4. Equation of Motion Using Angular Momentum

Total Page:16

File Type:pdf, Size:1020Kb

4. Equation of Motion Using Angular Momentum Chapter 1 Introduction Section 1 Newton’s Laws dp Newton’s three laws: = F dt For a point particle: m m · First law (Law of inertia)[C]: It is always possible to find a p = v = r coordinate system with respect to which isolated bodies move For a rigid body: linear momentum of the CM. uniformly. This coordinate system is called an inertial reference 2 frame. d r = F dt2 The usual statement “A body remains in its state of rest or in Third law (C): If a given body A exerts a force on another body B, uniform linear motion as long as no external force acts on it to then body B also exerts a force on body A with equal magnitude change” is not suitable. In an accelerating frame, a force-free but opposite in direction. body will appear to accelerate. Not always valid. If the Sun moved by a distance, then the action Inertial reference frame: In which the law of inertial is valid. Any and reaction with Earth will not take on the new values until the reference frames moving with a constant velocity wrt stationary signal reaches the Earth. This is because the Newtonian frame is a inertial reference frame. dynamics assumes instantaneous propagation of signal (action at a distance). Examples: free space, a freely falling elevator. Main points: Second order differential equation. Second law (C): The change in the linear momentum of a body is proportional to the external force acting on the body and is in Other assumptions: the direction of the force. 2 Absolute space: Motion takes pace in the background of (1) Solve for the position and velocity of a damped linear oscillator absolute space. The space is same for all observers. whose mass m=1, the viscous coefficient is γ. The initial condition is [x(0),v(0)]. Consequence: The length of a rod is the same for all observers. (2) Do the same for a forced undamped oscillator with initial Absolute Time: Evolution of physical system in “time”. Time condition is [x(0),v(0)]. Solve for both cases: ω0 ≠ ωf and ω0 = ωf moves uniformly with equal rate for all observers. (3) A spherical ball of mass m falls under gravity in a viscous Consequence: Time interval between two events is the same fluid. Find the position and velocity of the ball as a function of for all observers. time. Assume that the mass starts at rest from a height h Mass conservation above the ground. Apply the above solution to a raindrop whose radius is 1 mm. Assume the dynamic viscosity of air to Infinite speed be 10−5 kg/(m s). Examples: Oscillator: Equation ·· · 2 m x + 2γx + ω0 x = F0 cos ωf t (1) Linear frictionless oscillator with the initial condition is v(0) [x(0),v(0)]: x(t) = x(0)cos ωt + sin ωt ω (2) Solve x·· = x: x(t) = x(0)cosh t + v(0)sinh t Exercises: 3 Section 2 Energy Work energy theorem: Conservative force fields: Fields for which F ⋅ dr = 0 for any The work done on a particle by a force F as it moves from point ∮ Q A to point B: closed path. For such fields, F ⋅ dr is only function of the end ∫P B W = F ⋅ dr points, but remain independent of paths. Therefore, we choose AB ∫ A P as the reference point and define potential energy U(r) as which can be rewritten as r U(r) = − F(r′)! ⋅ dr′.! ∫ B P B dv dr 1 [1] W = m ⋅ dt = mv2 = T − T AB ∫ dt dt [ ] B A A 2 A Therefore, B B A where TA, TB are the kinetic energy of the particle at the points A [2] F ⋅ dr = F ⋅ dr − F ⋅ dr = − UB + UA and B respectively. ∫A ∫P ∫P The above statement is work energy theorem: The difference in Eqs. [1,2] yield the kinetic energy of a particle between two points is equal to the net work done on the particle by the external forces during the TA + UA = TB + UB, transit. The sum of kinetic and potential energies is the total energy, and Conservative force fields and Potentials: the above statement is the conservation of total energy of a mechanical systems that are conservative. 4 Example: these charges. (a) Find the position(s) of equilibrium point(s). (b) Compute the potential near the equilibrium point. (c) What (1) Spring force F k x. Therefore = − is the nature of the equilibrium point? Describe the motion of x 1 1 U(x) = − (−k x)dx = k x2 − k x 2 the test particle near this point. (d) Does your analysis depend ∫ 2 2 0 x0 on the sign of the test charge? Hence, the potential energy is U(x) = k x2 /2 apart from a constant, (3) What is the potential of an electric dipole? Compute the and the total energy electric field induced by it. Sketch the potential. 