Probabilistic Machine Learning for Circular Statistics Models and Inference Using the Multivariate Generalised Von Mises Distribution

Total Page:16

File Type:pdf, Size:1020Kb

Probabilistic Machine Learning for Circular Statistics Models and Inference Using the Multivariate Generalised Von Mises Distribution Probabilistic Machine Learning for Circular Statistics Models and inference using the Multivariate Generalised von Mises distribution Alexandre Khae Wu Navarro Department of Engineering University of Cambridge This thesis is submitted for the degree of Doctor of Philosophy Magdalene College 2017 I would like to dedicate this work to all those that gave me support to overcome difficult moments. Declaration I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgements. This dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes, tables and equations and has fewer than 150 figures. Alexandre Khae Wu Navarro 2017 Acknowledgements This thesis would not be possible without the support of several people and organisations. Here I briefly note down some of the remarkable people whom I am utterly grateful for their role in this project. I would like to thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), the Cambridge Trusts and Sir Colin Corness Student Bursary, without which the research described in this thesis would have not been possible. I have also to thank Dr. Richard Turner for his instrumental role in the completion of this project through his insightful remarks, support and guidance. Another major contributor was Dr. Jes Frellsen, whom I had many instigating discussions that spurred our collaboration. Magdalene College and the Engineering Department also provided support for this thesis on multiple levels. In particular, my tutors Prof. Paul Dupree and Dr. Luke Skinner have been extremely helpful in times of unexpected hardships which I faced during the course of my studies. Cris Percival’s efficiency was also paramount for surpassing these obstacles life hurdled at me. I have also to thank Dr. Sae Franklin and prof. David Franklin for their invaluable advice, as well as Louise Segar and Diane Hazell for interesting conversations. Last, but definitely not least, I wish to thank my wife Manoela Carpenedo, my family and my friends for who stood by my side in the moments of joy and tears prompted by this project. Abstract Probabilistic machine learning and circular statistics—the branch of statistics concerned with data as angles and directions—are two research communities that have grown mostly in isolation from one another. On the one hand, probabilistic machine learning community has developed powerful frameworks for problems whose data lives on Euclidean spaces, such as Gaussian Processes, but have generally neglected other topologies studied by circular statistics. On the other hand, the approximate inference frameworks from probabilistic machine learning have only recently started to the circular statistics landscape. This thesis intends to redress the gap between these two fields by contributing to both fields with models and approximate inference algorithms. In particular, we introduce the multivariate Generalised von Mises distribution (mGvM), which allows the use of kernels in circular statistics akin to Gaussian Processes, and an augmented representation. These models account for a vast number of applications comprising both latent variable modelling and regression of circular data. Then, we propose methods to conduct approximate inference on these models. In particular, we investigate the use of Variational Inference, Expectation Propagation and Markov chain Monte Carlo methods. The variational inference route taken was a mean field approach to efficiently leverage the mGvM tractable conditionals and create a baseline for comparison with other methods. Then, an Expectation Propagation approach is presented drawing on the Expectation Consistent Framework for Ising models and connecting the approximations used to the augmented model presented. In the final MCMC chapter, efficient Gibbs and Hamiltonian Monte Carlo samplers are derived for the mGvM and the augmented model. Table of contents List of figures xv List of tables xxi I Introduction1 1 A primer on circular data and associated distributions3 1.1 Distributions over the unit circle . .4 1.1.1 Constructions based on the wrapping transformation . .5 1.1.2 Constructions based on polar transformations . .6 1.1.3 Other constructions in the literature . 11 1.2 Multivariate extensions . 12 1.2.1 Distributions over the surface of (hyper-)spheres . 12 1.2.2 Distributions over the surface of (hyper-)toruses . 15 1.2.3 A short note on other multivariate extensions of circular distri- butions . 17 1.2.4 Comment on the relationships between distributions on spheres, toruses and other manifolds . 17 1.3 Aims and contributions of the thesis . 19 II Models 23 2 The multivariate Generalised von Mises distribution 25 2.1 The mGvM model . 25 2.1.1 Generative view of the mGvM .................. 