Effect of CO2 Concentration on Uptake and Assimilation of Inorganic Carbon in the Extreme Acidophile Acidithiobacillus Ferrooxidans

Total Page:16

File Type:pdf, Size:1020Kb

Effect of CO2 Concentration on Uptake and Assimilation of Inorganic Carbon in the Extreme Acidophile Acidithiobacillus Ferrooxidans fmicb-10-00603 April 2, 2019 Time: 17:28 # 1 ORIGINAL RESEARCH published: 04 April 2019 doi: 10.3389/fmicb.2019.00603 Effect of CO2 Concentration on Uptake and Assimilation of Inorganic Carbon in the Extreme Acidophile Acidithiobacillus ferrooxidans Mario Esparza1, Eugenia Jedlicki2, Carolina González2, Mark Dopson3 and David S. Holmes2,4* 1 Laboratorio de Biominería, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile, 2 Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago, Chile, 3 Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden, 4 Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile This study was motivated by surprising gaps in the current knowledge of microbial inorganic carbon (Ci) uptake and assimilation at acidic pH values (pH < 3). Particularly striking is the limited understanding of the differences between Ci uptake mechanisms Edited by: in acidic versus circumneutral environments where the Ci predominantly occurs either − Gloria Paz Levicán, as a dissolved gas (CO2) or as bicarbonate (HCO3 ), respectively. In order to gain Universidad de Santiago de Chile, initial traction on the problem, the relative abundance of transcripts encoding proteins Chile involved in Ci uptake and assimilation was studied in the autotrophic, polyextreme Reviewed by: Sabrina Hedrich, acidophile Acidithiobacillus ferrooxidans whose optimum pH for growth is 2.5 using Federal Institute for Geosciences ferrous iron as an energy source, although they are able to grow at pH 5 when and Natural Resources, Germany Kathleen Scott, using sulfur as an energy source. The relative abundance of transcripts of five University of South Florida, operons (cbb1-5) and one gene cluster (can-sulP) was monitored by RT-qPCR and, United States in selected cases, at the protein level by Western blotting, when cells were grown *Correspondence: under different regimens of CO concentration in elemental sulfur. Of particular note David S. Holmes 2 [email protected] was the absence of a classical bicarbonate uptake system in A. ferrooxidans. However, bioinformatic approaches predict that sulP, previously annotated as a sulfate transporter, Specialty section: is a novel type of bicarbonate transporter. A conceptual model of CO fixation was This article was submitted to 2 Extreme Microbiology, constructed from combined bioinformatic and experimental approaches that suggests a section of the journal strategies for providing ecological flexibility under changing concentrations of CO2 and Frontiers in Microbiology provides a portal to elucidating Ci uptake and regulation in acidic conditions. The Received: 02 November 2018 Accepted: 11 March 2019 results could advance the understanding of industrial bioleaching processes to recover Published: 04 April 2019 metals such as copper at acidic pH. In addition, they may also shed light on how Citation: chemolithoautotrophic acidophiles influence the nutrient and energy balance in naturally Esparza M, Jedlicki E, González C, occurring low pH environments. Dopson M and Holmes DS (2019) Effect of CO2 Concentration on Keywords: CO2 fixation, CCM, carbon concentration mechanism, Acidithiobacillus ferrooxidans, acidic Uptake and Assimilation of Inorganic environment, low pH environment, bicarbonate uptake, RubisCO Carbon in the Extreme Acidophile Acidithiobacillus ferrooxidans. Front. Microbiol. 10:603. Abbreviations: AMD, acid mine drainage; CBB, Calvin–Benson–Bassham; CCM, carbon concentration mechanism; Ci, doi: 10.3389/fmicb.2019.00603 inorganic carbon. Frontiers in Microbiology| www.frontiersin.org 1 April 2019| Volume 10| Article 603 fmicb-10-00603 April 2, 2019 Time: 17:28 # 2 Esparza et al. CO2 Fixation at Extremely Low pH INTRODUCTION In contrast, less is known about Ci uptake and assimilation in extremely acidic environments where the dominant source Acidithiobacillus ferrooxidans is a polyextremophile inhabiting of Ci is the dissolved gas CO2 (Carroll and Mather, 1992; very acidic (pH < 3) and often metal laden environments Cardenas et al., 2010; Valdés et al., 2010; Mangan et al., 2016; that belongs to the