Niobium in Tool Steels and Cemented Carbides
NIOBIUM IN TOOL STEELS AND CEMENTED CARBIDES Franz Jeglitsch Institute for Physical Metallurgy and Materials Testing University of Leoben Franz-Josef-Strasse 18 8700 Leoben, Austria Abstract Niobium is an element of high affinity towards carbon and forms a very stable carbide. Therefore it is well suited as a carbide-forming alloying element in the production of tool steels and hard metal alloys. This paper first deals with the metallurgical fundamentals, such as the influence of niobium on the solidification behaviour of high speed steels, segregation of the MC-carbides during solidification, effect of the solidification rate on the precipitation of mono- carbides, solubility of niobium in austenite, effect on secondary hardness, M2C decomposition and methods for the achievement of higher niobium-contents in high-speed steels. In a second part selected examples of use are referred to in the categories of high speed steels, hot working tool steels, cold working tool steels and steels for plastic moulds. A short summary of niobium in cemented carbide completes the paper. Introduction Niobium is an element in group 5a of the periodic table and, as do the elements vanadium and tantalum of the same group and the elements of groups 4a and 6a, it forms, together with small atomic elements such as carbon, nitrogen, boron and silicon, very stable carbides, nitrides, borides and silicides, which are classified as hard metal alloys. The hard metal alloys (and also NbC) are mainly metallically bonded, have free electrons with overlapping valence - and conduction band and are suitable electrical and thermal conductors. Their high bond energy results in a high modulus of elasticity and a high melting point.
[Show full text]