Introduction to Furnace Brazing © Air Products and Chemicals, Inc

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Furnace Brazing © Air Products and Chemicals, Inc Introduction to Furnace Brazing © Air Products and Chemicals, Inc. 2001 All rights reserved—no part of this document may be reproduced in any form without permission in writing from Air Products and Chemicals, Inc. While every effort was made to ensure accuracy in the preparation of this publication, the material used to compile the information presented was derived from many different sources and intended to serve only as a general guide, and not as a handbook for specific applications. As such, Air Products and the members of its Editorial Review Board assume no responsibility for technical accuracy or omissions due to editing or printing errors. Air Products’ Editorial Review Board Dr. Diran Apelian Executive Director, CHTE MPI Bruce Boardman, FASM Founding Member, CHTE Deere & Co. Roger Fabian, FASM President, ASM Heat Treating Society Bodycote-Lindberg Dan Herring Director of Technology Ipsen International, Inc. Harb Nayar, FASM President TAT Technologies Robert Peaslee Vice President Wall Colmonoy Corp. 3 4 Table of Contents Introduction to Furnace Brazing - 7 Definition of brazing - 7 History of brazing - 7 Differences between soldering, welding, and brazing - 7 Flame brazing vs. furnace brazing - 8 Furnace configurations - 9 A Look at Common Furnace Brazements - 11 Base metals - 11 Typical brazement parts/assemblies -11 Joint design and preparation - 13 Types of joints - 13 Selecting a base metal - 14 Selecting a filler metal - 17 Pre-assembly and fixturing - 17 Wettability -18 Considerations for Furnace Brazing -19 Physical -19 Metallurgical - 19 Furnace equipment - 20 Safety/environmental - 21 Furnace Brazing Technologies - 22 Controlled-atmosphere processing - 22 Vacuum furnace brazing - 29 Other brazing technologies - 30 Troubleshooting - 31 Potential metallurgical problems - 31 Atmosphere-related problems - 33 Summary - 35 Glossary - 36 Bibliography - 39 5 6 Introduction to Furnace Brazing What is brazing? The history of brazing As with brazing, soldering does not involve the The term “brazing” can be applied to any process Brazing is the oldest method for joining metals, melting of the base metals. However, the filler which joins metals (of the same or dissimilar com- other than by mechanical means. Initially, the metal used has a lower melting point (often position) through the use of heat and a filler metal process was most popular for joining gold and sil- referred to as “liquidus”) than that of brazing filler with a melting temperature above 840° F (450° C), ver base metals. Lead and tin, as well as alloys of metals (below approximately 840° F, or 450° C) but below the melting point of the metals being gold-copper and silver-copper, were used as filler and chemical fluxes must be used to facilitate joined. In furnace brazing, temperatures of 2050° metals because of their low melting points. Copper joining. to 2100° F (1120° to 1150° C) and above are not hydrates and organic gums were added later uncommon, especially when brazing stainless because of their reducing action, which helped to In soldering operations, heat may be applied in a steels with nickel-based filler metals or carbon minimize oxidation and improve the cosmetic number of ways, including the use of soldering steel with copper filler metal. Other very high appearance of the joint. Metallic salts were also irons, torches, ultrasonic welding equipment, temperature brazing applications include molybde- used. resistance welding apparatus, infrared heaters, or num with pure nickel as the filler metal and cobalt specialized ovens. A major advantage of soldering with a cobalt alloy filler metal. is its low-temperature characteristic which mini- mizes distortion of the base metals, and makes it A successfully brazed joint often results in a metal- the preferred joining method for materials that lurgical bond that is generally as strong or stronger cannot tolerate brazing or welding temperatures. than the base metals being joined. Modern brazing However, soldered joints must not be subjected to technology has extended the definition to include high stresses, as soldering results in a relatively the bonding of metal to non-metallic substrates, weak joint. including glass and refractory materials. However, this publication is limited to brazing of metals only, Welding, on the other hand, forms