Acidithiobacillia class within the WikiVividly, 2018). A. ferrooxidans fixes carbon by the CBB Proteobacteria (Williams and Kelly, 2013). It is an obligate cycle (Esparza et al., 2010). Bioinformatic analyses, EMSA chemolithoautotrophic, mesophilic microorganism that gains assays, and complementation of mutants in the surrogate energy and reducing power by the aerobic oxidation of host Cupriavidus necator (formerly Ralstonia eutropha) have hydrogen, inorganic sulfur compounds, and ferrous iron demonstrated the presence of four operons (cbb1-4) of CBB (Bonnefoy and Holmes, 2012; Dopson and Johnson, 2012) cycle genes in A. ferrooxidans that are involved in Ci uptake and anaerobically via sulfur or formate oxidation coupled to and assimilation. Operons cbb1-3 were shown experimentally reduction of ferric iron (Pronk et al., 1991; Hedrich and Johnson, to be regulated by CbbR, a LysR-family transcription regulator 2013; Osorio et al., 2013). (Esparza et al., 2009, 2010, 2015). In the present study, RNA A. ferrooxidans is one of the most abundant microorganisms transcript and protein abundance profiles were determined for found at ambient temperatures in industrial bioleaching heaps genes present in A. ferrooxidans operons cbb1-4 under different used for the recovery of, e.g., copper (Soto et al., 2013; Vera et al., CO2 concentrations. In addition, a fifth cbb operon (cbb5) 2013; Zhang et al., 2016). It also forms an integral part of natural and a gene cluster predicted to encode a bicarbonate uptake occurring acidic ecosystems such as the Rio Tinto and deep transporter and a carbonic anhydrase were detected and were subsurface in the Iberian pyrite belt (Amils et al., 2014), acidic also evaluated for expression under different CO2 concentration springs, cave systems plus volcanic soils (reviewed in Johnson, regimes. Acquiring this knowledge is important considering 2012; Hedrich and Schippers, 2016), and acid mine drainage the central roles that the CCM and CBB cycle genes play in (AMD) (Chen et al., 2015; Teng et al., 2017). A. ferrooxidans the determination of CO2 fixation and biomass formation in is considered a model species for understanding genetic and extremely acidic environments. metabolic functions reviewed in Cardenas et al., 2016) and survival mechanisms at extremely low pH (Chao et al., 2008) and reviewed in Slonczewski et al.(2009). It has also provided MATERIALS AND METHODS useful information for understanding how microorganisms can contribute to the nutrient and energy balance in bioleaching Bacterial Strains and Culture Conditions heaps (Valdes et al., 2008; Valdés et al., 2010). A. ferrooxidans ATCC 23270 was cultured in 9K medium The dominant source of available inorganic carbon (Ci) (Quatrini et al., 2007) adjusted to pH 3.5 with H2SO4 and ◦ in circumneutral and slightly alkaline environments such as containing 5 g/L elemental sulfur at 30 C under aerobic − terrestrial fresh water and oceans is bicarbonate (HCO 3) with conditions (0.036% CO2). Increased concentrations of CO2 were lower concentrations of dissolved CO2 (Mangan et al., 2016). The obtained by sparging with a mixture of CO2 and air by changing majority of models for prokaryotic Ci uptake and assimilation the ratio of CO2 in the gas mixture. A. ferrooxidans cultures were have been elucidated for organisms, such as cyanobacteria, grown to mid-log phase (Guacucano et al., 2000) as measured by that inhabit these environments (Burnap et al., 2015; Klanchui cell counts using a Neubauer chamber. Cells were rapidly cooled ◦ et al., 2017). Cyanobacteria fix carbon via the Calvin-Benson- on ice and then centrifuged at 800 × g for 5 min at 4 C to remove Bassham (CBB) cycle and use a variety of carbon concentration solid sulfur particles followed by cell capture by centrifugation at × ◦ mechanisms (CCMs) to take up CO2 or bicarbonate and provide 8,000 g for 10 min at 4 C. The cell pellet was re-suspended CO2 to the carbon fixation enzyme, ribulose bisphosphate in ice-cold 9K salt solution for further washing. Total RNA was carboxylase-oxygenase (RubisCO). Five Ci uptake systems have prepared immediately after cell harvesting. been reported including three bicarbonate transporters: BCT1, SbtA, and BicA that vary in affinity and flux for bicarbonate Isolation of RNA and Real-Time and two intracellular CO2 “uptake” systems, that convert CO2, Quantitative PCR (RT-qPCR) Assays