29 2.1.2 Related models . 30 2.1.3 Higher order extensions . 32 xii Table of contents 2.2 Relevant properties of the mGvM and TN for inference and modelling . 33 2.2.1 The mGvM and TN are maximum entropy distributions . 33 2.2.2 Conditional and marginal distributions . 35 2.2.3 Modes . 38 2.3 Modelling with the multivariate Generalised von Mises . 40 2.3.1 Relationship to other distributions: Posterior and approximations 41 2.3.2 Circular regression . 43 2.3.3 Latent variable modelling . 50 2.4 Related work . 55 2.5 Summary . 56 3 Augmented representations of the mGvM 59 3.1 Derivations for the mGvM ......................... 60 3.1.1 Exchangeablility and modelling . 60 3.2 Related work . 67 3.3 Augmented distributions for more general distributions on Stiefel Manifolds 68 3.4 Summary . 69 III Inference and learning 71 4 Variational free energy methods 73 4.1 Inference . 73 4.1.1 Variational Free Energy . 74 4.1.2 Mean field variational inference for the mGvM .......... 78 4.2 Experimental Results . 81 4.2.1 Circular regression . 81 4.2.2 Latent variable modelling . 83 4.3 Summary . 87 5 Expectation Propagation inference for the mGvM 89 5.1 Inference . 89 5.1.1 Introduction to EP and its connection to variational inference . 90 5.1.2 Lifted Expectation Propagation approximation for the mGvM . 92 5.2 Experimental results . 98 5.3 Summary . 101 Table of contents xiii 6 Approaches based on Markov chain Monte Carlo 103 6.1 Simulation and inference . 103 6.1.1 Gibbs sampling . 104 6.1.2 Hamiltonian Monte Carlo . 105 6.1.3 MCMC methods for the augmented representation . 107 6.1.4 Contrastive divergence learning . 108 6.2 Experiments . 109 6.2.1 Analysis of sampler behaviour . 110 6.2.2 Contrastive divergence learning for the mGvM .......... 112 6.3 Conclusions . 113 IV Conclusions 123 7 Conclusions and further directions 125 7.1 Conclusions arising from the thesis contributions . 125 7.2 Further work . 127 References 129 Appendix A Sparse models using the augmented representations 141 Appendix B Variational inference for the augmented mGvM represen- tation 143 Appendix C Improving numerical stability of the Generalised von Mises moment calculations 147 List of figures 1.1 Graphical summary of construction procedure for circular distributions from Euclidean distributions exemplified through the Gaussian distribu- tion circular counterparts. .5 1.2 Illustration of the construction of a wrapped distribution: the shaded regions in the distribution to the left represent 2π intervals with 2π multiples of an angle ϕ ∈ [0, 2π) and their respective probability (dashed coloured lines). A wrapped distribution, shown in the right figure, is constructed by condensing all the probability mass of the 2π multiples of ϕ from the distribution in the left figure to the point ϕ........6 1.3 Illustration of the genesis of projected distributions as marginalisation over a radial component. Here, the probability of ϕ is obtained by inte- grating over the ray forming an angle ϕ with the x1 axis and renormalising. 7 1.4 Graphical interpretation of the construction of an intrinsic distribution: the Generalised von Mises distribution is constructed by conditioning a two-dimensional distribution to the unit circle, and then expressing it through an angle. .9 1.5 Relationship between directional distributions based on conditioning a multivariate Gaussian to the unit circle: arrows show additional assumptions over the covariance matrix of the base Gaussian, extended from (Mardia, 1999)............................. 15 1.6 A diagram outlining the relationship between circular and directional distributions, their multivariate extensions and the underlying Gaussian’s covariance structure. A new distribution introduced in this thesis is highlighted in red.............................. 18 xvi List of figures 1.7 A diagram indicating the tractable and intractable distributions on the (hyper-)torus, (hyper-)spheres and Stiefel manifolds. By tractable we imply that numerical stable and efficient approximations exist for calculating the moments of the underlying distribution (this criterion excludes the infinite series approximation for the GvM, which are only accurate for low concentration values). The methods presented in this thesis provide ways to perform inference and learning in the intractable distributions by using the tractable ones. 19 2.1 Example of a two-dimensional mGvM distribution with four modes plotted in the [0, 2π) × [0, 2π) plane and as a torus. Darker tones denote high probability zones, while lighter tones indicate low-probability regions. 27 2.2 Example of a two-dimensional TN plotted in the [0, 2π) × [0, 2π) plane and a torus, a unimodal distribution which is a special case of the mGvM. Darker tones denote high probability zones, while lighter tones indicate low-probability regions. 31 2.3 Diagrams outlining how circular prior distributions be combined with different likelihoods yield a multivariate Generalised von Mises posterior.
