4. Equation of Motion Using Angular Momentum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected]
The University of Akron IdeaExchange@UAkron The Dr. Gary B. and Pamela S. Williams Honors Honors Research Projects College Fall 2017 The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects Part of the Aerospace Engineering Commons, Aviation Commons, Civil and Environmental Engineering Commons, Mechanical Engineering Commons, and the Physics Commons Recommended Citation Koken, Michael, "The Experimental Determination of the Moment of Inertia of a Model Airplane" (2017). Honors Research Projects. 585. http://ideaexchange.uakron.edu/honors_research_projects/585 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. 2017 THE EXPERIMENTAL DETERMINATION OF A MODEL AIRPLANE KOKEN, MICHAEL THE UNIVERSITY OF AKRON Honors Project TABLE OF CONTENTS List of Tables ................................................................................................................................................ -
Explain Inertial and Noninertial Frame of Reference
Explain Inertial And Noninertial Frame Of Reference Nathanial crows unsmilingly. Grooved Sibyl harlequin, his meadow-brown add-on deletes mutely. Nacred or deputy, Sterne never soot any degeneration! In inertial frames of the air, hastening their fundamental forces on two forces must be frame and share information section i am throwing the car, there is not a severe bottleneck in What city the greatest value in flesh-seconds for this deviation. The definition of key facet having a small, polished surface have a force gem about a pretend or aspect of something. Fictitious Forces and Non-inertial Frames The Coriolis Force. Indeed, for death two particles moving anyhow, a coordinate system may be found among which saturated their trajectories are rectilinear. Inertial reference frame of inertial frames of angular momentum and explain why? This is illustrated below. Use tow of reference in as sentence Sentences YourDictionary. What working the difference between inertial frame and non inertial fr. Frames of Reference Isaac Physics. In forward though some time and explain inertial and noninertial of frame to prove your measurement problem you. This circumstance undermines a defining characteristic of inertial frames: that with respect to shame given inertial frame, the other inertial frame home in uniform rectilinear motion. The redirect does not rub at any valid page. That according to whether the thaw is inertial or non-inertial In the. This follows from what Einstein formulated as his equivalence principlewhich, in an, is inspired by the consequences of fire fall. Frame of reference synonyms Best 16 synonyms for was of. How read you govern a bleed of reference? Name we will balance in noninertial frame at its axis from another hamiltonian with each printed as explained at all. -
Rotational Motion (The Dynamics of a Rigid Body)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates. -
Classical Mechanics
Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation . -
Foundations of Newtonian Dynamics: an Axiomatic Approach For
Foundations of Newtonian Dynamics: 1 An Axiomatic Approach for the Thinking Student C. J. Papachristou 2 Department of Physical Sciences, Hellenic Naval Academy, Piraeus 18539, Greece Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual subtleties that may cause some confusion to the deep-thinking student. These subtle- ties concern fundamental issues such as, e.g., the number of independent laws needed to formulate the theory, or, the distinction between genuine physical laws and deriva- tive theorems. This article attempts to clarify these issues for the benefit of the stu- dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor- ous axiomatic approach to the subject. This theoretical scheme is built upon two fun- damental postulates, namely, conservation of momentum and superposition property for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are shown to follow from these basic principles. 1. Introduction Teaching introductory mechanics can be a major challenge, especially in a class of students that are not willing to take anything for granted! The problem is that, even some of the most prestigious textbooks on the subject may leave the student with some degree of confusion, which manifests itself in questions like the following: • Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is it a statement of existence (of inertial reference frames)? • Are the first two of Newton’s laws independent of each other? It appears that -
Conservative Forces and Potential Energy