1 1 (4) Philip Morse modelled the potential energy of a diatomic E = m x· 2 + k x2 2 2 molecule using a potential energy function: U r D a r r 2 where r is the distance between (2) For gravitational force F = − GMm /r2 r̂ , ( ) = e{1 − exp[− ( − e)]} the atoms of the dipolar molecule re is the equilibrium bon B B 1 1 distance and De is the depth of the potential well. (a) Sketch U(B) − U(A) = − F ⋅ dr = − Frdr = − GMm − ∫A ∫A ( rB rA ) the potential. (b) Find the minima of the potential. (c) Expand the potential near its minimum and compute the frequency of By choosing r , we deduce A = ∞ oscillation. GMm U(r) = − r Exercises: (1) A charged particle +Q is fixed at the origin. A test charged particle +q of mass m is fired head-on towards the charged particle +Q with velocity v∞ from ∞. Compute the shortest distance of approach between the particles. (2) Four immovable charges of magnitude +Q are placed at the vertices of a square. A test charge +q is moving in the field of 5 6 Section 3 System of Particles and Conservation Laws 1. Linear Momentum fa = fa,ext + fa,int = fa,ext + ∑ fa,b b -th particle. Centre of mass: where fa,b is the force on the a-th particle due to the b m ∑ ara MaCM = fa = fa,ext + fa,b RCM = ∑ ∑ ∑ ∑ ∑ ma a a a b a: Particle label From Newton’s third law: CM reference frames: Frame in which RCM = 0. fa,b + fb,a = 0 Linear momentum of a system: Therefore, ! d P P = mava = ma(VCM + va′) = M VCM = PCM = f = F . ∑ ∑ dt ∑ a,ext ext a Equation of motion: If Fext = 0, then the total linear momentum of the system P is a · d VCM P = M = m v· = f constant. This is the statement of the conservation of linear dt ∑ a a ∑ a a momentum. fa is the net force on the a-th particle. Example: Two masses (m) connected by a spring. Example Ch 13 7 If the torque, N, on the particle is zero, then the angular momentum L of the particle is a constant. This law is called conservation of angular momentum. 3. Angular Momentum of a System of 2. Angular Momentum of a Single Particle Particles y The Angular momentum of a system of particles is a sum of V angular momentum of individual particles. The angular P .m momentum of such system about a reference point is r L = ∑ ra × pa, . a O where denotes the position vector of the ath particle from the x ra reference point, and pa its linear momentum. Using the CM ! ! We define the angular momentum of the particle about a coordinates, r = RCM + ra′ and v = VCM + va′: reference point O, where OP = r, as L = ∑ ra × pa a L = r × p, = m (R + r′!) × (V + v′!) · ∑ a CM a CM a where p = mr is the linear momentum of the particle measured in a the reference frame. The above formulas is valid in any reference = × + ′! × ′! frame, inertial or noninertial. Now. RCM PCM ∑ ra pa Therefore, d L dp dr dp = r × + × p = r × = r × F = N dt dt dt dt L = RCM × PCM + LCM = Lorbit + LCM, where where N is the torque on the particle about the reference point O. 8 ! ! LCM = ∑ ra′ × pa′ is the angular momentum of the body about the CM, The time derivative of LP is d LP ·· = m (r − R ) × (··r − R ). dt ∑ a a P a P 4. Equation of Motion Using Angular a Momentum ·· Using mara = fa is the net force acting on the ath particle, we obtain We assume that xy coordinate system of the figure is an inertial d LP ·· reference frame, and the reference point O belongs to it. The = (ra − RP) × (fa − maRP). dt ∑ a angular momentum of the body about O is ·· The term (ra − RP) × (−maRP) can interpreted as the torque on LO = mara × pa. ∑ ∑ a a ·· the rigid body due to the pseudo force −maRP. The force fa is a We also compute angular momentum LP about another point P sum of external and internal forces, i.e., shown in the following figure: fa = fa,ext + ∑ fa,b m ! ! m · · , b LP = ∑ ara′ × pa′ = ∑ a(ra − RP) × (ra − RP) a a where is the external force on the th particle, while is the fa,ext a fa,b internal force on the ath particle due to the bth particle as shown y in Fig. 15.4. Therefore, d r'a LP ·· 1 r = (r − R ) × (f − m R ) + (r′! × f + r′! × f ) a dt ∑ a P a,ext a P ∑ ∑ a a,b b b,a P a 2 a b RP O x 9 where ! .
