Atmospheric Temperature and CO2: Hen-Or-Egg Causality?

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Article Atmospheric Temperature and CO2: Hen-Or-Egg Causality? Demetris Koutsoyiannis 1,* and Zbigniew W. Kundzewicz 2 1 Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 157 80 Athens, Greece 2 Institute for Agricultural and Forest Environment, Polish Academy of Sciences, 60-809 Pozna´n,Poland; [email protected] * Correspondence: [email protected] Received: 7 September 2020; Accepted: 16 November 2020; Published: 25 November 2020 Abstract: It is common knowledge that increasing CO2 concentration plays a major role in enhancement of the greenhouse effect and contributes to global warming. The purpose of this study is to complement the conventional and established theory, that increased CO2 concentration due to human emissions causes an increase in temperature, by considering the reverse causality. Since increased temperature causes an increase in CO2 concentration, the relationship of atmospheric CO2 and temperature may qualify as belonging to the category of “hen-or-egg” problems, where it is not always clear which of two interrelated events is the cause and which the effect. We examine the relationship of global temperature and atmospheric carbon dioxide concentration in monthly time steps, covering the time interval 1980–2019 during which reliable instrumental measurements are available. While both causality directions exist, the results of our study support the hypothesis that the dominant direction is T CO . Changes in CO follow changes in T by about six months on ! 2 2 a monthly scale, or about one year on an annual scale. We attempt to interpret this mechanism by involving biochemical reactions as at higher temperatures, soil respiration and, hence, CO2 emissions, are increasing. Keywords: temperature; global warming; greenhouse gases; atmospheric CO2 concentration Póτερoν ἡ ὄρνις πρóτερoν « τὸ ᾠὸν ἐγèνετo (Which of the two came first, the hen or the egg?). Pλoύταρχo&,Hθικά, Sυµπoσιακὰ B, Pρóβληµα G (Plutarch, Moralia, Quaestiones convivales, B, Question III). 1. Introduction The phrase “hen-or-egg” is a metaphor describing situations where it is not clear which of two interrelated events or processes is the cause and which the effect. Plutarch was the first to pose this type of causality as a philosophical problem using the example of the hen and the egg, as indicated in the motto above. We note that in the original Greek text, “ἡ ὄρνι&” is feminine (article and noun), meaning the hen rather than the chicken. Therefore, here, we preferred the form “hen-or-egg” over “chicken-or-egg”, which is more common in English (Very often, in online Greek texts, e.g., [1,2], “ἡ ὄρνι&” appears as “ἡ ἄρνι&”. After extended searching, we contend that this must be an error, either an old one in copying of manuscripts, e.g., by monks in monasteries, or a modern one, e.g., in OCR. We are confident that the correct word is “ὄρνι&”). The objective of the paper is to demonstrate that the relationship of atmospheric CO2 and temperature may qualify as belonging to the category of “hen-or-egg” problems. First, we discuss the relationship between temperature and CO2 concentration by revisiting intriguing results from Sci 2020, 2, 83; doi:10.3390/sci2040083 www.mdpi.com/journal/sci SciSci2020 2020, ,2 3,, 83 x FOR PEER REVIEW 22 of of 33 33 data-based palaeoclimatic studies, where the change in temperature leads and the change in CO₂ proxyconcentration data-based follows. palaeoclimatic Next, we studies, discuss where the data thebases change of in modern temperature (instrumental) leads and measurements the change in COrelated2 concentration to global temperature follows. Next, and we atmospheric discuss the CO databases₂ concentration of modern and (instrumental) introduce a methodology measurements to relatedanalyse to them. global We temperature develop a stochastic and atmospheric framework, CO2 introducingconcentration useful and notions introduce of time a methodology irreversibility to analyseand system them. causality We develop while a stochastic we discuss framework, the logical introducing and technical useful notionscomplications of time irreversibilityin identifying andcausality, system which causality prompt while us we to discussseek just the necessary, logical and rather technical than complicationssufficient, causality in identifying conditions. causality, In the whichResults prompt section, us we to examine seek just the necessary, relationship rather of th thanese sutwoffi cient,quantities causality using conditions.the modern Indata, the available Results section,at the monthly we examine time the step. relationship We juxtapose of these time two se quantitiesries of global using temperature the modern and data, atmospheric available at CO the₂ monthlyconcentration time step. from We several juxtapose sources, time series covering of global the temperature common andtime atmospheric interval 1980–2019. CO2 concentration In our frommethodology, several sources, it is the covering timing therather common than the time ma intervalgnitude 1980–2019. of changes In that our is methodology, important, being it is thethe timingdeterminant rather thanof causality. the magnitude While oflogical, changes physic thatally is important, based arguments being the support determinant the “hen-or-egg” of causality. Whilehypothesis, logical, indicating physically that based both arguments causality directions support the exist, “hen-or-egg” interpretation hypothesis, of cross-correlations indicating that of both time causalityseries of directionsglobal temperature exist, interpretation and atmospheric of cross-correlations CO₂ suggests ofthat time the series dominant of global direction temperature is T → CO and₂, atmospheric CO suggests that the dominant direction is T CO , i.e., the change in temperature leads i.e., the change2 in temperature leads and the change in! CO₂ concentration2 follows. We attempt to andinterpret the change this latter in CO mechanism2 concentration by noting follows. the We posi attempttive feedback to interpret loop—higher this latter temperatures mechanism by increase noting thesoil positive respiration feedback and, hence, loop—higher CO₂ emissions. temperatures increase soil respiration and, hence, CO2 emissions. TheThe analysisanalysis reported in in this this paper paper was was prom promptedpted by byobservation observation of an of unexpected an unexpected (and (andunfortunate) unfortunate) real-world real-world experiment: experiment: during during the theCOVID-19 COVID-19 lockdown lockdown in in 2020, 2020, despitedespite thethe unprecedentedunprecedented decreasedecrease inin carboncarbon emissionsemissions (Figure(Figure1 ),1), there there was was an an increase increase in in atmospheric atmospheric CO CO2₂ concentration,concentration, whichwhich followed a pattern pattern similar similar to to previous previous years years (Figure (Figure 2).2). Indeed, Indeed, according according to tothe theInternational International Energy Energy Agency Agency (IEA) (IEA) [3], global [3], global CO₂ emissions CO2 emissions were over were 5% over lower 5% in lower the first in the quarter first quarterof 2020 ofthan 2020 in thanthat of in 2019, that of mainly 2019, mainlydue to an due 8% to decline an 8% declinein emissions in emissions from coal, from 4.5% coal, from 4.5% oil, from and oil,2.3% and from 2.3% natural from gas. natural According gas. According to other estimates to other estimates[4], the decrease [4], the is decrease even higher: is even the higher:daily global the dailyCO₂ emissions global CO decreased2 emissions by decreased17% by early by April 17% by 2020 early compared April 2020 with compared the mean with2019 levels, the mean while 2019 for levels,the whole while 2020, for the a decrease whole 2020, between a decrease 4% and between 7% is 4%predicted. and 7% Despite is predicted. that, as Despite seen in that, Figure as seen 2, the in Figurenormal2, pattern the normal of atmospheric pattern of atmosphericCO₂ concentration CO 2 concentration (increase until (increase May and until decrease May in and June decrease and July) in Junedid not and change. July) did Similar not change. was the Similar behaviour was the after behaviour the 2008–2009 after the financial 2008–2009 crisis, financial but the crisis, most but recent the mostsituation recent is situationmore characteristic is more characteristic because the because COVID-19 the COVID-19decline in 2020 decline is the in 2020most is severe the most ever, severe even ever,when even considering when considering the periods the corresponding periods corresponding to World Wars. to World It is also Wars. noteworthy It is also noteworthythat, as shown that, in asFigure shown 1, in there Figure are1, therethree areconsecutive three consecutive years in years the in2010s the 2010swhere where there there are areno nomajor major increases, increases, in inemissions emissions while while there there was was an an increase increase in in CO CO₂ 2concentration.concentration. (At (At first first glance, glance, this this does notnot soundsound reasonablereasonable and and we we have have therefore therefore cross-checked cross-checked the datathe withdata otherwith sources,other sources, namely namely the Global the Carbon Global AtlasCarbon [5], Atlas and the [5], database and the of database Our World of InOur Data World [6]; weIn foundData [6]; only we slight found di ffonlyerences.) slight Interestingly, differences.) FigureInterestingly,1 also shows Figure a 1 rapid also
Recommended publications
  • Global Warming Climate Records

