomez-Duran1,2,7, Florian Klimm2,3,7, Juvid Aryaman1,2,3, Stephen Burr1,2, ✉ Wei Wei1,2, Mitinori Saitou4,5, Julien Prudent 2 & Patrick F. Chinnery 1,2 Most humans carry a mixed population of mitochondrial DNA (mtDNA heteroplasmy) affecting ~1–2% of molecules, but rapid percentage shifts occur over one generation leading to severe mitochondrial diseases. A decrease in the amount of mtDNA within the developing 1234567890():,; female germ line appears to play a role, but other sub-cellular mechanisms have been implicated. Establishing an in vitro model of early mammalian germ cell development from embryonic stem cells, here we show that the reduction of mtDNA content is modulated by oxygen and reaches a nadir immediately before germ cell specification. The observed genetic bottleneck was accompanied by a decrease in mtDNA replicating foci and the segregation of heteroplasmy, which were both abolished at higher oxygen levels. Thus, differences in oxygen tension occurring during early development likely modulate the amount of mtDNA, facil- itating mtDNA segregation and contributing to tissue-specific mutation loads. 1 Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK. 2 Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK. 3 Department of Mathematics, Imperial College London, London SW7 2AZ, UK. 4 Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
    [Show full text]
  • Anti-VARS (Aa 994-1102) Polyclonal Antibody (DPAB-DC3179) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-VARS (aa 994-1102) polyclonal antibody (DPAB-DC3179) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Antigen Description Aminoacyl-tRNA synthetases catalyze the aminoacylation of tRNA by their cognate amino acid. Because of their central role in linking amino acids with nucleotide triplets contained in tRNAs, aminoacyl-tRNA synthetases are thought to be among the first proteins that appeared in evolution. The protein encoded by this gene belongs to class-I aminoacyl-tRNA synthetase family and is located in the class III region of the major histocompatibility complex. Immunogen VARS (NP_006286, 994 a.a. ~ 1102 a.a) partial recombinant protein with GST tag. The sequence is AVRLSNQGFQAYDFPAVTTAQYSFWLYELCDVYLECLKPVLNGVDQVAAECARQTLYTCLDVG LRLLSPFMPFVTEELFQRLPRRMPQAPPSLCVTPYPEPSECSWKDP Source/Host Mouse Species Reactivity Human Conjugate Unconjugated Applications WB (Recombinant protein), ELISA, Size 50 μl Buffer 50 % glycerol Preservative None Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. GENE INFORMATION Gene Name VARS valyl-tRNA synthetase [ Homo sapiens (human) ] Official Symbol VARS Synonyms VARS; valyl-tRNA synthetase; G7A; VARS1; VARS2; valine--tRNA ligase; valRS; protein G7a; valyl-tRNA synthetase 2; valine tRNA ligase 1, cytoplasmic; 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Entrez Gene ID 7407 Protein Refseq NP_006286 UniProt ID A0A024RCN6 Chromosome Location 6p21.3 Pathway Aminoacyl-tRNA biosynthesis; Cytosolic tRNA aminoacylation; tRNA Aminoacylation; Function ATP binding; aminoacyl-tRNA editing activity; valine-tRNA ligase activity; 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 2 © Creative Diagnostics All Rights Reserved.
    [Show full text]
  • DNA Repair and Mutagenesis in Vertebrate Mitochondria: Evidence for the Asymmetric DNA Strand Inheritance
    bioRxiv preprint doi: https://doi.org/10.1101/842617; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. - 1 - DNA repair and mutagenesis in vertebrate mitochondria: evidence for the asymmetric DNA strand inheritance Bakhyt MATKARIMOV1 and Murat K. SAPARBAEV2,* 1 National laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan. 2 Groupe «Réparation de l'ADN», Equipe Labellisée par la Ligue Nationale Contre le Cancer, CNRS UMR8200, Université Paris-Sud, Gustave Roussy Cancer Campus, F-94805 Villejuif Cedex, France. *Corresponding author. M.K.S.: phone: +33 1 42115404; Email: [email protected] A variety of endogenous and exogenous factors induce chemical and structural alterations to cellular DNA, as well as errors occurring throughout DNA synthesis. These DNA damages are cytotoxic, miscoding, or both, and are believed to be at the origin of cancer and other age related diseases. A human cell, in addition to nuclear DNA, contains thousands copies of mitochondrial DNA (mtDNA), a double-stranded, circular molecule of 16,569 bp. It was proposed that mtDNA is a critical target for reactive oxygen species (ROS), by-products of the oxidative phosphorylation (OXPHOS), generated in the organelle during aerobic respiration. Indeed, oxidative damage to mtDNA are more extensive and persistent as compared to that of nuclear DNA. Although, transversions are the hallmarks of mutations induced by ROS, paradoxically, the majority of mtDNA mutations that occurred during ageing and cancer are transitions.