Recommended publications
  • The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected]
    The University of Akron IdeaExchange@UAkron The Dr. Gary B. and Pamela S. Williams Honors Honors Research Projects College Fall 2017 The Experimental Determination of the Moment of Inertia of a Model Airplane Michael Koken [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: http://ideaexchange.uakron.edu/honors_research_projects Part of the Aerospace Engineering Commons, Aviation Commons, Civil and Environmental Engineering Commons, Mechanical Engineering Commons, and the Physics Commons Recommended Citation Koken, Michael, "The Experimental Determination of the Moment of Inertia of a Model Airplane" (2017). Honors Research Projects. 585. http://ideaexchange.uakron.edu/honors_research_projects/585 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. 2017 THE EXPERIMENTAL DETERMINATION OF A MODEL AIRPLANE KOKEN, MICHAEL THE UNIVERSITY OF AKRON Honors Project TABLE OF CONTENTS List of Tables ................................................................................................................................................
    [Show full text]
  • Explain Inertial and Noninertial Frame of Reference
    Explain Inertial And Noninertial Frame Of Reference Nathanial crows unsmilingly. Grooved Sibyl harlequin, his meadow-brown add-on deletes mutely. Nacred or deputy, Sterne never soot any degeneration! In inertial frames of the air, hastening their fundamental forces on two forces must be frame and share information section i am throwing the car, there is not a severe bottleneck in What city the greatest value in flesh-seconds for this deviation. The definition of key facet having a small, polished surface have a force gem about a pretend or aspect of something. Fictitious Forces and Non-inertial Frames The Coriolis Force. Indeed, for death two particles moving anyhow, a coordinate system may be found among which saturated their trajectories are rectilinear. Inertial reference frame of inertial frames of angular momentum and explain why? This is illustrated below. Use tow of reference in as sentence Sentences YourDictionary. What working the difference between inertial frame and non inertial fr. Frames of Reference Isaac Physics. In forward though some time and explain inertial and noninertial of frame to prove your measurement problem you. This circumstance undermines a defining characteristic of inertial frames: that with respect to shame given inertial frame, the other inertial frame home in uniform rectilinear motion. The redirect does not rub at any valid page. That according to whether the thaw is inertial or non-inertial In the. This follows from what Einstein formulated as his equivalence principlewhich, in an, is inspired by the consequences of fire fall. Frame of reference synonyms Best 16 synonyms for was of. How read you govern a bleed of reference? Name we will balance in noninertial frame at its axis from another hamiltonian with each printed as explained at all.
    [Show full text]
  • Rotational Motion (The Dynamics of a Rigid Body)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body) Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 11: Rotational Motion (The Dynamics of a Rigid Body)" (1958). Robert Katz Publications. 141. https://digitalcommons.unl.edu/physicskatz/141 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 11 Rotational Motion (The Dynamics of a Rigid Body) 11-1 Motion about a Fixed Axis The motion of the flywheel of an engine and of a pulley on its axle are examples of an important type of motion of a rigid body, that of the motion of rotation about a fixed axis. Consider the motion of a uniform disk rotat­ ing about a fixed axis passing through its center of gravity C perpendicular to the face of the disk, as shown in Figure 11-1. The motion of this disk may be de­ scribed in terms of the motions of each of its individual particles, but a better way to describe the motion is in terms of the angle through which the disk rotates.