    Global Warming Climate Records

    ATM S 111: Global Warming Climate Records Jennifer Fletcher Day 24: July 26 2010 Reading For today: “Keeping Track” (Climate Records) pp. 171-192 For tomorrow/Wednesday: “The Long View” (Paleoclimate) pp. 193-226. The Instrumental Record from NASA Global temperature since 1880 Ten warmest years: 2001-2009 and 1998 (biggest El Niño ever) Separation into Northern/ Southern Hemispheres N. Hem. has warmed more (1o C vs 0.8o C globally) S. Hem. has warmed more steadily though Cooling in the record from 1940-1975 essentially only in the N. Hem. record (this is likely due to aerosol cooling) Temperature estimates from other groups CRUTEM3 (RG calls this UEA) NCDC (RG calls this NOAA) GISS (RG calls this NASA) yet another group Surface air temperature over land Thermometer between 1.25-2 m (4-6.5 ft) above ground White colored to reflect away direct sunlight Slats to ensure fresh air circulation “Stevenson screen”: invented by Robert Louis Stevenson’s dad Thomas Yearly average Central England temperature record (since 1659) Temperatures over Land Only NASA separates their analysis into land station data only (not including ship measurements) Warming in the station data record is larger than in the full record (1.1o C as opposed to 0.8o C) Sea surface temperature measurements Standard bucket Canvas bucket Insulated bucket (~1891) (pre WWII) (now) “Bucket” temperature: older style subject to evaporative cooling Starting around WWII: many temperature measurements taken from condenser intake pipe instead of from buckets. Typically 0.5 C warmer
  • Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau

    Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau

    atmosphere Article Atmospheric Thermal and Dynamic Vertical Structures of Summer Hourly Precipitation in Jiulong of the Tibetan Plateau Yonglan Tang 1, Guirong Xu 1,*, Rong Wan 1, Xiaofang Wang 1, Junchao Wang 1 and Ping Li 2 1 Hubei Key Laboratory for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological Administration, Wuhan 430205, China; [email protected] (Y.T.); [email protected] (R.W.); [email protected] (X.W.); [email protected] (J.W.) 2 Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province, Institute of Plateau Meteorology, China Meteorological Administration, Chengdu 610072, China; [email protected] * Correspondence: [email protected]; Tel.: +86-27-8180-4913 Abstract: It is an important to study atmospheric thermal and dynamic vertical structures over the Tibetan Plateau (TP) and their impact on precipitation by using long-term observation at represen- tative stations. This study exhibits the observational facts of summer precipitation variation on subdiurnal scale and its atmospheric thermal and dynamic vertical structures over the TP with hourly precipitation and intensive soundings in Jiulong during 2013–2020. It is found that precipitation amount and frequency are low in the daytime and high in the nighttime, and hourly precipitation greater than 1 mm mostly occurs at nighttime. Weak precipitation during the daytime may be caused by air advection, and strong precipitation at nighttime may be closely related with air convection. Both humidity and wind speed profiles show obvious fluctuation when precipitation occurs, and the greater the precipitation intensity, the larger the fluctuation. Moreover, the fluctuation of wind speed Citation: Tang, Y.; Xu, G.; Wan, R.; Wang, X.; Wang, J.; Li, P.
  • The Measurement of Tropospheric

