Genome-Wide Targeting of the Epigenetic Regulatory Protein CTCF
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ZMYND10 Functions in a Chaperone Relay During Axonemal Dynein Assembly
bioRxiv preprint doi: https://doi.org/10.1101/233718; this version posted December 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 ZMYND10 functions in a chaperone relay during axonemal dynein assembly. 2 3 Girish R Mali1,9 , Patricia Yeyati1, Seiya Mizuno2, Margaret A Keighren1, Petra zur Lage3, Amaya 4 Garcia-Munoz4, Atsuko Shimada5, Hiroyuki Takeda5, Frank Edlich6, Satoru Takahashi2,7, Alex von 5 Kreigsheim4,8, Andrew Jarman3 and Pleasantine Mill1,*. 6 7 1. MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of 8 Edinburgh, Edinburgh, UK, EH4 2XU 9 2. Laboratory Animal Resource Centre, University of Tsukuba, Tsukuba, Japan, 305-8575 10 3. Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK, EH8 9XD 11 4. Systems Biology Ireland, University College Dublin, Dublin, Ireland 12 5. Department of Biological Sciences, University of Tokyo, Tokyo, Japan, 113-0033 13 6. Institute for Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany, 14 79104 15 7. Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, 16 Japan, 305-8575 17 8. Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University 18 of Edinburgh, Edinburgh, UK, EH4 2XU 19 9. Current address: MRC Laboratory of Molecular Biology, Cambridge, UK, CB2 0QH 20 * Corresponding author: [email protected] 21 22 23 24 25 26 27 28 29 30 31 1 bioRxiv preprint doi: https://doi.org/10.1101/233718; this version posted December 13, 2017. -
The Myotonic Dystrophy Locus
J Med Genet: first published as 10.1136/jmg.28.2.84 on 1 February 1991. Downloaded from 848 Med Genet 1991; 28: 84-88 Identification of new DNA markers close to the myotonic dystrophy locus J D Brook, H G Harley, K V Walsh, S A Rundle, M J Siciliano, P S Harper, D J Shaw Abstract dominant condition with a prevalence of 1 in 8000. The most useful markers for the prenatal diagnosis The DM gene is located on the long arm of of myotonic dystrophy (DM) are APOC2 and chromosome 19 within the interval 19q13.2-19q13.3. CKM, both of which map proximal to DM. In order Recently, a consensus order for markers in this region to produce other markers useful for DM, we have has emerged, which reads from centromere to telo- screened genomic DNA libraries constructed from mere: BCL3-APOC2-CKM-ERCCI-DM-D19SSO- cell line 20XP3542-1-4, which contains 20 to 30 Mb D19S22.25 On the proximal side of DM, CKM and of human material including APOC2 and CKM. ERCCI map to the same 300 kb NotI fragment.6 For Of 51 human clones identified, seven map to ERCCI few linkage data are available, as no con- chromosome 17, four to chromosome 8, and nine to ventional RFLPs have been documented. CKM chromosome 19, and the remaining 31 were excluded is closely linked to DM with a Omax of 0-02 (Zmax= from chromosome 19 but not localised further. 22 20) and a -1 lod support interval of 0 to 0 05. -
Robert Miller CTN, Matthew Miller Nutrigenetic Research Institute, Ephrata, PA, United States
Increased Genetic Variants Found in Acetylation & Lipid Synthesis Genes in Chronic Lyme Disease Patients (Phase V) Robert Miller CTN, Matthew Miller NutriGenetic Research Institute, Ephrata, PA, United States Some patients with Lyme disease do not respond well to treatment: it has been hypothesized this may be due to difficulty with detoxification and inflammation. Xenobiotics such as plastics, industrial chemicals, drugs, pesticides, fragrances, and environmental pollutants need to be detoxified by the body [1]. Phase I CYP450 enzymes and Phase II conjugation pathways are needed to eliminate these toxins through the urine, bile, and stool [2]. The balance between protein acetylation and deacetylation plays a critical role in the regulation of gene expression, signaling pathways, and affects a large range of cellular processes, many related to detoxification. Acetylation is the Phase II Conjugation Reaction process of introducing an acetyl functional group (acetyl-CoA) onto a chemical compound by N-Acetyltransferase (NAT). Acetylation can alter gene expression epigenetically. Acetylation is an