Program 7 / Chapter 7 Conservative forces and potential energy In the motion of a mass acted on by a conservative force the total energy in the system, which is the sum of the kinetic and potential energies, is conserved. In this section, this motion is computed numerically using the Euler–Cromer method. Theory In section 7–2 of your textbook the oscillatory motion of a mass attached to a spring is described in the context of energy conservation. Specifically, if the spring is initially compressed then the system has spring potential energy. When the mass is free to move, this potential energy is converted into kinetic energy, K = 1/2mv2. The spring then stretches past its equilibrium position, the potential energy increases again until it equals its initial value. This oscillatory motion is illustrated in Fig. 7–7 of your textbook. Consider the more complicated situation in which the force on the particle is given by F(x) = x - 4qx 3 This is a conservative force and the its potential energy is 1 2 4 U(x) = - 2 x + qx (see Fig. 7–10). From the force, we can calculate the motion using Newton’s second law. The program that you will use in this section calculates this motion and demonstrates that the total energy, E = K + U, is conserved (i.e., E remains constant). Given the force, F, on an object (of mass m), its position and velocity may be found by solving the two ordinary differential equations, dv 1 dx = F ; = v dt m dt If we replace the derivatives with their right derivative approximations, we have v(t + Dt) - v(t) 1 x(t + Dt) - x(t) = F(t) ; = v(t) Dt m Dt or v - v 1 x - x f i = F ; f i = v Dt m i Dt i where the subscripts i and f refer to the initial (time t) and final (time t+Dt) values. -
The Stress Tensor
An Internet Book on Fluid Dynamics The Stress Tensor The general state of stress in any homogeneous continuum, whether fluid or solid, consists of a stress acting perpendicular to any plane and two orthogonal shear stresses acting tangential to that plane. Thus, Figure 1: Differential element indicating the nine stresses. as depicted in Figure 1, there will be a similar set of three stresses acting on each of the three perpendicular planes in a three-dimensional continuum for a total of nine stresses which are most conveniently denoted by the stress tensor, σij, defined as the stress in the j direction acting on a plane normal to the i direction. Equivalently we can think of σij as the 3 × 3 matrix ⎡ ⎤ σxx σxy σxz ⎣ ⎦ σyx σyy σyz (Bha1) σzx σzy σzz in which the diagonal terms, σxx, σyy and σzz, are the normal stresses which would be equal to −p in any fluid at rest (note the change in the sign convention in which tensile normal stresses are positive whereas a positive pressure is compressive). The off-digonal terms, σij with i = j, are all shear stresses which would, of course, be zero in a fluid at rest and are proportional to the viscosity in a fluid in motion. In fact, instead of nine independent stresses there are only six because, as we shall see, the stress tensor is symmetric, specifically σij = σji. In other words the shear stress acting in the i direction on a face perpendicular to the j direction is equal to the shear stress acting in the j direction on a face perpendicular to the i direction. -
Kinematics Study of Motion
Kinematics Study of motion Kinematics is the branch of physics that describes the motion of objects, but it is not interested in its causes. Itziar Izurieta (2018 october) Index: 1. What is motion? ............................................................................................ 1 1.1. Relativity of motion ................................................................................................................................ 1 1.2.Frame of reference: Cartesian coordinate system ....................................................................................................................................................................... 1 1.3. Position and trajectory .......................................................................................................................... 2 1.4.Travelled distance and displacement ....................................................................................................................................................................... 3 2. Quantities of motion: Speed and velocity .............................................. 4 2.1. Average and instantaneous speed ............................................................ 4 2.2. Average and instantaneous velocity ........................................................ 7 3. Uniform linear motion ................................................................................. 9 3.1. Distance-time graph .................................................................................. 10 3.2. Velocity-time -
Conservation of Energy for an Isolated System
POTENTIAL ENERGY Often the work done on a system of two or more objects does not change the kinetic energy of the system but instead it is stored as a new type of energy called POTENTIAL ENERGY. To demonstrate this new type of energy let‟s consider the following situation. Ex. Consider lifting a block of mass „m‟ through a vertical height „h‟ by a force F. M vf=0 h M vi=0 Earth Earth System = Block F m s mg WKnet K0 (since vif v 0) WWWnet F g 0 o WFg W mghcos180 WF mgh 1 System = block + earth F system m s Earth Wnet K K 0 Wnet W F mgh WF mgh Clearly the work done by Fapp is not zero and there is no change in KE of the system. Where has the work gone into? Because recall that positive work means energy transfer into the system. Where did the energy go into? The work done by Fext must show up as an increase in the energy of the system. The work done by Fext ends up stored as POTENTIAL ENERGY (gravitational) in the Earth-Block System. This potential energy has the “potential” to be recovered in the form of kinetic energy if the block is released. 2 Ex. Spring-Mass System system N F’ K M F M F xi xf mg wKnet K0 (Since vi v f 0) w w w w w netF ' N mg F w w w net F s 11 w k22 k s22 i f 11 w w k22 k F s22 f i The work done by Fapp ends up stored as POTENTIAL ENERGY (elastic) in the Spring- Mass System. -