    The Measurement of Tropospheric

    EPJ Web of Conferences 119,27004 (2016) DOI: 10.1051/epjconf/201611927004 ILRC 27 THE MEASUREMENT OF TROPOSPHERIC TEMPERATURE PROFILES USING RAYLEIGH-BRILLOUIN SCATTERING: RESULTS FROM LABORATORY AND ATMOSPHERIC STUDIES Benjamin Witschas1*, Oliver Reitebuch1, Christian Lemmerz1, Pau Gomez Kableka1, Sergey Kondratyev2, Ziyu Gu3, Wim Ubachs3 1German Aerospace Center (DLR), Institute of Atmospheric Physics, 82234 Oberpfaffenhofen, Germany 2Angstrom Ltd., 630090 Inzhenernaya16, Novosibirsk, Russia 3Department of Physics and Astronomy, LaserLaB, VU University, 1081 HV Amsterdam, Netherlands *Email: [email protected] ABSTRACT are only applicable to stratospheric or meso- In this letter, we suggest a new method for spheric measurements because they can only be measuring tropospheric temperature profiles using applied in air masses that do not contain aerosols, Rayleigh-Brillouin (RB) scattering. We report on or where appropriate fluorescing metal atoms laboratory RB scattering measurements in air, exist. In contrast, Raman lidars can be applied for demonstrating that temperature can be retrieved tropospheric measurements [2]. Nevertheless, it from RB spectra with an absolute accuracy of has to be mentioned that the Raman scattering better than 2 K. In addition, we show temperature cross section is quite low. Thus, powerful lasers, profiles from 2 km to 15.3 km derived from RB sophisticated background filters, or night-time spectra, measured with a high spectral resolution operation are required to obtain reliable results. In lidar during daytime. A comparison with particular, the rotational Raman differential radiosonde temperature measurements shows backscattering cross section (considering Stokes reasonable agreement. In cloud-free conditions, and anti-Stokes branches) is about a factor of 50 the temperature difference reaches up to 5 K smaller than the one of Rayleigh scattering [3].
  • A Simple Lumped Model to Convert Air Temperature Into Surface Water

    A Simple Lumped Model to Convert Air Temperature Into Surface Water

    EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Climate Climate of the Past of the Past Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions Open Access Geoscientific Geoscientific Open Access Instrumentation Instrumentation Methods and Methods and Data Systems Data Systems Discussions Open Access Open Access Geoscientific Geoscientific Model Development Model Development Discussions Open Access Open Access Hydrol. Earth Syst. Sci., 17, 3323–3338, 2013 Hydrology and Hydrology and www.hydrol-earth-syst-sci.net/17/3323/2013/ doi:10.5194/hess-17-3323-2013 Earth System Earth System © Author(s) 2013. CC Attribution 3.0 License. Sciences Sciences Discussions Open Access Open Access Ocean Science Ocean Science Discussions A simple lumped model to convert air temperature into surface Open Access Open Access water temperature in lakes Solid Earth Solid Earth Discussions S. Piccolroaz, M. Toffolon, and B. Majone Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy Open Access Open Access Correspondence to: S. Piccolroaz ([email protected]) The Cryosphere Received: 23 January 2013 – Published in Hydrol. Earth Syst. Sci. Discuss.: 5 March 2013The Cryosphere Discussions Revised: 4 July 2013 – Accepted: 20 July 2013 – Published: 27 August 2013 Abstract. Water temperature in lakes is governed by a com- show remarkable agreement with measurements over the en- plex heat budget, where the estimation of the single fluxes tire data period.
  • Synoptic Atmospheric Conditions, Land Cover, and Equivalent