passively diffusing into the cell, into bicarbonate (Burnap et al., Total RNA was isolated from A. ferrooxidans cells as described 2015; Klanchui et al., 2017). The transporters vary in affinity previously (Guacucano et al., 2000). The RNA preparations and flux for bicarbonate providing a selective advantage to were treated with DNase I (Fermentas) before proceeding with organisms in environments with a wide dynamic range of the cDNA synthesis step. One microgram of total cellular − HCO3 availability. For example, freshwater b-cyanobacteria RNA was used for each reaction. Real-time quantitative RT- that live at about pH 7 not only use the high affinity SbtA PCR (RT-qPCR) was performed using RevertAid H Minus transporter and the low affinity, high flux BicA transporter Reverse Transcriptase (Fermentas). The sequences of the but also the medium affinity BCT1, an inducible bicarbonate qPCR primers for genes
Recommended publications
  • Taxonomy JN869023
    Species that differentiate periods of high vs. low species richness in unattached communities Species Taxonomy JN869023 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 JN674641 Bacteria; Bacteroidetes; [Saprospirae]; [Saprospirales]; Chitinophagaceae; Sediminibacterium JN869030 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 U51104 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Limnohabitans JN868812 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae JN391888 Bacteria; Planctomycetes; Planctomycetia; Planctomycetales; Planctomycetaceae; Planctomyces HM856408 Bacteria; Planctomycetes; Phycisphaerae; Phycisphaerales GQ347385 Bacteria; Verrucomicrobia; [Methylacidiphilae]; Methylacidiphilales; LD19 GU305856 Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsiales; Pelagibacteraceae GQ340302 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales JN869125 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae New.ReferenceOTU470 Bacteria; Cyanobacteria; ML635J-21 JN679119 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae HM141858 Bacteria; Acidobacteria; Holophagae; Holophagales; Holophagaceae; Geothrix FQ659340 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; auto67_4W AY133074 Bacteria; Elusimicrobia; Elusimicrobia; Elusimicrobiales FJ800541 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; R4-41B JQ346769 Bacteria; Acidobacteria; [Chloracidobacteria]; RB41; Ellin6075
    [Show full text]
  • Molecular Systematics of the Genus Acidithiobacillus: Insights Into the Phylogenetic Structure and Diversification of the Taxon
    ORIGINAL RESEARCH published: 19 January 2017 doi: 10.3389/fmicb.2017.00030 Molecular Systematics of the Genus Acidithiobacillus: Insights into the Phylogenetic Structure and Diversification of the Taxon Harold Nuñez 1 †, Ana Moya-Beltrán 1, 2 †, Paulo C. Covarrubias 1, Francisco Issotta 1, Juan Pablo Cárdenas 3, Mónica González 1, Joaquín Atavales 1, Lillian G. Acuña 1, D. Barrie Johnson 4* and Raquel Quatrini 1* 1 Microbial Ecophysiology Laboratory, Fundación Ciencia & Vida, Santiago, Chile, 2 Faculty of Biological Sciences, Andres Bello University, Santiago, Chile, 3 uBiome, Inc., San Francisco, CA, USA, 4 College of Natural Sciences, Bangor University, Bangor, UK The acidithiobacilli are sulfur-oxidizing acidophilic bacteria that thrive in both natural and anthropogenic low pH environments. They contribute to processes that lead to the generation of acid rock drainage in several different geoclimatic contexts, and their Edited by: Jesse G. Dillon, properties have long been harnessed for the biotechnological processing of minerals. California State University, Long Presently, the genus is composed of seven validated species, described between 1922 Beach, USA and 2015: Acidithiobacillus thiooxidans, A. ferrooxidans, A. albertensis, A. caldus, A. Reviewed by: Daniel Seth Jones, ferrivorans, A. ferridurans, and A. ferriphilus. However, a large number of Acidithiobacillus University of Minnesota, USA strains and sequence clones have been obtained from a variety of ecological niches over Stephanus Nicolaas Venter, the years, and many isolates are thought to vary in phenotypic properties and cognate University of Pretoria, South Africa genetic traits. Moreover, many isolates remain unclassified and several conflicting specific *Correspondence: D. Barrie Johnson assignments muddle the picture from an evolutionary standpoint.