Recommended publications
  • Contributions to Directional Statistics Based Clustering Methods
    University of California Santa Barbara Contributions to Directional Statistics Based Clustering Methods A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Statistics & Applied Probability by Brian Dru Wainwright Committee in charge: Professor S. Rao Jammalamadaka, Chair Professor Alexander Petersen Professor John Hsu September 2019 The Dissertation of Brian Dru Wainwright is approved. Professor Alexander Petersen Professor John Hsu Professor S. Rao Jammalamadaka, Committee Chair June 2019 Contributions to Directional Statistics Based Clustering Methods Copyright © 2019 by Brian Dru Wainwright iii Dedicated to my loving wife, Carmen Rhodes, without whom none of this would have been possible, and to my sons, Max, Gus, and Judah, who have yet to know a time when their dad didn’t need to work from early till late. And finally, to my mother, Judith Moyer, without your tireless love and support from the beginning, I quite literally wouldn’t be here today. iv Acknowledgements I would like to offer my humble and grateful acknowledgement to all of the wonderful col- laborators I have had the fortune to work with during my graduate education. Much of the impetus for the ideas presented in this dissertation were derived from our work together. In particular, I would like to thank Professor György Terdik, University of Debrecen, Faculty of Informatics, Department of Information Technology. I would also like to thank Professor Saumyadipta Pyne, School of Public Health, University of Pittsburgh, and Mr. Hasnat Ali, L.V. Prasad Eye Institute, Hyderabad, India. I would like to extend a special thank you to Dr Alexander Petersen, who has held the dual role of serving on my Doctoral supervisory commit- tee as well as wearing the hat of collaborator.
    [Show full text]
  • C 2013 Johannes Traa
    c 2013 Johannes Traa MULTICHANNEL SOURCE SEPARATION AND TRACKING WITH PHASE DIFFERENCES BY RANDOM SAMPLE CONSENSUS BY JOHANNES TRAA THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2013 Urbana, Illinois Adviser: Assistant Professor Paris Smaragdis ABSTRACT Blind audio source separation (BASS) is a fascinating problem that has been tackled from many different angles. The use case of interest in this thesis is that of multiple moving and simultaneously-active speakers in a reverberant room. This is a common situation, for example, in social gatherings. We human beings have the remarkable ability to focus attention on a particular speaker while effectively ignoring the rest. This is referred to as the \cocktail party effect” and has been the holy grail of source separation for many decades. Replicating this feat in real-time with a machine is the goal of BASS. Single-channel methods attempt to identify the individual speakers from a single recording. However, with the advent of hand-held consumer electronics, techniques based on microphone array processing are becoming increasingly popular. Multichannel methods record a sound field from various locations to incorporate spatial information. If the speakers move over time, we need an algorithm capable of tracking their positions in the room. For compact arrays with 1-10 cm of separation between the microphones, this can be accomplished by applying a temporal filter on estimates of the directions-of-arrival (DOA) of the speakers. In this thesis, we review recent work on BSS with inter-channel phase difference (IPD) features and provide extensions to the case of moving speakers.
    [Show full text]
  • Wrapped Log Kumaraswamy Distribution and Its Applications
    International Journal of Mathematics and Computer Research ISSN: 2320-7167 Volume 06 Issue 10 October-2018, Page no. - 1924-1930 Index Copernicus ICV: 57.55 DOI: 10.31142/ijmcr/v6i10.01 Wrapped Log Kumaraswamy Distribution and its Applications K.K. Jose1, Jisha Varghese2 1,2Department of Statistics, St.Thomas College, Palai,Arunapuram Mahatma Gandhi University, Kottayam, Kerala- 686 574, India ARTICLE INFO ABSTRACT Published Online: A new circular distribution called Wrapped Log Kumaraswamy Distribution (WLKD) is introduced 10 October 2018 in this paper. We obtain explicit form for the probability density function and derive expressions for distribution function, characteristic function and trigonometric moments. Method of maximum likelihood estimation is used for estimation of parameters. The proposed model is also applied to a Corresponding Author: real data set on repair times and it is established that the WLKD is better than log Kumaraswamy K.K. Jose distribution for modeling the data. KEYWORDS: Log Kumaraswamy-Geometric distribution, Wrapped Log Kumaraswamy distribution, Trigonometric moments. 1. Introduction a test, atmospheric temperatures, hydrological data, etc. Also, Kumaraswamy (1980) introduced a two-parameter this distribution could be appropriate in situations where distribution over the support [0, 1], called Kumaraswamy scientists use probability distributions which have infinite distribution (KD), for double bounded random processes for lower and (or) upper bounds to fit data, where as in reality the hydrological applications. The Kumaraswamy distribution is bounds are finite. Gupta and Kirmani (1988) discussed the very similar to the Beta distribution, but has the important connection between non-homogeneous Poisson process advantage of an invertible closed form cumulative (NHPP) and record values.