    Synoptic Atmospheric Conditions, Land Cover, and Equivalent

    Western Kentucky University TopSCHOLAR® Masters Theses & Specialist Projects Graduate School Spring 2017 Synoptic Atmospheric Conditions, Land Cover, and Equivalent Temperature Variations in Kentucky Dorothy Yemaa Na-Yemeh Western Kentucky University, [email protected] Follow this and additional works at: http://digitalcommons.wku.edu/theses Part of the Climate Commons, Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Na-Yemeh, Dorothy Yemaa, "Synoptic Atmospheric Conditions, Land Cover, and Equivalent Temperature Variations in Kentucky" (2017). Masters Theses & Specialist Projects. Paper 1930. http://digitalcommons.wku.edu/theses/1930 This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. SYNOPTIC ATMOSPHERIC CONDITIONS, LAND COVER, AND EQUIVALENT TEMPERATURE VARIATIONS IN KENTUCKY A Thesis Presented to The Graduate Faculty of the Department of Geology and Geography Western Kentucky University Bowling Green, Kentucky In Partial Fulfillment of the Requirements for the Degree Master of Science By Dolly Na-Yemeh May 2017 SYNOPTIC ATMOSPHERIC CONDITIONS, LAND COVER AND EQUIVALENT TEMPERATURE VARIATIONS IN KENTUCKY ACKNOWLEDGMENTS Psalm 9:1 I will give thanks to you, LORD, with all my heart; I will tell of your wonderful deeds. I had the support of many people in the process of earning the M.S. degree in the Department of Geography and Geology at Western Kentucky University. First, I would like to thank my thesis advisor, Dr. Rezaul Mahmood, for his guidance, support, and encouragement throughout this program. The door to Dr.
  • Dry Adiabatic Temperature Lapse Rate

    Dry Adiabatic Temperature Lapse Rate

    ATMO 551a Fall 2010 Dry Adiabatic Temperature Lapse Rate As we discussed earlier in this class, a key feature of thick atmospheres (where thick means atmospheres with pressures greater than 100-200 mb) is temperature decreases with increasing altitude at higher pressures defining the troposphere of these planets. We want to understand why tropospheric temperatures systematically decrease with altitude and what the rate of decrease is. The first order explanation is the dry adiabatic lapse rate. An adiabatic process means no heat is exchanged in the process. For this to be the case, the process must be “fast” so that no heat is exchanged with the environment. So in the first law of thermodynamics, we can anticipate that we will set the dQ term equal to zero. To get at the rate at which temperature decreases with altitude in the troposphere, we need to introduce some atmospheric relation that defines a dependence on altitude. This relation is the hydrostatic relation we have discussed previously. In summary, the adiabatic lapse rate will emerge from combining the hydrostatic relation and the first law of thermodynamics with the heat transfer term, dQ, set to zero. The gravity side The hydrostatic relation is dP = −g ρ dz (1) which relates pressure to altitude. We rearrange this as dP −g dz = = α dP (2) € ρ where α = 1/ρ is known as the specific volume which is the volume per unit mass. This is the equation we will use in a moment in deriving the adiabatic lapse rate. Notice that € F dW dE g dz ≡ dΦ = g dz = g = g (3) m m m where Φ is known as the geopotential, Fg is the force of gravity and dWg is the work done by gravity.
  • Temperature and Relative Humidity Profile Retrieval from Fengyun-3D

    Temperature and Relative Humidity Profile Retrieval from Fengyun-3D

    remote sensing Article Temperature and Relative Humidity Profile Retrieval from Fengyun-3D/HIRAS in the Arctic Region Jingjing Hu 1,2, Yansong Bao 1,2,*, Jian Liu 3, Hui Liu 3 , George P. Petropoulos 4 , Petros Katsafados 4 , Liuhua Zhu 1,2 and Xi Cai 1,2 1 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, CMA Key Laboratory for Aerosol-Cloud-Precipitation, Nanjing University of Information Science & Technology, Nanjing 210044, China; [email protected] (J.H.); [email protected] (L.Z.); [email protected] (X.C.) 2 School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China 3 National Satellite Meteorological Center, Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration, Beijing 100081, China; [email protected] (J.L.); [email protected] (H.L.) 4 Department of Geography, Harokopio University of Athens, EI. Venizelou 70, Kallithea, 17671 Athens, Greece; [email protected] (G.P.P.); [email protected] (P.K.) * Correspondence: [email protected] Abstract: The acquisition of real-time temperature and relative humidity (RH) profiles in the Arctic is of great significance for the study of the Arctic’s climate and Arctic scientific research. However, the operational algorithm of Fengyun-3D only takes into account areas within 60◦N, the innovation of this work is that a new technique based on Neural Network (NN) algorithm was proposed, which can retrieve these parameters in real time from the Fengyun-3D Hyperspectral Infrared Radiation Citation: Hu, J.; Bao, Y.; Liu, J.; Liu, Atmospheric Sounding (HIRAS) observations in the Arctic region.
  • Vertical Stability of the Atmosphere