a metallurgical and, specifically, furnace brazing of metals. joint in much the same way as brazing. Welding filler metals flow at generally higher temperatures How does brazing join materials? than brazing filler metals, but at or just below the In furnace brazing, the parts or assemblies being melting point of the base metals being joined. joined are heated to the melting point of the filler metal being used. This allows the molten filler Fluxes are often employed to protect and assist in metal to flow via capillary action into the close- Figure 1. Eyeglass frames showing sequence of brazing wetting of the base-metal surfaces. Heating fitting surfaces of the joint and to form an alloy of operations. (Photo courtesy of Handy & Harman) sources include plasma, electron beam, tungsten the materials at the transition point upon solidifica- and submerged arc methods, as well as resistance tion. The base metals do not melt, but they can Later, alloys of brass and copper were introduced welding and, more recently, laser-based equipment alloy with the molten filler metal by diffusion to as filler metals because of their ability to produce and even explosive welding. form a metallurgical bond. higher-strength joints in copper and steel struc- tures, which were also able to withstand high tem- A disadvantage of welding is its requirement for Because the metallurgical properties at the brazed peratures. As brazing technology advanced, many higher temperatures, which melts the base metal joint may differ from those of the base metals, the other filler metals have evolved. at the joint area and can result in distortion and selection of the appropriate filler metal is critical. warpage of temperature-sensitive base metals and Depending on the desired properties of the appli- Differences between soldering, stress-induced weakness around the weldment cation, the brazing operation can be used to impart welding, and brazing area. It is generally used for joining thick sections where high strength is required and small areas of a leaktight seal and/or structural strength, with The joining techniques of soldering, welding, and large assemblies (spot welding) where a degree of excellent appearance characteristics, in addition to brazing have many similarities; however, each base-metal distortion is acceptable. Welding can joining for the purpose of extending section length, process has its own characteristics and specific also cause adverse changes in the mechanical and e.g., in piping or tubing materials. indications for use. Generally, the criteria for metallurgical properties in the base metals’ selecting one process over the other depend on the Heat Affected Zone (HAZ), requiring further physical and economic requirements of the base corrective heat treatments. metals and/or end-use of the assembly being joined. 7 In brazing operations, heat is generally supplied by Brazing as a joining technique has only a few dis- that allows the filler metal to liquify and fill the joint an oxyfuel-type torch (manual or automated), a advantages. As mentioned previously, it may not be gap via capillary action. Heat is removed and the controlled-atmosphere or vacuum furnace, a suitable for extremely large assemblies. Also, met- assembly is then cooled or allowed to cool to chemical dip (salt bath), or specialized equipment allurgical concerns may dictate using an alternate ambient temperature before further processing. using resistance, induction, or even infrared tech- joining method. It must be remembered that the nologies. Brazing is especially well suited to high- physical and chemical properties of a brazed joint Furnace brazing, however, offers distinct advan- volume production (automation) and for joining thin can differ from that of the base and filler metals at tages over flame brazing, especially in the areas of sections and parts with complex geometries. the joint transition, which is heterogeneous as a control, automation, repeatability, and flexibility. result of the molecular nature of the bond. Also, First commercialized in the early 1920’s, furnace Furnace brazing, as opposed to flame brazing in stresses caused by external loads are nonuniformly brazing usually takes place in a controlled gaseous air, does not generally require a chemical flux, distributed. These concerns are especially important atmosphere, in an evacuated chamber (vacuum which gives it a distinct advantage over welding when brazing cold-worked or hardenable steels. furnace), or