    [Show full text]
  • Recent Advances in Directional Statistics
    Recent advances in directional statistics Arthur Pewsey1;3 and Eduardo García-Portugués2 Abstract Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio- temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed. Keywords: Classification; Clustering; Dimension reduction; Distributional
    [Show full text]
  • Chapter 2 Parameter Estimation for Wrapped Distributions
    ABSTRACT RAVINDRAN, PALANIKUMAR. Bayesian Analysis of Circular Data Using Wrapped Dis- tributions. (Under the direction of Associate Professor Sujit K. Ghosh). Circular data arise in a number of different areas such as geological, meteorolog- ical, biological and industrial sciences. We cannot use standard statistical techniques to model circular data, due to the circular geometry of the sample space. One of the com- mon methods used to analyze such data is the wrapping approach. Using the wrapping approach, we assume that, by wrapping a probability distribution from the real line onto the circle, we obtain the probability distribution for circular data. This approach creates a vast class of probability distributions that are flexible to account for different features of circular data. However, the likelihood-based inference for such distributions can be very complicated and computationally intensive. The EM algorithm used to compute the MLE is feasible, but is computationally unsatisfactory. Instead, we use Markov Chain Monte Carlo (MCMC) methods with a data augmentation step, to overcome such computational difficul- ties. Given a probability distribution on the circle, we assume that the original distribution was distributed on the real line, and then wrapped onto the circle. If we can unwrap the distribution off the circle and obtain a distribution on the real line, then the standard sta- tistical techniques for data on the real line can be used. Our proposed methods are flexible and computationally efficient to fit a wide class of wrapped distributions. Furthermore, we can easily compute the usual summary statistics. We present extensive simulation studies to validate the performance of our method.
    [Show full text]
  • A General Approach for Obtaining Wrapped Circular Distributions Via Mixtures
    UC Santa Barbara UC Santa Barbara Previously Published Works Title A General Approach for obtaining wrapped circular distributions via mixtures Permalink https://escholarship.org/uc/item/5r7521z5 Journal Sankhya, 79 Author Jammalamadaka, Sreenivasa Rao Publication Date 2017 Peer reviewed eScholarship.org Powered by the California Digital Library University of California 1 23 Your article is protected by copyright and all rights are held exclusively by Indian Statistical Institute. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Sankhy¯a:TheIndianJournalofStatistics 2017, Volume 79-A, Part 1, pp. 133-157 c 2017, Indian Statistical Institute ! AGeneralApproachforObtainingWrappedCircular Distributions via Mixtures S. Rao Jammalamadaka University of California, Santa Barbara, USA Tomasz J. Kozubowski University of Nevada, Reno, USA Abstract We show that the operations of mixing and wrapping linear distributions around a unit circle commute, and can produce a wide variety of circular models. In particular, we show that many wrapped circular models studied in the literature can be obtained as scale mixtures of just the wrapped Gaussian and the wrapped exponential distributions, and inherit many properties from these two basic models.
    [Show full text]
  • Bivariate Angular Estimation Under Consideration of Dependencies Using Directional Statistics
    Bivariate Angular Estimation Under Consideration of Dependencies Using Directional Statistics Gerhard Kurz1, Igor Gilitschenski1, Maxim Dolgov1 and Uwe D. Hanebeck1 Abstract— Estimation of angular quantities is a widespread issue, but standard approaches neglect the true topology of the problem and approximate directional with linear uncertainties. In recent years, novel approaches based on directional statistics have been proposed. However, these approaches have been unable to consider arbitrary circular correlations between multiple angles so far. For this reason, we propose a novel recursive filtering scheme that is capable of estimating multiple angles even if they are dependent, while correctly describing their circular correlation. The proposed approach is based on toroidal probability distributions and a circular correlation coefficient. We demonstrate the superiority to a standard approach based on the Kalman filter in simulations. Fig. 1: A bivariate wrapped normal probability distribution Index Terms— recursive filtering, wrapped normal, circular on the torus shown as a heat map. correlation coefficient, moment matching. I. INTRODUCTION our knowledge, this is the first work on recursive estimation There are many applications that require estimation of based on toroidal probability distributions. angular quantities. These applications include, but are not It should be noted that there are some directional filters that, limited to, robotics, augmented reality, and aviation, as well in a sense, take correlation between angles into account. We as biology, geology, and medicine. In many cases, not just have performed research on a filter based on the hyperspheri- one, but several angles have to be estimated. Furthermore, cal Bingham distribution [8], [9], which captures correlations correlations may exist between those angles and have to be when estimating rotations represented as quaternions.