important route of metabolism for xenobiotics [3]. Deacetylation is the removal of an acetyl group. For proper acetylation, there needs to be an adequate supply of acetyl-CoA. The PANK genes are responsible for catalyzing the ATP- dependent phosphorylation of pantothenate (vitamin B5) to create 4′-phosphopantothenate, which is needed to create adequate Acetyl- CoA [4]. The NAT enzymes are responsible for carrying out acetylation of the xenobiotics [5]. Acetyl-CoA is also needed for the expression of Nrf2 and ARE (Antioxidant Response Element), which make glutathione for the conjugation of xenobiotics [6]. The ACAT2 gene is an enzyme involved in lipid metabolism, which results in the creation of hormones, DHEA, and cortisol [7]. -
Investigation of Copy Number Variations on Chromosome 21 Detected by Comparative Genomic Hybridization
Li et al. Molecular Cytogenetics (2018) 11:42 https://doi.org/10.1186/s13039-018-0391-3 RESEARCH Open Access Investigation of copy number variations on chromosome 21 detected by comparative genomic hybridization (CGH) microarray in patients with congenital anomalies Wenfu Li, Xianfu Wang and Shibo Li* Abstract Background: The clinical features of Down syndrome vary among individuals, with those most common being congenital heart disease, intellectual disability, developmental abnormity and dysmorphic features. Complex combination of Down syndrome phenotype could be produced by partially copy number variations (CNVs) on chromosome 21 as well. By comparing individual with partial CNVs of chromosome 21 with other patients of known CNVs and clinical phenotypes, we hope to provide a better understanding of the genotype-phenotype correlation of chromosome 21. Methods: A total of 2768 pediatric patients sample collected at the Genetics Laboratory at Oklahoma University Health Science Center were screened using CGH Microarray for CNVs on chromosome 21. Results: We report comprehensive clinical and molecular descriptions of six patients with microduplication and seven patients with microdeletion on the long arm of chromosome 21. Patients with microduplication have varied clinical features including developmental delay, microcephaly, facial dysmorphic features, pulmonary stenosis, autism, preauricular skin tag, eye pterygium, speech delay and pain insensitivity. We found that patients with microdeletion presented with developmental delay, microcephaly, intrauterine fetal demise, epilepsia partialis continua, congenital coronary anomaly and seizures. Conclusion: Three patients from our study combine with four patients in public database suggests an association between 21q21.1 microduplication of CXADR gene and patients with developmental delay. One patient with 21q22.13 microdeletion of DYRK1A shows association with microcephaly and scoliosis. -
Proteomics Provides Insights Into the Inhibition of Chinese Hamster V79
www.nature.com/scientificreports OPEN Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment Jifeng Liu1,2, Tengfei Ma1,2, Mingzhong Gao3, Yilin Liu4, Jun Liu1, Shichao Wang2, Yike Xie2, Ling Wang2, Juan Cheng2, Shixi Liu1*, Jian Zou1,2*, Jiang Wu2, Weimin Li2 & Heping Xie2,3,5 As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment afecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the efect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and diferentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable diference between the two laboratories, whereby γ ray dose rate was signifcantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g. -
Supplemental Table 1. Complete Gene Lists and GO Terms from Figure 3C