in a specified low partial pressure and soldering by reducing or eliminating the need atmosphere (partial vacuum). As with flame braz- for cleaning the parts of flux residue. Table I compares the properties of soldered, weld- ing, furnace-brazed parts are heated to a specific ed, and brazed joints. brazing temperature until the filler metal flows. The Brazing filler metals flow at relatively low tempera- brazements are then cooled or “quenched,” usually tures and, thus, may be used with many popular Flame brazing vs. furnace brazing in a different zone of the furnace, or in a separate metals with minimal thermally-induced distortion Flame brazing is a process wherein the heat chamber, to produce the required material proper- of the
Recommended publications
  • THERMOTECH THERMOTECHNOLOGY GENERAL CATALOG Fusion of New Technology and Our Extensive Experience in Heat Treatment
    THERMOTECH THERMOTECHNOLOGY GENERAL CATALOG Fusion of new technology and our extensive experience in heat treatment Fujikoshi's Thermotech Division has the heat treatment technology that supports the foundations of the world of manufacturing. In 1928, NACHI-FUJIKOSHI Corp. was founded to begin domestic production of cutting tools in Japan, starting by manufacturing hacksaw blades. In 1938, with the completion of its own steel mill, NACHI-FUJIKOSHI Corp. established full in-house production from materials to finished products. By capitalizing on techniques learned producing our own line of cutting tools, in 1961 we began production of salt-bath furnaces for heat treatment work. We then began developing our own technologies, and introducing some from overseas. Our production of industrial furnaces and auxiliary equipment was based on our vacuum heat treatment technologies, balancing the needs for heat treatment work with environmental impact. Welcome to a guide to NACHI-FUJIKOSHI Corp.'s multifaceted capabilities in processes for full in-house manufacturing from materials to finished product. Our aim is to support the needs of our customers with total service; from manufacturing and sales to maintenance and technical support; working to advance heat treatment technologies. 1 THERMOTECH DIVISION History 1961 Salt-bath furnace production started in-house 1963 Salt-bath furnaces sales started 1968 Introducing American technologies for atmosphere furnaces and aluminum furnaces 1974 Vacuum heat treatment furnace production and sales started 1981
    [Show full text]
  • Century-Sun.Com
    Welcome to Century Sun Our Commitment Service & Reliability Our fleet of trucks assures customers of consistent turn-around and delivery time. Located next to a full-service, commercial airport, we can easily serve customer needs around the country. Our mission is to be “dedicated to customer satisfaction through continuous improvement, integrity, and teamwork.” Quality Detailed hardness inspections, special blasting, and protective packaging of finished parts are among the final steps taken before shipments leave our facility. We are always ready to provide the highest quality, fast and convenient service, and competitive prices. ISO 9001 : 2008 Certificate No. FS 34865 Services Overview • Hardening • Quenching • Tempering • Normalizing • Aging & Annealing • Precipitation Hardening • Martempering • Austempering • Precision Straightening • Stress Relieving • Ion Nitriding • Carburizing • Carbonitriding • Induction Hardening • Cryogenic Treating • Blasting & Cleaning Company History For over 30 years, Century Sun Metal Treating has been servicing the metal working industry with high quality heat treating services. Producing the optimum metallurgical properties including excellent distortion control and uniformity of hardness have been our goal. Century Sun now offers a wide range of thermal processes to assist customers throughout the world. Many OEMs and steel suppliers to the industry now specify Century Sun Metal Treating as the vendor of choice. Integrated Supply Chain Daily pick-up and delivery is available using Century Sun’s fleet of custom trucks. Service is available Monday through Friday and is based out of our plant or one of our many distribution centers. Common carrier is utilized for ground and air transportation. Expediting services available upon request. Most Diversified Heat Treating Facility in the Industry Century Sun offers a variety of hardening and surface treatments, so the best process can be selected for the customer’s tooling and specifications.