    [Show full text]
  • Classical Mechanics
    Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation .
    [Show full text]
  • Foundations of Newtonian Dynamics: an Axiomatic Approach For
    Foundations of Newtonian Dynamics: 1 An Axiomatic Approach for the Thinking Student C. J. Papachristou 2 Department of Physical Sciences, Hellenic Naval Academy, Piraeus 18539, Greece Abstract. Despite its apparent simplicity, Newtonian mechanics contains conceptual subtleties that may cause some confusion to the deep-thinking student. These subtle- ties concern fundamental issues such as, e.g., the number of independent laws needed to formulate the theory, or, the distinction between genuine physical laws and deriva- tive theorems. This article attempts to clarify these issues for the benefit of the stu- dent by revisiting the foundations of Newtonian dynamics and by proposing a rigor- ous axiomatic approach to the subject. This theoretical scheme is built upon two fun- damental postulates, namely, conservation of momentum and superposition property for interactions. Newton’s laws, as well as all familiar theorems of mechanics, are shown to follow from these basic principles. 1. Introduction Teaching introductory mechanics can be a major challenge, especially in a class of students that are not willing to take anything for granted! The problem is that, even some of the most prestigious textbooks on the subject may leave the student with some degree of confusion, which manifests itself in questions like the following: • Is the law of inertia (Newton’s first law) a law of motion (of free bodies) or is it a statement of existence (of inertial reference frames)? • Are the first two of Newton’s laws independent of each other? It appears that
    [Show full text]
  • Conservative Forces and Potential Energy
    Program 7 / Chapter 7 Conservative forces and potential energy In the motion of a mass acted on by a conservative force the total energy in the system, which is the sum of the kinetic and potential energies, is conserved. In this section, this motion is computed numerically using the Euler–Cromer method. Theory In section 7–2 of your textbook the oscillatory motion of a mass attached to a spring is described in the context of energy conservation. Specifically, if the spring is initially compressed then the system has spring potential energy. When the mass is free to move, this potential energy is converted into kinetic energy, K = 1/2mv2. The spring then stretches past its equilibrium position, the potential energy increases again until it equals its initial value. This oscillatory motion is illustrated in Fig. 7–7 of your textbook. Consider the more complicated situation in which the force on the particle is given by F(x) = x - 4qx 3 This is a conservative force and the its potential energy is 1 2 4 U(x) = - 2 x + qx (see Fig. 7–10). From the force, we can calculate the motion using Newton’s second law. The program that you will use in this section calculates this motion and demonstrates that the total energy, E = K + U, is conserved (i.e., E remains constant). Given the force, F, on an object (of mass m), its position and velocity may be found by solving the two ordinary differential equations, dv 1 dx = F ; = v dt m dt If we replace the derivatives with their right derivative approximations, we have v(t + Dt) - v(t) 1 x(t + Dt) - x(t) = F(t) ; = v(t) Dt m Dt or v - v 1 x - x f i = F ; f i = v Dt m i Dt i where the subscripts i and f refer to the initial (time t) and final (time t+Dt) values.