    [Show full text]
  • On Wrapped Binomial Model Characteristics
    Mathematics and Statistics 2(7): 231-234, 2014 http://www.hrpub.org DOI: 10.13189/ms.2014.020701 On Wrapped Binomial Model Characteristics S.V.S.Girija1,*, A.V. Dattatreya Rao2, G.V.L.N. Srihari 3 1Mathematics, Hindu College, Guntur, India 2Acharya Nagarjuna University, Guntur, India 3Mathematics, Aurora Engineering College, Bhongir *Corresponding Author: [email protected] Copyright © 2014 Horizon Research Publishing All rights reserved. Abstract In this paper, a new discrete circular model, the latter case, the probability density function f (θ ) the Wrapped Binomial model is constructed by applying the method of wrapping a discrete linear model. The exists and has the following basic properties. characteristic function of the Wrapped Binomial Distribution f (θ ) ≥ 0 is also derived and the population characteristics are studied. 2π Keywords Characteristic Function, Circular Models, ∫ fd(θθ) =1 Trigonometric Moments, Wrapped Models 0 ff(θ) =( θπ + 2 k) , for any integer k, That is , f (θ ) is periodic with period 2.π 1. Introduction 2.1. Wrapped Discrete Circular Random Variables Circular or directional data arise in many diverse fields, such as Biology, Geology, Physics, Meteorology, and If X is a discrete random variable on the set of integers, + psychology, Medicine, Image Processing, Political Science, then reduction modulo 2π mm( ∈ ) wraps the integers Economics and Astronomy (Mardia and Jupp (2000). on to the group of mth roots of unity which is a sub group of Wrapped circular models (Girija (2010)), stereographic unit circle. circular models (Phani (2013)) and Offset circular models i.e. Φ=2ππxm( mod 2 ) (Radhika (2014)) provide a rich and very useful class of models for circular as well as l-axial data.
    [Show full text]
  • Package 'Directional'
    Package ‘Directional’ May 26, 2021 Type Package Title A Collection of R Functions for Directional Data Analysis Version 5.0 URL Date 2021-05-26 Author Michail Tsagris, Giorgos Athineou, Anamul Sajib, Eli Amson, Micah J. Waldstein Maintainer Michail Tsagris <[email protected]> Description A collection of functions for directional data (including massive data, with millions of ob- servations) analysis. Hypothesis testing, discriminant and regression analysis, MLE of distribu- tions and more are included. The standard textbook for such data is the ``Directional Statis- tics'' by Mardia, K. V. and Jupp, P. E. (2000). Other references include a) Phillip J. Paine, Si- mon P. Preston Michail Tsagris and Andrew T. A. Wood (2018). An elliptically symmetric angu- lar Gaussian distribution. Statistics and Computing 28(3): 689-697. <doi:10.1007/s11222-017- 9756-4>. b) Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis meth- ods on the sphere. Communications in Statistics: Case Studies, Data Analysis and Applica- tions 5(4):467--491. <doi:10.1080/23737484.2019.1684854>. c) P. J. Paine, S. P. Pre- ston, M. Tsagris and Andrew T. A. Wood (2020). Spherical regression models with general co- variates and anisotropic errors. Statistics and Computing 30(1): 153--165. <doi:10.1007/s11222- 019-09872-2>. License GPL-2 Imports bigstatsr, parallel, doParallel, foreach, RANN, Rfast, Rfast2, rgl RoxygenNote 6.1.1 NeedsCompilation no Repository CRAN Date/Publication 2021-05-26 15:20:02 UTC R topics documented: Directional-package . .4 A test for testing the equality of the concentration parameters for ciruclar data . .5 1 2 R topics documented: Angular central Gaussian random values simulation .