    [Show full text]
  • 2014-Platform-Abstracts.Pdf
    American Society of Human Genetics 64th Annual Meeting October 18–22, 2014 San Diego, CA PLATFORM ABSTRACTS Abstract Abstract Numbers Numbers Saturday 41 Statistical Methods for Population 5:30pm–6:50pm: Session 2: Plenary Abstracts Based Studies Room 20A #198–#205 Featured Presentation I (4 abstracts) Hall B1 #1–#4 42 Genome Variation and its Impact on Autism and Brain Development Room 20BC #206–#213 Sunday 43 ELSI Issues in Genetics Room 20D #214–#221 1:30pm–3:30pm: Concurrent Platform Session A (12–21): 44 Prenatal, Perinatal, and Reproductive 12 Patterns and Determinants of Genetic Genetics Room 28 #222–#229 Variation: Recombination, Mutation, 45 Advances in Defining the Molecular and Selection Hall B1 Mechanisms of Mendelian Disorders Room 29 #230–#237 #5-#12 13 Genomic Studies of Autism Room 6AB #13–#20 46 Epigenomics of Normal Populations 14 Statistical Methods for Pedigree- and Disease States Room 30 #238–#245 Based Studies Room 6CF #21–#28 15 Prostate Cancer: Expression Tuesday Informing Risk Room 6DE #29–#36 8:00pm–8:25am: 16 Variant Calling: What Makes the 47 Plenary Abstracts Featured Difference? Room 20A #37–#44 Presentation III Hall BI #246 17 New Genes, Incidental Findings and 10:30am–12:30pm:Concurrent Platform Session D (49 – 58): Unexpected Observations Revealed 49 Detailing the Parts List Using by Exome Sequencing Room 20BC #45–#52 Genomic Studies Hall B1 #247–#254 18 Type 2 Diabetes Genetics Room 20D #53–#60 50 Statistical Methods for Multigene, 19 Genomic Methods in Clinical Practice Room 28 #61–#68 Gene Interaction
    [Show full text]
  • Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
    www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.
    [Show full text]
  • Dominant Mutations in Mtdna Maintenance Gene SSBP1 Cause Optic Atrophy and Foveopathy
    Dominant mutations in mtDNA maintenance gene SSBP1 cause optic atrophy and foveopathy Camille Piro-Mégy, … , Maria Sola, Cécile Delettre J Clin Invest. 2020;130(1):143-156. https://doi.org/10.1172/JCI128513. Research Article Genetics Ophthalmology Graphical abstract Find the latest version: https://jci.me/128513/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Dominant mutations in mtDNA maintenance gene SSBP1 cause optic atrophy and foveopathy Camille Piro-Mégy,1 Emmanuelle Sarzi,1 Aleix Tarrés-Solé,2 Marie Péquignot,1 Fenna Hensen,3 Mélanie Quilès,1 Gaël Manes,1 Arka Chakraborty,2 Audrey Sénéchal,1 Béatrice Bocquet,1,4 Chantal Cazevieille,1 Agathe Roubertie,1,4 Agnès Müller,1,5 Majida Charif,6 David Goudenège,6 Guy Lenaers,6 Helmut Wilhelm,7 Ulrich Kellner,8 Nicole Weisschuh,9 Bernd Wissinger,9 Xavier Zanlonghi,10 Christian Hamel,1,4 Johannes N. Spelbrink,3 Maria Sola,2 and Cécile Delettre1 1Institute of Neurosciences of Montpellier, INSERM, University of Montpellier, Montpellier, France. 2Structural MitoLab, Department of Structural Biology, “Maria de Maeztu” Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), Barcelona, Spain. 3Radboud Center for Mitochondrial Medicine, Department of Paediatrics, Radboudumc, Nijmegen, Netherlands. 4CHU Montpellier, Centre of Reference for Genetic Sensory Diseases, Gui de Chauliac Hospital, Montpellier, France. 5Faculté de Pharmacie, Université de Montpellier, Montpellier, France. 6UMR CNRS 6015-INSERM U1083, MitoVasc Institute, Angers University, Angers, France. 7University Eye Hospital, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany. 8Rare Retinal Disease Center, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany. 9Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.
    [Show full text]
  • Transposon Mutagenesis Reveals Fludarabine Resistance Mechanisms in Chronic Lymphocytic Leukemia
    Published OnlineFirst March 8, 2016; DOI: 10.1158/1078-0432.CCR-15-2903 Biology of Human Tumors Clinical Cancer Research Transposon Mutagenesis Reveals Fludarabine Resistance Mechanisms in Chronic Lymphocytic Leukemia Tatjana Pandzic1, Jimmy Larsson1, Liqun He1, Snehangshu Kundu1, Kenneth Ban1,2, Muhammad Akhtar-Ali1, Anders R. Hellstrom€ 1, Anna Schuh3, Ruth Clifford3, Stuart J. Blakemore4, Jonathan C. Strefford4, Tycho Baumann4, Armando Lopez-Guillermo5, Elias Campo6, Viktor Ljungstrom€ 1, Larry Mansouri1, Richard Rosenquist1, Tobias Sjoblom€ 1, and Mats Hellstrom€ 1 Abstract Purpose: To identify resistance mechanisms for the chemo- transposon-targeted genes had previously been implicated in therapeutic drug fludarabine in chronic lymphocytic leukemia treatment resistance based on somatic mutations seen in patients (CLL), as innate and acquired resistance to fludarabine-based refractory to fludarabine-based therapy. Functional characteriza- chemotherapy represents a major challenge for long-term disease tion of these genes supported a significant role for ARID5B and control. BRAF in fludarabine sensitivity. Finally, pathway analysis of Experimental Design: We used piggyBac transposon-mediated transposon-targeted genes and RNA-seq profiling of fludara- mutagenesis, combined with next-generation sequencing, to bine-resistant cells suggested deregulated MAPK signaling as identify genes that confer resistance to fludarabine in a human involved in mediating drug resistance in CLL. CLL cell line. Conclusions: To our knowledge, this is the first forward Results: In total, this screen identified 782 genes with trans- genetic screen for chemotherapy resistance in CLL. The screen poson integrations in fludarabine-resistant pools of cells. One of pinpointed novel genes and pathways involved in fludarabine the identified genes is a known resistance mediator DCK (deox- resistance along with previously known resistance mechanisms.