    [Show full text]
  • The Stress Tensor
    An Internet Book on Fluid Dynamics The Stress Tensor The general state of stress in any homogeneous continuum, whether fluid or solid, consists of a stress acting perpendicular to any plane and two orthogonal shear stresses acting tangential to that plane. Thus, Figure 1: Differential element indicating the nine stresses. as depicted in Figure 1, there will be a similar set of three stresses acting on each of the three perpendicular planes in a three-dimensional continuum for a total of nine stresses which are most conveniently denoted by the stress tensor, σij, defined as the stress in the j direction acting on a plane normal to the i direction. Equivalently we can think of σij as the 3 × 3 matrix ⎡ ⎤ σxx σxy σxz ⎣ ⎦ σyx σyy σyz (Bha1) σzx σzy σzz in which the diagonal terms, σxx, σyy and σzz, are the normal stresses which would be equal to −p in any fluid at rest (note the change in the sign convention in which tensile normal stresses are positive whereas a positive pressure is compressive). The off-digonal terms, σij with i = j, are all shear stresses which would, of course, be zero in a fluid at rest and are proportional to the viscosity in a fluid in motion. In fact, instead of nine independent stresses there are only six because, as we shall see, the stress tensor is symmetric, specifically σij = σji. In other words the shear stress acting in the i direction on a face perpendicular to the j direction is equal to the shear stress acting in the j direction on a face perpendicular to the i direction.
    [Show full text]
  • Kinematics Study of Motion
    Kinematics Study of motion Kinematics is the branch of physics that describes the motion of objects, but it is not interested in its causes. Itziar Izurieta (2018 october) Index: 1. What is motion? ............................................................................................ 1 1.1. Relativity of motion ................................................................................................................................ 1 1.2.Frame of reference: Cartesian coordinate system ....................................................................................................................................................................... 1 1.3. Position and trajectory .......................................................................................................................... 2 1.4.Travelled distance and displacement ....................................................................................................................................................................... 3 2. Quantities of motion: Speed and velocity .............................................. 4 2.1. Average and instantaneous speed ............................................................ 4 2.2. Average and instantaneous velocity ........................................................ 7 3. Uniform linear motion ................................................................................. 9 3.1. Distance-time graph .................................................................................. 10 3.2. Velocity-time
    [Show full text]
  • Conservation of Energy for an Isolated System
    POTENTIAL ENERGY Often the work done on a system of two or more objects does not change the kinetic energy of the system but instead it is stored as a new type of energy called POTENTIAL ENERGY. To demonstrate this new type of energy let‟s consider the following situation. Ex. Consider lifting a block of mass „m‟ through a vertical height „h‟ by a force F. M vf=0 h M vi=0 Earth Earth System = Block F m s mg WKnet K0 (since vif v 0) WWWnet F g 0 o WFg W mghcos180 WF mgh 1 System = block + earth F system m s Earth Wnet K K 0 Wnet W F mgh WF mgh Clearly the work done by Fapp is not zero and there is no change in KE of the system. Where has the work gone into? Because recall that positive work means energy transfer into the system. Where did the energy go into? The work done by Fext must show up as an increase in the energy of the system. The work done by Fext ends up stored as POTENTIAL ENERGY (gravitational) in the Earth-Block System. This potential energy has the “potential” to be recovered in the form of kinetic energy if the block is released. 2 Ex. Spring-Mass System system N F’ K M F M F xi xf mg wKnet K0 (Since vi v f 0) w w w w w netF ' N mg F w w w net F s 11 w k22 k s22 i f 11 w w k22 k F s22 f i The work done by Fapp ends up stored as POTENTIAL ENERGY (elastic) in the Spring- Mass System.