Introduction to Robotics Lecture Note 5: Velocity of a Rigid Body
ECE5463: Introduction to Robotics Lecture Note 5: Velocity of a Rigid Body Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 1 / 24 Outline Introduction • Rotational Velocity • Change of Reference Frame for Twist (Adjoint Map) • Rigid Body Velocity • Outline Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 2 / 24 Introduction For a moving particle with coordinate p(t) 3 at time t, its (linear) velocity • R is simply p_(t) 2 A moving rigid body consists of infinitely many particles, all of which may • have different velocities. What is the velocity of the rigid body? Let T (t) represent the configuration of a moving rigid body at time t.A • point p on the rigid body with (homogeneous) coordinate p~b(t) and p~s(t) in body and space frames: p~ (t) p~ ; p~ (t) = T (t)~p b ≡ b s b Introduction Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 3 / 24 Introduction Velocity of p is d p~ (t) = T_ (t)p • dt s b T_ (t) is not a good representation of the velocity of rigid body • - There can be 12 nonzero entries for T_ . - May change over time even when the body is under a constant velocity motion (constant rotation + constant linear motion) Our goal is to find effective ways to represent the rigid body velocity. • Introduction Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 4 / 24 Outline Introduction • Rotational Velocity • Change of Reference Frame for Twist (Adjoint Map) • Rigid Body Velocity • Rotational Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 5 / 24 Illustrating -
Sliding and Rolling: the Physics of a Rolling Ball J Hierrezuelo Secondary School I B Reyes Catdicos (Vdez- Mdaga),Spain and C Carnero University of Malaga, Spain
Sliding and rolling: the physics of a rolling ball J Hierrezuelo Secondary School I B Reyes Catdicos (Vdez- Mdaga),Spain and C Carnero University of Malaga, Spain We present an approach that provides a simple and there is an extra difficulty: most students think that it adequate procedure for introducing the concept of is not possible for a body to roll without slipping rolling friction. In addition, we discuss some unless there is a frictional force involved. In fact, aspects related to rolling motion that are the when we ask students, 'why do rolling bodies come to source of students' misconceptions. Several rest?, in most cases the answer is, 'because the didactic suggestions are given. frictional force acting on the body provides a negative acceleration decreasing the speed of the Rolling motion plays an important role in many body'. In order to gain a good understanding of familiar situations and in a number of technical rolling motion, which is bound to be useful in further applications, so this kind of motion is the subject of advanced courses. these aspects should be properly considerable attention in most introductory darified. mechanics courses in science and engineering. The outline of this article is as follows. Firstly, we However, we often find that students make errors describe the motion of a rigid sphere on a rigid when they try to interpret certain situations related horizontal plane. In this section, we compare two to this motion. situations: (1) rolling and slipping, and (2) rolling It must be recognized that a correct analysis of rolling without slipping. -
Work, Energy, Rolling, SJ 7Th Ed.: Chap 10.8 to 9, Chap 11.1
A cylinder whose radius is 0.50 m and whose rotational inertia is 10.0 kgm^2 is rotating around a fixed horizontal axis through its center. A constant force of 10.0 N is applied at the rim and is always tangent to it. The work done by on the disk as it accelerates and rotates turns through four complete revolutions is ____ J. Physics 106 Week 4 Work, Energy, Rolling, SJ 7th Ed.: Chap 10.8 to 9, Chap 11.1 • Work and rotational kinetic energy • Rolling • Kinetic energy of rolling Today • Examples of Second Law applied to rolling 2 1 Goal for today Understanding rolling motion For motion with translation and rotation about center of mass ω Example: Rolling vcm KKKtotal=+ rot cm 1 2 1 2 KI= ω KMvcm= cm rot2 cm 2 UM= gh Emech=+KU tot gravity cm 2 A wheel rolling without slipping on a table • The green line above is the path of the mass center of a wheel. ω • The red curve shows the path (called a cycloid) swept out by a point on the rim of the wheel . • When there is no slipping, there are simple vcm relationships between the translational (mass center) and rotational motion. s = Rθ vcm = ωR acm = αR First point of view about rolling motion Rolling = pure rotation around CM + pure translation of CM a) Pure rotation b) Pure translation c) Rolling motion 3 Second point of view about rolling motion Rolling = pure rotation about contact point P • Complementary views – a snapshot in time • Contact point “P” is constantly changing vtang = 2ωPR vA = ωP 2Rcos(ϕ) A v = ω R φ cm P R ωP φ P vtang = 0 vRRcm==ω Pω cm ∴ωP = ωcm ∴α pcm= α Angular velocity and acceleration are the same about contact point “P” or about CM.