    [Show full text]
  • Vacuum Furnace.Qxp
    VACUUM FURNACE HEAT TREATING AEROSPACE COMPONENTS Vertical vacuum furnaces acuum furnaces are used for hot zone. A metallic hot zone also ex- various thermal treatments in- periences double the heat loss of a are especially suited to heat cluding brazing, annealing, so- graphite hot zone, thus requiring more treat parts having a V lution treatment, aging, hard- energy use for a given cycle. ening, and stress relieving, each of Heating tests were conducted in an cylindrical cross section or which can require different tempera- Ipsen Global V 6060 vertical vacuum parts that can be stacked ture and vacuum ranges, cooling ca- furnace (Figure 1) having an all pability, and enhanced temperature graphite hot-zone construction with vertically, such as those uniformity. Hot zone construction can 50-mm thick insulation and an in- commonly processed in the be either all graphite or all metallic ternal cooling system to evaluate the depending on the intended use and performance of convection versus radi- aerospace industry heating can be via radiation or con- ation heating, temperature uniformity, (e.g., jet engine and turbine vection or a combination. In some and heat loss. Convection-assisted processes, especially in the aerospace heating reduces workload heat up components). Vertical industry, certain parts cannot be heat cycle time, the degree of cycle time re- vacuum furnaces offer high treated in the presence of graphite. For duction being dependent on part example, some titanium parts are con- geometry and process cycle parame- reliability, a smaller installed taminated by graphite and some ters. Cycle time savings of up to 30% footprint, and ease of brazing applications will not work in for higher temperature processes and the presence of graphite.
    [Show full text]
  • Metal Minutes-2021/01
    MARCH 2021 | CONTENT PREMIUM METAL MINUTES SECO/WARWICK'S NEWSLETTER CMe YEAR IN THE CAPTURE SECO/WARWICK GROUP IN 2020 HARDENING PLANT SOLUTIONS JOIN FORCES TO DEVELOP Vector SUPERIQ® GAS CARBURIZING FURNACE DEPLOYED4D Quench IN AMERICA CSR by SECO/WARWICK REMOTE FACTORY ACCEPTANCE TESTS THE NEW REALITY UCM PIT- LPC MODERN ALTERNATIVE FOR ATMOSPHERE FURNACES Super IQ We share our experience and knowledge with you WWW.SECOWARWICK.COM SUCCESS STORIES | CONTENT PREMIUM 2021 STRONG YEAR (2020) - FOR SECO/VACUUM Aerospace and defense sectors lead the surge in new treatment, every single part goes through the system the equipment orders for SECO/VACUUM (SVT), same way in terms of position, timing and process a SECO/WARWICK Group Company, with the tool and die parameters. With a part exiting the system at a rate as short market in a strong supporting role. as 30 seconds each, customers can experience throughput as high as 1 million perfectly uniform parts per year. Such In stark contrast to a generally cautious economy upset by technologies are also part of the fabric of today’s industry- a global pandemic, farsighted OEMs have their horizons set leading discussions: A presentation by SVT’s Tom Hart well into the future as they develop plans for ground- and noted heat treat authority, Dan Herring, during breaking transportation technologies. One example SECO/WARWICK’s E-Seminar in September addressed the is the purchase by a major aerospace contractor of future of continuous vacuum furnace technologies as SECO/VACUUM’s single-piece flow continuous vacuum enabling these disruptive industry applications. A transcript furnace, UCM® 4D Quench®, to become an integral part of of this discussion appears in the January 2021 issue of a demonstration plant dedicated to completely automated Industrial Heating magazine.