    Vertical Stability of the Atmosphere

    AVIATION REFERENCE MATERIAL Vertical Stability of the Atmosphere Bureau of Meteorology › Aviation Meteorological Services Vertical motion in the atmosphere is The DALR is the rate at which the largely responsible for turbulence and temperature of a dry (unsaturated) cloud formation. air parcel changes as it ascends or descends through the atmosphere.It The strength of vertical motion is is approximately 3°C per 1000 feet. mostly determined by the vertical stability of the atmosphere. A stable The SALR is the rate at which the atmosphere will tend to resist vertical temperature of a moist (saturated) motion, while an unstable atmosphere air parcel changes as it ascends or will assist it. When the atmosphere descends through the atmosphere. neither resists nor assists vertical The SALR is often taken as 1.5°C per motion it is said to have neutral 1000 feet, although the actual figure stability. varies according to the amount of water vapour present and also the temperature of the air parcel (an air Adiabatic Processes and parcel at a higher temperature can Lapse Rates contain more water vapour than when To explain the concept of stability in at a lower temperature). the atmosphere, it is useful to consider Vertical motion of air is what happens to an imaginary The SALR is less than the DALR an important driver of parcel of air displaced vertically from because as a parcel of saturated air weather. Sometimes rising one level to another. During such ascends and cools, water vapour air is made visible by the displacement it is assumed that condenses into water droplets, development of clouds or the parcel undergoes an adiabatic releasing latent heat into the parcel, which slows the cooling (and helps to by the rising dust in dust process, i.e.
  • Atmosphere Aloft

    Atmosphere Aloft

    Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents who provide nationwide leadership in precollege atmospheric environment education. To support these agents in their teacher training, Project ATMOSPHERE develops and produces teacher’s guides and other educational materials. For further information, and additional background on the American Meteorological Society’s Education Program, please contact: American Meteorological Society Education Program 1200 New York Ave., NW, Ste. 500 Washington, DC 20005-3928 www.ametsoc.org/amsedu This material is based upon work initially supported by the National Science Foundation under Grant No. TPE-9340055. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. © 2012 American Meteorological Society (Permission is hereby granted for the reproduction of materials contained in this publication for non-commercial use in schools on the condition their source is acknowledged.) 2 Foreword This guide has been prepared to introduce fundamental understandings about the guide topic. This guide is organized as follows: Introduction This is a narrative summary of background information to introduce the topic. Basic Understandings Basic understandings are statements of principles, concepts, and information. The basic understandings represent material to be mastered by the learner, and can be especially helpful in devising learning activities in writing learning objectives and test items. They are numbered so they can be keyed with activities, objectives and test items. Activities These are related investigations.
  • A Glossary for Biometeorology

    A Glossary for Biometeorology

    Int J Biometeorol DOI 10.1007/s00484-013-0729-9 ICB 2011 - STUDENTS / NEW PROFESSIONALS A glossary for biometeorology Simon N. Gosling & Erin K. Bryce & P. Grady Dixon & Katharina M. A. Gabriel & Elaine Y.Gosling & Jonathan M. Hanes & David M. Hondula & Liang Liang & Priscilla Ayleen Bustos Mac Lean & Stefan Muthers & Sheila Tavares Nascimento & Martina Petralli & Jennifer K. Vanos & Eva R. Wanka Received: 30 October 2012 /Revised: 22 August 2013 /Accepted: 26 August 2013 # The Author(s) 2013. This article is published with open access at Springerlink.com Abstract Here we present, for the first time, a glossary of berevisitedincomingyears,updatingtermsandaddingnew biometeorological terms. The glossary aims to address the need terms, as appropriate. The glossary is intended to provide a for a reliable source of biometeorological definitions, thereby useful resource to the biometeorology community, and to this facilitating communication and mutual understanding in this end, readers are encouraged to contact the lead author to suggest rapidly expanding field. A total of 171 terms are defined, with additional terms for inclusion in later versions of the glossary as reference to 234 citations. It is anticipated that the glossary will a result of new and emerging developments in the field. S. N. Gosling (*) L. Liang School of Geography, University of Nottingham, Nottingham NG7 Department of Geography, University of Kentucky, Lexington, 2RD, UK KY, USA e-mail: [email protected] E. K. Bryce P. A. Bustos Mac Lean Department of Anthropology, University of Toronto, Department of Animal Science, Universidade Estadual de Maringá Toronto, ON, Canada (UEM), Maringa, Paraná, Brazil P. G. Dixon S.
  • Chapter 4. Atmospheric Temperature and Stability