    [Show full text]
  • Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen
    CLINICAL RESEARCH www.jasn.org Genome-Wide Association Study of Diabetic Kidney Disease Highlights Biology Involved in Glomerular Basement Membrane Collagen Rany M. Salem ,1 Jennifer N. Todd,2,3,4 Niina Sandholm ,5,6,7 Joanne B. Cole ,2,3,4 Wei-Min Chen,8 Darrell Andrews,9 Marcus G. Pezzolesi,10 Paul M. McKeigue,11 Linda T. Hiraki,12 Chengxiang Qiu,13 Viji Nair,14 Chen Di Liao,12 Jing Jing Cao,12 Erkka Valo ,5,6,7 Suna Onengut-Gumuscu,8 Adam M. Smiles,15 Stuart J. McGurnaghan,16 Jani K. Haukka,5,6,7 Valma Harjutsalo,5,6,7,17 Eoin P. Brennan,9 Natalie van Zuydam,18,19 Emma Ahlqvist,20 Ross Doyle,9 Tarunveer S. Ahluwalia ,21 Maria Lajer,21 Maria F. Hughes,9 Jihwan Park,13 Jan Skupien,15 Athina Spiliopoulou,11 Andrew Liu,22 Rajasree Menon,14,23 Carine M. Boustany-Kari,24 Hyun M. Kang,23,25 Robert G. Nelson,26 Ronald Klein,27 Barbara E. Klein,27 Kristine E. Lee ,27 Xiaoyu Gao,28 Michael Mauer,29 Silvia Maestroni,30 Maria Luiza Caramori,29 Ian H. de Boer ,31 Rachel G. Miller,32 Jingchuan Guo ,32 Andrew P. Boright,12 David Tregouet,33,34 Beata Gyorgy,33,34 Janet K. Snell-Bergeon,35 David M. Maahs,36 Shelley B. Bull ,37 Angelo J. Canty,38 Colin N.A. Palmer,39 Lars Stechemesser,40 Bernhard Paulweber,40 Raimund Weitgasser,40,41 Jelizaveta Sokolovska,42 Vita Rovıte,43 Valdis Pırags, 42,44 Edita Prakapiene,45 Lina Radzeviciene,46 Rasa Verkauskiene,46 Nicolae Mircea Panduru,6,47 Leif C.
    [Show full text]
  • Supporting Information
    Supporting Information Poulogiannis et al. 10.1073/pnas.1009941107 SI Materials and Methods Loss of Heterozygosity (LOH) Analysis of PARK2. Seven microsatellite Bioinformatic Analysis of Genome and Transcriptome Data. The markers (D6S1550, D6S253, D6S305, D6S955, D6S980, D6S1599, aCGH package in R was used to identify significant DNA copy and D6S396) were amplified for LOH analysis within the PARK2 number (DCN) changes in our collection of 100 sporadic CRCs locus using primers that were previously described (8). (1) (Gene Expression Omnibus, accession no. GSE12520). The MSP of the PARK2 Promoter. CpG sites within the PARK2 promoter aCGH analysis of cell lines and liver metastases was derived region were detected using the Methprimer software (http://www. from published data (2, 3). Chromosome 6 tiling-path array- urogene.org/methprimer/index.html). Methylation-specificand CGH was used to identify the smallest and most frequently al- control primers were designed using the Primo MSP software tered regions of DNA copy number change on chromosome 6. (http://www.changbioscience.com/primo/primom.html); bisulfite An integrative approach was used to correlate expression pro- modification of genomic DNA was performed as described pre- files with genomic copy number data from a SNP array from the viously (9). All tumor DNA samples from primary CRC tumors same tumors (n = 48) (4) (GSE16125), using Pearson’s corre- (n = 100) and CRC lines (n = 5), as well as those from the leukemia lation coefficient analysis to identify the relationships between cell lines KG-1a (acute myeloid leukemia, AML), U937 (acute DNA copy number changes and gene expression of those genes lymphoblastic leukemia, ALL), and Raji (Burkitt lymphoma, BL) SssI located within the small frequently altered regions of DCN were screened as part of this analysis.
    [Show full text]