    [Show full text]
  • Thermithiobacillus Tepidarius DSM 3134T, a Moderately Thermophilic, Obligately Chemolithoautotrophic Member of the Acidithiobacillia
    Boden et al. Standards in Genomic Sciences (2016) 11:74 DOI 10.1186/s40793-016-0188-0 SHORT GENOME REPORT Open Access Permanent draft genome of Thermithiobacillus tepidarius DSM 3134T, a moderately thermophilic, obligately chemolithoautotrophic member of the Acidithiobacillia Rich Boden1,2* , Lee P. Hutt1,2, Marcel Huntemann3, Alicia Clum3, Manoj Pillay3, Krishnaveni Palaniappan3, Neha Varghese3, Natalia Mikhailova3, Dimitrios Stamatis3, Tatiparthi Reddy3, Chew Yee Ngan3, Chris Daum3, Nicole Shapiro3, Victor Markowitz3, Natalia Ivanova3, Tanja Woyke3 and Nikos Kyrpides3 Abstract Thermithiobacillus tepidarius DSM 3134T was originally isolated (1983) from the waters of a sulfidic spring entering the Roman Baths (Temple of Sulis-Minerva) at Bath, United Kingdom and is an obligate chemolithoautotroph growing at the expense of reduced sulfur species. This strain has a genome size of 2,958,498 bp. Here we report the genome sequence, annotation and characteristics. The genome comprises 2,902 protein coding and 66 RNA coding genes. Genes responsible for the transaldolase variant of the Calvin-Benson-Bassham cycle were identified along with a biosynthetic horseshoe in lieu of Krebs’ cycle sensu stricto. Terminal oxidases were identified, viz. cytochrome c oxidase (cbb3, EC 1.9.3.1) and ubiquinol oxidase (bd, EC 1.10.3.10). Metalloresistance genes involved in pathways of arsenic and cadmium resistance were found. Evidence of horizontal gene transfer accounting for 5.9 % of the protein-coding genes was found, including transfer from Thiobacillus spp. and Methylococcus capsulatus Bath, isolated from the same spring. A sox gene cluster was found, similar in structure to those from other Acidithiobacillia – by comparison with Thiobacillus thioparus and Paracoccus denitrificans, an additional gene between soxA and soxB was found, annotated as a DUF302-family protein of unknown function.
    [Show full text]
  • Sequence and Evolutionary Analysis of Bacterial
    Sequence and evolutionary analysis of bacterial ribosomal S1 proteins Evgenia Deryusheva1, Andrey Machulin2, Maxim Matyunin3, and Oxana Galzitskaya4 1Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences" 2Institute for Biological Instrumentation, Russian Academy of Sciences 33 Institute of Protein Research, Russian Academy of Sciences 4Institute of Protein Research November 19, 2020 Abstract The multi-domain bacterial S1 protein is the largest and most functionally important ribosomal protein of the 30S subunit, which interacts with both mRNA and proteins. The family of ribosomal S1 proteins differs in the classical sense from a protein with tandem repeats and has a \bead-on-string" organization, where each repeat is folded into a globular domain. Based on our recent data, the study of evolutionary relationships for the bacterial phyla will provide evidence for one of the proposed theories of the evolutionary development of proteins with structural repeats: from multiple repeats of assembles to single repeats, or vice versa. In this comparative analysis of 1333 S1 sequences that were identified in 24 different phyla; we demonstrate how such phyla can independently/dependently form during evolution. To our knowledge, this work is the first study of the evolutionary history of bacterial ribosomal S1 proteins. The collected and structured data can be useful to computer biologists as a resource for determining percent identity, amino acid composition and logo motifs, as well as dN/dS ratio in bacterial S1 protein. The obtained research data suggested that the evolutionary development of bacterial ribosomal proteins S1 evolved from multiple assemblies to single repeat.