    Chapter 4. Atmospheric Temperature and Stability

    Chapter 4. Atmospheric Temperature and Stability 4.1 The temperature structure of the atmosphere Most people are familiar with the fact that the temperature of the atmosphere decreases with altitude. The temperature outside a commercial airliner at 12 km (36,000 ft) is typically -40°C or colder. Mountains are often capped with snow and ice, while adjacent valleys are green and lush. In this section we introduce students to the physical principles that explain the decline of atmospheric temperatures aloft and examine the condensation process in clouds and its effects on atmospheric temperature. We then study the concept of stability: what determines whether air is buoyant and convection can take place, or whether the atmosphere is stable and air parcels tend to return to their original altitude when displaced. The circulation in the atmosphere, which is driven to a large extent by convective motions, is discussed in Chapter 5; radiative processes (absorption and reflection of sunlight, thermal radiation (radiant heat)), which also play important roles in determining temperature and climate, are discussed in Chapter 6. Latitude=30N mesosphere Fig. 4.1 Average observed temperature distribution with altitude. The temperature of the stratosphere atmosphere on average in summer is shown for 30° N latitude, along with the names given to the major regions of the atmosphere (troposphere, stratosphere, mesosphere). The upper boundaries of the Altitude (km) troposphere and stratosphere ("tropopause", "stratopause", respectively) are indicated as horizontal lines. troposphere 0 102030405060 220 240 260 280 300 T (K) The lowest region of the atmosphere, up to the first temperature minimum at 12 - 16 km, is known as the troposphere, a name derived from the Greek words tropos, turning, and spaira, ball.
  • Correlation Between Atmospheric Temperature and Soil Temperature: a Case Study for Dhaka, Bangladesh

    Correlation Between Atmospheric Temperature and Soil Temperature: a Case Study for Dhaka, Bangladesh

    Atmospheric and Climate Sciences, 2015, 5, 200-208 Published Online July 2015 in SciRes. http://www.scirp.org/journal/acs http://dx.doi.org/10.4236/acs.2015.53014 Correlation between Atmospheric Temperature and Soil Temperature: A Case Study for Dhaka, Bangladesh Khandaker Iftekharul Islam, Anisuzzaman Khan, Tanaz Islam Department of Civil Engineering, IUBAT─International University of Business Agriculture and Technology, Dhaka, Bangladesh Email: [email protected] Received 15 April 2015; accepted 2 June 2015; published 5 June 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The main intention of this study was to substantiate the relation between atmospheric tempera- ture and soil temperature within a system boundary. The study focused on coefficient of correla- tion that demonstrates the association between two variables. The earth surface temperature is anticipated to be affected by a set of meteorological parameters. Atmospheric temperature, hu- midity, precipitation and solar radiation directly influence the adjacent soil and the extent of im- pact must be varied at different part of the earth because of multiple factors. The primary step to validate the correlation was to collect two series of data for two variables i.e. atmospheric tem- perature and soil temperature of last ten years from 2003 to 2012. The coefficient of correlation was determined through Pearson’s distribution whereas atmospheric temperature was consi- dered as independent and soil temperature was dependent variable. The coefficients were calcu- lated distinctly taking the soil temperature not only at several depths but also at separate faces of a day commensurate to overlying air temperature.