Supplemental Table 1. Complete gene lists and GO terms from Figure 3C. Path 1 Genes: RP11-34P13.15, RP4-758J18.10, VWA1, CHD5, AZIN2, FOXO6, RP11-403I13.8, ARHGAP30, RGS4, LRRN2, RASSF5, SERTAD4, GJC2, RHOU, REEP1, FOXI3, SH3RF3, COL4A4, ZDHHC23, FGFR3, PPP2R2C, CTD-2031P19.4, RNF182, GRM4, PRR15, DGKI, CHMP4C, CALB1, SPAG1, KLF4, ENG, RET, GDF10, ADAMTS14, SPOCK2, MBL1P, ADAM8, LRP4-AS1, CARNS1, DGAT2, CRYAB, AP000783.1, OPCML, PLEKHG6, GDF3, EMP1, RASSF9, FAM101A, STON2, GREM1, ACTC1, CORO2B, FURIN, WFIKKN1, BAIAP3, TMC5, HS3ST4, ZFHX3, NLRP1, RASD1, CACNG4, EMILIN2, L3MBTL4, KLHL14, HMSD, RP11-849I19.1, SALL3, GADD45B, KANK3, CTC- 526N19.1, ZNF888, MMP9, BMP7, PIK3IP1, MCHR1, SYTL5, CAMK2N1, PINK1, ID3, PTPRU, MANEAL, MCOLN3, LRRC8C, NTNG1, KCNC4, RP11, 430C7.5, C1orf95, ID2-AS1, ID2, GDF7, KCNG3, RGPD8, PSD4, CCDC74B, BMPR2, KAT2B, LINC00693, ZNF654, FILIP1L, SH3TC1, CPEB2, NPFFR2, TRPC3, RP11-752L20.3, FAM198B, TLL1, CDH9, PDZD2, CHSY3, GALNT10, FOXQ1, ATXN1, ID4, COL11A2, CNR1, GTF2IP4, FZD1, PAX5, RP11-35N6.1, UNC5B, NKX1-2, FAM196A, EBF3, PRRG4, LRP4, SYT7, PLBD1, GRASP, ALX1, HIP1R, LPAR6, SLITRK6, C16orf89, RP11-491F9.1, MMP2, B3GNT9, NXPH3, TNRC6C-AS1, LDLRAD4, NOL4, SMAD7, HCN2, PDE4A, KANK2, SAMD1, EXOC3L2, IL11, EMILIN3, KCNB1, DOK5, EEF1A2, A4GALT, ADGRG2, ELF4, ABCD1 Term Count % PValue Genes regulation of pathway-restricted GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, SMAD protein phosphorylation 9 6.34 1.31E-08 ENG pathway-restricted SMAD protein GDF3, SMAD7, GDF7, BMPR2, GDF10, GREM1, BMP7, LDLRAD4, phosphorylation -
Evidence for a Tumor Suppressor Gene on Chromosome 19Q Associated with Human Astrocytomas, Oligodendrogliomas, and Mixed Gliomas1
(CANCER RESEARCH 52. 4277-4279, August 1. 1992| Advances in Brief Evidence for a Tumor Suppressor Gene on Chromosome 19q Associated with Human Astrocytomas, Oligodendrogliomas, and Mixed Gliomas1 Andreas von Deimling,2 David N. Louis,3 Klaus von Ammon, Iver Petersen, Otmar D. Wiestier, and Bernd R. Seizinger Molecular Neuro-Oncology Laboratory and Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129 [A. v. D., D. N. L,, B. R. S.J; Department of Pathology (Neuropathology), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 ¡D.N. L.J; Department of Neurosurgery, University of Zürich,Raemistrasse 100, CH-8091 Zürich,Switzerland ¡K.v. A.]; and Laboratory of Neuropathology, Department of Pathology, University of Zurich, Schmelzbergstrasse 12, CH-8091 Zürich,Switzerland [L P., O. D. W.¡ Abstract is unique to fibrillary astrocytomas and Oligodendrogliomas, and whether a putative tumor suppressor gene locus exists on Previous studies have shown frequent allelic losses of chromosomes the long arm of chromosome 19, we evaluated 122 glial tumors 9p, 10, 17p, and 22q in glial tumors. Other researchers have briefly for LOH events on chromosome 19. reported that glial tumors may also show allelic losses of chromosome 19, suggesting a putative tumor suppressor gene locus on this chromo Materials and Methods some (D. T. Ransom et al., Proc. Am. Assoc. Cancer Res., 32: 302, 1991). To evaluate whether loss of chromosome 19 alÃelesis common in Tissue Specimens and Histopathology. Tumor and blood samples glial tumors of different types and grades, we performed Southern blot were obtained from 116 patients treated at the Massachusetts General restriction fragment length polymorphism analysis for multiple chro Hospital (Boston, MA) and at the University Hospital (Zurich, Swit mosome 19 loci in 122 gliomas from 116 patients. -
DYSREGULATION of LONG-CHAIN ACYL-Coa SYNTHETASES in CANCER and THEIR TARGETING STRATEGIES in ANTICANCER THERAPY Md Amir Hossain1, Jun Ma2, Yong Yang1 1
Hossain et al RJLBPCS 2020 www.rjlbpcs.com Life Science Informatics Publications Original Review Article DOI: 10.26479/2020.0603.06 DYSREGULATION OF LONG-CHAIN ACYL-CoA SYNTHETASES IN CANCER AND THEIR TARGETING STRATEGIES IN ANTICANCER THERAPY Md Amir Hossain1, Jun Ma2, Yong Yang1 1. Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China. 2. Ningxia Baoshihua Hospital, Ningxia, China. ABSTRACT: Cancer is a leading cause of death worldwide, and the number of cases globally continues to increase. Cancer is caused by certain changes in genes that are involved in controlling cell functions and cell division. Notably, metabolic dysregulation is one the hallmarks of cancer, and increases in fatty acid metabolism have been demonstrated to promote the growth and survival of a variety of cancers. In human, fatty acids either can be breakdown into acetyl-CoA through catabolic metabolism and aid in ATP generation or in the anabolic metabolism they can incorporate into triacylglycerol and phospholipid. Importantly, both of these pathways need activation of fatty acids, and the key players in this activation of fatty acids are the long-chain acyl-CoA synthetases (ACSLs) that are commonly dysregulated in cancer and associated with oncogenesis and survival. Therefore, it provides a rationale to target ACSLs in cancer. This review summarizes the current understanding of long-chain acyl-CoA synthetases in cancer and their targeting opportunities. KEYWORDS: Acyl-CoA synthetases, cancer, fatty acid, lipid metabolism. Article History: Received: April 15, 2020; Revised: May 10, 2020; Accepted: May 30, 2020. Corresponding Author: Prof. Yong Yang* Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Supplementary Materials
Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine -
Deciphering Pharmacological Mechanism of Buyang Huanwu Decoction for Spinal Cord Injury by Network Pharmacology Approach
Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 9921534, 20 pages https://doi.org/10.1155/2021/9921534 Research Article Deciphering Pharmacological Mechanism of Buyang Huanwu Decoction for Spinal Cord Injury by Network Pharmacology Approach Zhencheng Xiong ,1 Feng Yang,1 Wenhao Li,1,2 Xiangsheng Tang,1 Haoni Ma,1 and Ping Yi 1 1Department of Spine Surgery, China-Japan Friendship Hospital, Beijing 100029, China 2Beijing University of Chinese Medicine, Beijing 100029, China Correspondence should be addressed to Ping Yi; [email protected] Received 12 March 2021; Revised 1 April 2021; Accepted 8 April 2021; Published 23 April 2021 Academic Editor: Rajeev K Singla Copyright © 2021 Zhencheng Xiong et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. -e purpose of this study was to investigate the mechanism of action of the Chinese herbal formula Buyang Huanwu Decoction (BYHWD), which is commonly used to treat nerve injuries, in the treatment of spinal cord injury (SCI) using a network pharmacology method. Methods. BYHWD-related targets were obtained by mining the TCMSP and BATMAN-TCM databases, and SCI-related targets were obtained by mining the DisGeNET, TTD, CTD, GeneCards, and MalaCards databases. -e overlapping targets of the abovementioned targets may be potential therapeutic targets for BYHWD anti-SCI. Subsequently, we performed protein-protein interaction (PPI) analysis, screened the hub genes using Cytoscape software, performed Gene Ontology (GO) annotation and KEGG pathway enrichment analysis, and finally achieved molecular docking between the hub proteins and key active compounds. -
Flawed Phospholipid Formation Or Faulty Fatty Acid Oxidation: Determining the Cause of Mitochondrial Dysfunction in Hearts Lacking Acsl1
FLAWED PHOSPHOLIPID FORMATION OR FAULTY FATTY ACID OXIDATION: DETERMINING THE CAUSE OF MITOCHONDRIAL DYSFUNCTION IN HEARTS LACKING ACSL1 Trisha J. Grevengoed A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Nutrition (Biochemistry) in the School of Public Health. Chapel Hill 2015 Approved by: Rosalind A. Coleman Stephen D. Hursting Liza Makowski Leslie V. Parise Steven H. Zeisel © 2015 Trisha J. Grevengoed ALL RIGHTS RESERVED ii ABSTRACT Trisha J. Grevengoed: Fatty acid activation in cardiac mitochondria: The role of ACSL1 in phospholipid formation and remodeling, substrate switching, and autophagic flux (Under the direction of Rosalind A. Coleman) Cardiovascular disease is the number one cause of death worldwide. In the heart, mitochondria provide up to 95% of energy, with most of this energy coming from metabolism of fatty acids (FA). FA must be converted to acyl-CoAs by acyl-CoA synthetases (ACS) before entry into pathways of β- oxidation or glycerolipid synthesis. ACSL1 contributes more than 90% of total cardiac ACSL activity, and mice with an inducible knockout of ACSL1 (Acsl1T-/-) have impaired cardiac FA oxidation. The effects of loss of ACSL1 on mitochondrial respiratory function, phospholipid formation, or autophagic flux have not yet been studied. Acsl1T-/- hearts contained 3-fold more mitochondria with abnormal structure and displayed lower respiratory function. Because ACSL1 exhibited a strong substrate preference for linoleate (18:2), we investigated the composition of mitochondrial phospholipids. Acsl1T-/- hearts contained 83% less tetralinoleoyl-cardiolipin (CL), the major form present in control hearts.