    [Show full text]
  • Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2010 Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi South Dakota School of Mines and Technology Shariff Osman Lawrence Berkeley National Laboratory Ravi K. Kukkadapu Pacific Northwest National Laboratory, [email protected] Mark Engelhard Pacific Northwest National Laboratory Parag A. Vaishampayan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Rastogi, Gurdeep; Osman, Shariff; Kukkadapu, Ravi K.; Engelhard, Mark; Vaishampayan, Parag A.; Andersen, Gary L.; and Sani, Rajesh K., "Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota" (2010). US Department of Energy Publications. 170. https://digitalcommons.unl.edu/usdoepub/170 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Gurdeep Rastogi, Shariff Osman, Ravi K. Kukkadapu, Mark Engelhard, Parag A. Vaishampayan, Gary L. Andersen, and Rajesh K. Sani This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/170 Microb Ecol (2010) 60:539–550 DOI 10.1007/s00248-010-9657-y SOIL MICROBIOLOGY Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi & Shariff Osman & Ravi Kukkadapu & Mark Engelhard & Parag A.
    [Show full text]
  • Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
    Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.
    [Show full text]
  • The Two-Component System Rsrs-Rsrr Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus Caldus
    ORIGINAL RESEARCH published: 03 November 2016 doi: 10.3389/fmicb.2016.01755 The Two-Component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus caldus Zhao-Bao Wang 1, Ya-Qing Li 1, Jian-Qun Lin 1, Xin Pang 1, Xiang-Mei Liu 1, Bing-Qiang Liu 2, Rui Wang 1, Cheng-Jia Zhang 1, Yan Wu 1, Jian-Qiang Lin 1* and Lin-Xu Chen 1* 1 State Key Laboratory of Microbial Technology, Shandong University, Jinan, China, 2 School of Mathematics, Shandong University, Jinan, China Edited by: Axel Schippers, Acidithiobacillus caldus (A. caldus) is a common bioleaching bacterium that possesses Federal Institute for Geosciences and Natural Resources, Germany a sophisticated and highly efficient inorganic sulfur compound metabolism network. Reviewed by: Thiosulfate, a central intermediate in the sulfur metabolism network of A. caldus and other Jeremy Dodsworth, sulfur-oxidizing microorganisms, can be metabolized via the tetrathionate intermediate California State University, San (S I) pathway catalyzed by thiosulfate:quinol oxidoreductase (Tqo or DoxDA) and Bernardino, USA 4 Mark Dopson, tetrathionate hydrolase (TetH). In A. caldus, there is an additional two-component system Linnaeus University, Sweden called RsrS-RsrR. Since rsrS and rsrR are arranged as an operon with doxDA and *Correspondence: tetH in the genome, we suggest that the regulation of the S4I pathway may occur via Jian-Qiang Lin [email protected] the RsrS-RsrR system. To examine the regulatory role of the two-component system Lin-Xu Chen RsrS-RsrR on the S4I pathway, rsrR and rsrS strains were constructed in A. caldus [email protected] using a newly developed markerless gene knockout method.