    [Show full text]
  • High Temperature Brazing in Single Chamber Vacuum Furnaces
    REPORTS Vacuum Technology High temperature brazing in single chamber vacuum furnaces by Björn Eric Zieger Compared to conventional soldering techniques the batch type vacuum brazing has established for various products. Also for the large-scale production of copper brazed plate heat exchangers the vacuum process is used. The compacted load assembly has highest demands on the furnace technology to achieve maximum reproducibility and efficiency. he norm DIN 8505 describes brazing as a thermal is that oxidation at the joints can be reduced. This enables process for the firmly bonded joining and coating of more narrow brazing gaps. Narrow brazing gaps are neces- Tmaterials under the condition that a liquid phase is sary to achieve higher strength in the connections, which created through the melting of filler metal (fusion brazing) or is important when manufacturing highly stressed parts [2]. through diffusion to the edge areas (diffusion brazing). The solidus temperature of the basic materials is not achieved. BRAZING MATERIAL In conventional brazing the liquid filler metal is super cooled Once intensive work began in the aerospace sector. The by heat removal and thermal solidification (bonding) [1]. industry increasingly demands high-strength and oxidation resistant brazing connections, particularly for connections VACUUM BRAZING with different materials. In the beginning, brazing with In the vacuum brazing process the working temperature gold-based filler metals fulfilled all the construction require- is held until solidification through diffusion between the ments as this guarantees the necessary strength, toughness basic material and the filler metal. and hot gas corrosion resistance. Because of the high cost, High temperature vacuum brazing proved successful the gold-based filler metals had been displaced increas- for joining highly stressed structures in a wide range of ingly by nickel-based filler metals.
    [Show full text]
  • Furnace Overview
    Icon Key: CLICK HERE ECO MONO FLEX JUMBO NANO PFTH CRISTAL FULGURA TURQUOISE LILLIPUT VESUVE JIPELEC ADDITIVE MFG ANNEALING AGEING FURNACE OVERVIEW BRAZING CARBONITRIDING CARBURIZING We’ve expanded our vacuum furnace lines! From industrial to lab applications, there is an ECM vacuum DEGASSING DEPOSITION (RTCVD) furnace that fits your heat treating needs. With more than 200 installations worldwide and more than HARDENING 1000 heating cells produced in the world today, let our expertise guide your new or updated heat treat NITRIDING production goals. Not sure which product is best for your heat treating process? Contact us today and we RAPID THERMAL (RTP) will help you determine which furnace is right for you. SINTERING STRESS RELIEVING TEMPERING ECO eco-friendly MONO single chamber FLEX modular FULGURA multi-flow TURQUOISE horizontal LILLIPUT lab & testing Eco-friendly sustainable carburizing Ideal or smaller production facilities to Oil quenching cells (hot or cold), simple Multi-flow quenching furnace displaying Primary or secondary vacuum heat These furnaces are particularly adapted alternative for sealed quench-batch IQ lines. bring heat treating in-house. The cooling gas or reversible dual stream (up to heating elements (1 to several elements) treat for oxidation-prone alloys: Nickel, to laboratory uses as well as university No CO2 emissions and no open flames with phase is performed with inert gas in the 20 bar) quenching and heating cells, to produce low amplitude homogeneities. Titanium, Cobalt, Chrome, Molybdenum as and R&D applications. Brazing, glass to increased productivity. Vacuum carburizing, heating chamber. Vacuum carburizing, adjustable for production capacity. Vacuum Tool steel quenching, stainless steel hyper well as Tungsten.