    [Show full text]
  • Detecting the Direction of a Signal on High-Dimensional Spheres: Non-Null
    Noname manuscript No. (will be inserted by the editor) Detecting the direction of a signal on high-dimensional spheres Non-null and Le Cam optimality results Davy Paindaveine · Thomas Verdebout Received: date / Accepted: date Abstract We consider one of the most important problems in directional statistics, namely the problem of testing the null hypothesis that the spike direction θ of a Fisher{von Mises{Langevin distribution on the p-dimensional unit hypersphere is equal to a given direction θ0. After a reduction through invariance arguments, we derive local asymptotic normality (LAN) results in a general high-dimensional framework where the dimension pn goes to infinity at an arbitrary rate with the sample size n, and where the concentration κn behaves in a completely free way with n, which offers a spectrum of problems ranging from arbitrarily easy to arbitrarily challenging ones. We identify vari- ous asymptotic regimes, depending on the convergence/divergence properties of (κn), that yield different contiguity rates and different limiting experiments. In each regime, we derive Le Cam optimal tests under specified κn and we com- pute, from the Le Cam third lemma, asymptotic powers of the classical Watson test under contiguous alternatives. We further establish LAN results with re- spect to both spike direction and concentration, which allows us to discuss optimality also under unspecified κn. To investigate the non-null behavior of the Watson test outside the parametric framework above, we derive its local Research is supported by the Program of Concerted Research Actions (ARC) of the Univer- sit´elibre de Bruxelles, by a research fellowship from the Francqui Foundation, and by the Cr´editde Recherche J.0134.18 of the FNRS (Fonds National pour la Recherche Scientifique), Communaut´eFran¸caisede Belgique.
    [Show full text]
  • A General Setting for Symmetric Distributions and Their Relationship to General Distributions
    Accepted Manuscript A general setting for symmetric distributions and their relationship to general distributions P.E. Jupp, G. Regoli, A. Azzalini PII: S0047-259X(16)00033-6 DOI: http://dx.doi.org/10.1016/j.jmva.2016.02.011 Reference: YJMVA 4090 To appear in: Journal of Multivariate Analysis Received date: 30 May 2015 Please cite this article as: P.E. Jupp, G. Regoli, A. Azzalini, A general setting for symmetric distributions and their relationship to general distributions, Journal of Multivariate Analysis (2016), http://dx.doi.org/10.1016/j.jmva.2016.02.011 This is a PDF file of an unedited manuscript that has been accepted for publication. Asa service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. *Manuscript Click here to download Manuscript: asymmetryR3_120216(red).pdf Click here to view linked References A general setting for symmetric distributions and their relationship to general distributions a, b c P.E. Jupp ∗, G. Regoli , A. Azzalini aSchool of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, UK bDipartimento di Matematica e Informatica, Universit`adi Perugia, 06123 Perugia, Italy cDipartimento di Scienze Statistiche, Universit`adi Padova, 35121 Padova, Italy Abstract A standard method of obtaining non-symmetrical distributions is that of modulating symmetrical distributions by multiplying the densities by a per- turbation factor.
    [Show full text]
  • On Some Circular Distributions Induced by Inverse Stereographic Projection
    On Some Circular Distributions Induced by Inverse Stereographic Projection Shamal Chandra Karmaker A Thesis for The Department of Mathematics and Statistics Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (Mathematics) at Concordia University Montr´eal, Qu´ebec, Canada November 2016 c Shamal Chandra Karmaker 2016 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Shamal Chandra Karmaker Entitled: On Some Circular Distributions Induced by Inverse Stereographic Projection and submitted in partial fulfillment of the requirements for the degree of Master of Science (Mathematics) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: Examiner Dr. Arusharka Sen Examiner Dr. Wei Sun Thesis Supervisor Dr. Y.P. Chaubey Thesis Co-supervisor Dr. L. Kakinami Approved by Chair of Department or Graduate Program Director Dean of Faculty Date Abstract On Some Circular Distributions Induced by Inverse Stereographic Projection Shamal Chandra Karmaker In earlier studies of circular data, mostly circular distributions were considered and many biological data sets were assumed to be symmetric. However, presently inter- est has increased for skewed circular distributions as the assumption of symmetry may not be meaningful for some data. This thesis introduces three skewed circular models based on inverse stereographic projection, introduced by Minh and Farnum (2003), by considering three different versions of skewed-t considered in the litera- ture, namely Azzalini skewed-t, two-piece skewed-t and Jones and Faddy skewed-t. Shape properties of the resulting distributions along with estimation of parameters using maximum likelihood are discussed in this thesis.
    [Show full text]