    [Show full text]
  • Bacterial Diversity in Replicated Hydrogen Sulfide-Rich Streams
    Microbial Ecology https://doi.org/10.1007/s00248-018-1237-6 MICROBIOLOGY OF AQUATIC SYSTEMS Bacterial Diversity in Replicated Hydrogen Sulfide-Rich Streams Scott Hotaling1 & Corey R. Quackenbush1 & Julian Bennett-Ponsford1 & Daniel D. New2 & Lenin Arias-Rodriguez3 & Michael Tobler4 & Joanna L. Kelley1 Received: 13 January 2018 /Accepted: 23 July 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Extreme environments typically require costly adaptations for survival, an attribute that often translates to an elevated influence of habitat conditions on biotic communities. Microbes, primarily bacteria, are successful colonizers of extreme environments worldwide, yet in many instances, the interplay between harsh conditions, dispersal, and microbial biogeography remains unclear. This lack of clarity is particularly true for habitats where extreme temperature is not the overarching stressor, highlighting a need for studies that focus on the role other primary stressors (e.g., toxicants) play in shaping biogeographic patterns. In this study, we leveraged a naturally paired stream system in southern Mexico to explore how elevated hydrogen sulfide (H2S) influences microbial diversity. We sequenced a portion of the 16S rRNA gene using bacterial primers for water sampled from three geographically proximate pairings of streams with high (> 20 μM) or low (~ 0 μM) H2S concentrations. After exploring bacterial diversity within and among sites, we compared our results to a previous study of macroinvertebrates and fish for the same sites. By spanning multiple organismal groups, we were able to illuminate how H2S may differentially affect biodiversity. The presence of elevated H2S had no effect on overall bacterial diversity (p = 0.21), a large effect on community composition (25.8% of variation explained, p < 0.0001), and variable influence depending upon the group—whether fish, macroinvertebrates, or bacteria—being considered.
    [Show full text]
  • Supplement of Biogeosciences, 16, 4229–4241, 2019 © Author(S) 2019
    Supplement of Biogeosciences, 16, 4229–4241, 2019 https://doi.org/10.5194/bg-16-4229-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Identifying the core bacterial microbiome of hydrocarbon degradation and a shift of dominant methanogenesis pathways in the oil and aqueous phases of petroleum reservoirs of different temperatures from China Zhichao Zhou et al. Correspondence to: Ji-Dong Gu ([email protected]) and Bo-Zhong Mu ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. 1 Supplementary Data 1.1 Characterization of geographic properties of sampling reservoirs Petroleum fluids samples were collected from eight sampling sites across China covering oilfields of different geological properties. The reservoir and crude oil properties together with the aqueous phase chemical concentration characteristics were listed in Table 1. P1 represents the sample collected from Zhan3-26 well located in Shengli Oilfield. Zhan3 block region in Shengli Oilfield is located in the coastal area from the Yellow River Estuary to the Bohai Sea. It is a medium-high temperature reservoir of fluvial face, made of a thin layer of crossed sand-mudstones, pebbled sandstones and fine sandstones. P2 represents the sample collected from Ba-51 well, which is located in Bayindulan reservoir layer of Erlian Basin, east Inner Mongolia Autonomous Region. It is a reservoir with highly heterogeneous layers, high crude oil viscosity and low formation fluid temperature. It was dedicated to water-flooding, however, due to low permeability and high viscosity of crude oil, displacement efficiency of water-flooding driving process was slowed down along the increase of water-cut rate.
    [Show full text]
  • Supplementary Information