    [Show full text]
  • Distortion Control with Synchronized Vacuum Heat Treatment
    V. Heuer et al.: Distortion Control through Synchronized Vacuum Heat Treatment V. Heuer, T. Leist, G. Schmitt Distortion Control through Synchronized Vacuum Heat Treatment Verzugsarme Vakuumwärmebehandlung im Takt der Fertigung Abstract/Kurzfassung Controlling distortion is of key importance during the case Die Reduzierung der Wärmebehandlungsverzüge ist von hardening process for the production of automotive and größter Bedeutung bei der Einsatzhärtung von metallischen non-automotive metallic components. By effective control of Komponenten. Durch Minimierung der Maß- und Formän- distortion and the variation of distortion, significant costs in derungen und insbesondere deren Streuungen können die post heat treatment machining processes can be avoided. In Kosten für die Hartbearbeitung der Bauteile enorm gesenkt some cases it is even possible to eliminate all post-machining. werden. In einzelnen Fällen kann die Hartbearbeitung sogar In other cases it may be possible to avoid the press-quench- komplett entfallen. Zudem kann in weiteren Anwendungs- ing of individual components, resulting in huge cost-benefits. fällen das Presshärten der Bauteile eliminiert werden, was A recently introduced new vacuum furnace design allows the ebenfalls zu enormen Kostenreduzierungen führt. Ein kürz- treatment of small batches in a single layer of parts (“2D-treat- lich eingeführtes neues Vakuum-Wärmebehandlungssystem ment”) which allows for easy automated loading and unload- ermöglicht die Behandlung von kleinen einlagigen Chargen ing of the fixture-trays. By using the small batch concept, („2D-Chargierung“). Durch die Nutzung dieser kleinen Char- a continuous flow of parts can be established (“One Piece gen wird ein kontinuierlicher Bauteilfluss gewährleistet („One Flow”). There is no need to wait until enough parts are col- Piece Flow“).
    [Show full text]
  • Hanford Laboratories Monthly Activities Report
    . *. REPOSITOPY CCLLECTiON HANFORD LABORATORIES MONTHLY ACTIVITIES REPORT DECEMBER 1963 JANUARY 15, 1964 THIS DOCUHENT HAS BEEN SCANNED AND IS STORED ON THE OPTICAL DISK DRIVE THIS DOCUMENT IS PUBLICLY AVA I LAB L E . - HANFORD ATOMIC PRODUCTS OPERATION RICHLAND. WASHINGTON GENERAL@ ELECTRIC 1233419 LEGAL NOTICE This report was prepared as on account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission: A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, com- pleteness, or usefulness of the information contoined in this report, or that the use of any informotion, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or 6. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, opporotus, method, or process disclosed in this report. As used in the above, "person acting on behalf of the Commission- includes any employee or contractor of the Commission. or employee of such contractor, to the extent that such employee or con- tractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor. DECLASSlFl E0 Hw-79999 This document consists , - of 189 pages. U _I c HANFORD LABORATORIES MONTHLY ACTIVITIES REPORT DECEMBER. 1963 87 273 w.6 tc)*acrr to Compiled by - Section Managers HANFORD ATOMIC PRODUCTS OPERATION RICHLAND, WASHINGTON PRELIMINARY RE PORT This report was prepared only for use within General Electric Company in the course of work under Atomic Energy Commission Contract AT(45-1)-1350.
    [Show full text]
  • Improving Process Heating System Performance
    U.S. DEPARTMENT OF Energy Efficiency & ENERGY Renewable Energy ADVANCED MANUFACTURING OFFICE Improving Process Heating System Performance A Sourcebook for Industry Third Edition U.S. Department of Energy Energy Efficiency and Renewable Energy Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.” ACKNOWLEDGEMENTS Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives. The U.S.
    [Show full text]
  • Why Vacuum Carburizing? HEAT TREAT ALTERNATIVE O F F E R S a D V a N T a G E S OVER CONVENTIONAL METHODS
    Vacuum carburizing offers shorter cycle times and better quality control compared to traditional heat treat methods (cour- tesy of Ipsen). Why Vacuum Carburizing? HEAT TREAT ALTERNATIVE O F F E R S A D V A N T A G E S OVER CONVENTIONAL METHODS Matthew Jaster, Associate Editor While a majority of heat treating in the gear industry is equipment and the development of high temperature and done using conventional atmospheric carburizing methods, low temperature techniques. Many companies are increasing vacuum carburizing continues to gain market share due to the pressure levels of gas quenching and providing multiple its reduced process time and more environmentally-friendly quench media within a single furnace or multi-cell system. technology. In 2010, the focus of vacuum carburizing—also “According to different sources, LPC is currently known as low pressure carburizing (LPC)—is the mini- between 10–15 percent of the carburizing market,” says mization of heat treat distortions, improvement of furnace continued www.geartechnology.com March/April 2010 GEARTECHNOLOGY 31 Rafal Walczak, vacuum furnaces team leader, Seco/Warwick “Also, some gear components are assembled directly Corp. “Compared with data from 10 years ago when LPC after heat treat because no hard finishing is needed after was 1–3 percent of the market, we can see much progress. vacuum carburizing. There’s no intergranular oxidation, no This growth will continue at the same rate in the future washing after heat treat,” Gornicki says. “It’s the integration driven by the latest material developments in vacuum carbu- of heat treatment into the manufacturing line.” rizing.” “Shorter cycle times and far less machining are needed “Future growth will reach roughly 30 to 40 percent in the with vacuum,” St.