    [Show full text]
  • Introduction to Robotics Lecture Note 5: Velocity of a Rigid Body
    ECE5463: Introduction to Robotics Lecture Note 5: Velocity of a Rigid Body Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 1 / 24 Outline Introduction • Rotational Velocity • Change of Reference Frame for Twist (Adjoint Map) • Rigid Body Velocity • Outline Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 2 / 24 Introduction For a moving particle with coordinate p(t) 3 at time t, its (linear) velocity • R is simply p_(t) 2 A moving rigid body consists of infinitely many particles, all of which may • have different velocities. What is the velocity of the rigid body? Let T (t) represent the configuration of a moving rigid body at time t.A • point p on the rigid body with (homogeneous) coordinate p~b(t) and p~s(t) in body and space frames: p~ (t) p~ ; p~ (t) = T (t)~p b ≡ b s b Introduction Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 3 / 24 Introduction Velocity of p is d p~ (t) = T_ (t)p • dt s b T_ (t) is not a good representation of the velocity of rigid body • - There can be 12 nonzero entries for T_ . - May change over time even when the body is under a constant velocity motion (constant rotation + constant linear motion) Our goal is to find effective ways to represent the rigid body velocity. • Introduction Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 4 / 24 Outline Introduction • Rotational Velocity • Change of Reference Frame for Twist (Adjoint Map) • Rigid Body Velocity • Rotational Velocity Lecture 5 (ECE5463 Sp18) Wei Zhang(OSU) 5 / 24 Illustrating
    [Show full text]
  • Sliding and Rolling: the Physics of a Rolling Ball J Hierrezuelo Secondary School I B Reyes Catdicos (Vdez- Mdaga),Spain and C Carnero University of Malaga, Spain
    Sliding and rolling: the physics of a rolling ball J Hierrezuelo Secondary School I B Reyes Catdicos (Vdez- Mdaga),Spain and C Carnero University of Malaga, Spain We present an approach that provides a simple and there is an extra difficulty: most students think that it adequate procedure for introducing the concept of is not possible for a body to roll without slipping rolling friction. In addition, we discuss some unless there is a frictional force involved. In fact, aspects related to rolling motion that are the when we ask students, 'why do rolling bodies come to source of students' misconceptions. Several rest?, in most cases the answer is, 'because the didactic suggestions are given. frictional force acting on the body provides a negative acceleration decreasing the speed of the Rolling motion plays an important role in many body'. In order to gain a good understanding of familiar situations and in a number of technical rolling motion, which is bound to be useful in further applications, so this kind of motion is the subject of advanced courses. these aspects should be properly considerable attention in most introductory darified. mechanics courses in science and engineering. The outline of this article is as follows. Firstly, we However, we often find that students make errors describe the motion of a rigid sphere on a rigid when they try to interpret certain situations related horizontal plane. In this section, we compare two to this motion. situations: (1) rolling and slipping, and (2) rolling It must be recognized that a correct analysis of rolling without slipping.
    [Show full text]
  • Work, Energy, Rolling, SJ 7Th Ed.: Chap 10.8 to 9, Chap 11.1
    A cylinder whose radius is 0.50 m and whose rotational inertia is 10.0 kgm^2 is rotating around a fixed horizontal axis through its center. A constant force of 10.0 N is applied at the rim and is always tangent to it. The work done by on the disk as it accelerates and rotates turns through four complete revolutions is ____ J. Physics 106 Week 4 Work, Energy, Rolling, SJ 7th Ed.: Chap 10.8 to 9, Chap 11.1 • Work and rotational kinetic energy • Rolling • Kinetic energy of rolling Today • Examples of Second Law applied to rolling 2 1 Goal for today Understanding rolling motion For motion with translation and rotation about center of mass ω Example: Rolling vcm KKKtotal=+ rot cm 1 2 1 2 KI= ω KMvcm= cm rot2 cm 2 UM= gh Emech=+KU tot gravity cm 2 A wheel rolling without slipping on a table • The green line above is the path of the mass center of a wheel. ω • The red curve shows the path (called a cycloid) swept out by a point on the rim of the wheel . • When there is no slipping, there are simple vcm relationships between the translational (mass center) and rotational motion. s = Rθ vcm = ωR acm = αR First point of view about rolling motion Rolling = pure rotation around CM + pure translation of CM a) Pure rotation b) Pure translation c) Rolling motion 3 Second point of view about rolling motion Rolling = pure rotation about contact point P • Complementary views – a snapshot in time • Contact point “P” is constantly changing vtang = 2ωPR vA = ωP 2Rcos(ϕ) A v = ω R φ cm P R ωP φ P vtang = 0 vRRcm==ω Pω cm ∴ωP = ωcm ∴α pcm= α Angular velocity and acceleration are the same about contact point “P” or about CM.
    [Show full text]