    [Show full text]
  • Chandrasekaran 2010 407.Pdf
    DESIGN AND FABRICATION OF A HIGH-TEMPERATURE HIGH-VACUUM FURNACE TO HEAT TREAT NIOBIUM FOR SUPERCONDUCTING RADIO FREQUENCY CAVITIES By Saravan Kumar Chandrasekaran A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Mechanical Engineering 2010 UMI Number: 1485650 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 1485650 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. uestA® ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT DESIGN AND FABRICATION OF A HIGH-TEMPERATURE HIGH-VACUUM FURNACE TO HEAT TREAT NIOBIUM FOR SUPERCONDUCTING RADIO FREQUENCY CAVITIES By Saravan Kumar Chandrasekaran The noble metal niobium is increasingly used for the fabrication of superconducting radio frequency (SRF) cavities, which accelerate charged atomic and sub-atomic par- ticles to speeds between 5 and 100 % of the speed of light. The fabrication of SRF cavities typically involves large deformation of niobium sheet, introducing large strain in the metal. Strain produces dislocations in the metal, which is known to degrade the heat transfer properties of the metal. For improved thermal performance, annealing at 600 °C to 800 °C in vacuum can be done to stress relieve the deformed metal.
    [Show full text]
  • Case Hardening in Modern Vacuum Furnaces
    ARTICLE 2014 Case Hardening in Modern Vacuum Furnaces PhD, Eng Maciej Korecki, Eng Michał Bazel, Eng Michał Sut – SECO/WARWICK, Świebodzin, Poland PhD, DSc, Eng Emilia Wołowiec-Korecka, PhD Sylwester Pawęta – Lodz University of Technology, Poland Abstract of simulation software SimVaC for LPC and quenching. Presently, vacuum furnaces The article describes the are capable of handling a number of heat achievements and application of a new treatment technologies such as: generation of vacuum furnaces into the annealing, brazing, sintering, quenching, case hardening technology. The tempering, carburizing, nitriding, etc. This technology is based on low pressure makes vacuum furnaces versatile, flexible carburizing (LPC) at elevated and multipurpose piece of heat and temperature. Depends on application and thermo-chemical treatment equipment productivity there are single-, double-, which ensures high quality, repeatability triple- and multi-chamber furnaces and reliability at a minimal cost, while equipped with oil or high pressure gas cutting down on process time and quenching (HPGQ). Applied vacuum consumption of utilities and maintaining furnaces are fully automatic, computer neutrality to the surroundings and the controlled and equipped with natural environment. technological support systems in the form Fig. 1. Examples of drive transmission parts SECO/WARWICK S.A. street: Sobieskiego 8, 66-200 Świebodzin, Polska phone.: +48 68 3820500 |[email protected] | www.secowarwick.com District Court of City Zielona Góra, VIII Department of National Court Register of Polish Companies VAT ID No.PL9270100756 |REGON:970011679| BDO: 00025175|Commercial Register (KRS):0000271014| Basic Capital: 2 059 710,80 ZŁ 1|8 Introduction Case hardening by carburising is one of the most common methods of thermal, or rather thermo-chemical, treatment.
    [Show full text]