    K-mer similarity, networks of microbial genomes and taxonomic rank Guillaume Bernard, Paul Greenfield, Mark A. Ragan, Cheong Xin Chan. Supplementary Figures Legends # Supplementary Figure S1: P- network of prokaryote phyla using !" with k=25, based on rRNAs. Edges represent connections between isolates of two phyla. The node size is proportional to the number of isolates in a phylum. Distance threshold = 6. Supplementary Figure S2: PCA analysis performed on the raw data of the COG categories profile for each genus. Each phylum is color-coded. Supplementary Figure S3: PCA analysis performed on the raw data of the COG categories profile for each genus. Each genus is color-coded according to the number of isolates. Supplementary Figure S4: PCA analysis performed on the normalised counts of center-scaled COG categories. Each phylum is color-coded. Supplementary Tables Legends Supplementary Table S1: List of the 2785 isolates used in this analysis. Supplementary Table S2: Network analysis of the I-network for 2705 complete genomes of bacteria and archaea. Supplementary Table S3: Network analysis of the I-network for 2616 genomes of bacteria and archaea, with rRNA genes removed. Supplementary Table S4: Network analysis of the rRNA gene sequences I-network of 2616 bacterial and archaeal isolates. Supplementary Table S5: Network analysis of the plasmid genomes I-network of 921 bacterial and plasmid genomes. Supplementary Table S6: Statistics of core k-mers for 151 genera. Supplementary Table S7: COG category profiles for 16 phyla. 1 Figure S1
    [Show full text]
  • Heme A-Containing Oxidases Evolved in the Ancestors of Iron Oxidizing Bacteria 3 4 Mauro Degli Esposti1*, Viridiana Garcia-Meza2, Agueda E
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.01.968255; this version posted March 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 Heme A-containing oxidases evolved in the ancestors of iron oxidizing bacteria 3 4 Mauro Degli Esposti1*, Viridiana Garcia-Meza2, Agueda E. Ceniceros Gómez3, Ana Moya-Beltrán4,5, Raquel 5 Quatrini4,5 and Lars Hederstedt6 6 7 1 Center for Genomic Sciences, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico; 8 2 Department of Metallurgy, Universidad Autonoma de San Luis Potosí, San Luis Potosí, Mexico; 9 3 Laboratorio de Biogeoquímica Ambiental, Facultad de Química, UNAM, México City, México 10 4 Fundación Ciencia y Vida and Facultad de Ciencias de la Salud, Universidad San Sebastian, Santiago, Chile; 11 5 Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile; 12 6 The Microbiology Group, Department of Biology, Lund University, Lund, Sweden. 13 14 *Corresponding author: [email protected]; [email protected] 15 16 17 Abstract 18 The origin of oxygen respiration in bacteria has long intrigued biochemists, microbiologists and evolutionary biologists. 19 The earliest enzymes that consume oxygen to extract energy did not evolve in the same lineages of photosynthetic 20 bacteria that released oxygen on primordial earth, leading to the great oxygenation event (GOE). A widespread type of 21 such enzymes is proton pumping cytochrome c oxidase (COX) that contains heme A, a unique prosthetic group for 22 these oxidases.
    [Show full text]
  • Bacterial Taxa Based on Greengenes Database GS1A PS1B ABY1 OD1
    A1: Bacterial taxa based on GreenGenes database GS1A PS1B ABY1_OD1 0.1682 0.024 Bacteria;ABY1_OD1;ABY1_OD1_unclassified 1 0 Bacteria;ABY1_OD1;FW129;FW129_unclassified 4 0 Bacteria;ABY1_OD1;FW129;KNA6-NB12;KNA6-NB12_unclassified 5 0 Bacteria;ABY1_OD1;FW129;KNA6-NB29;KNA6-NB29_unclassified 0 1 Acidobacteria 0.7907 4.509 Bacteria;Acidobacteria;Acidobacteria_unclassified 4 31 Bacteria;Acidobacteria;Acidobacteria-5;Acidobacteria-5_unclassified 0 1 Bacteria;Acidobacteria;BPC015;BPC015_unclassified 8 30 Bacteria;Acidobacteria;BPC102;BPC102_unclassified 9 43 Bacteria;Acidobacteria;Chloracidobacteria;Ellin6075;Ellin6075_unclassified 1 0 Bacteria;Acidobacteria;iii1-15;Acidobacteria-6;RB40;RB40_unclassified 0 5 Bacteria;Acidobacteria;iii1-15;iii1-15_unclassified 1 8 Bacteria;Acidobacteria;iii1-15;Riz6I;Unclassified 0 1 Bacteria;Acidobacteria;iii1-8;Unclassified 0 2 Bacteria;Acidobacteria;OS-K;OS-K_unclassified 18 17 Bacteria;Acidobacteria;RB25;RB25_unclassified 6 47 Bacteria;Acidobacteria;Solibacteres;Solibacteres_unclassified 0 1 Actinobacteria 2.1198 6.642 Bacteria;Actinobacteria;Acidimicrobidae;Acidimicrobidae_unclassified 10 70 Bacteria;Actinobacteria;Acidimicrobidae;CL500-29;ML316M-15;ML316M-15_unclassified 0 3 Bacteria;Actinobacteria;Acidimicrobidae;EB1017_group;Acidimicrobidae_bacterium_Ellin7143;Unclassified 6 1 Bacteria;Actinobacteria;Acidimicrobidae;koll13;JTB31;BD2-10;BD2-10_unclassified 1 5 Bacteria;Actinobacteria;Acidimicrobidae;koll13;JTB31;Unclassified 16 37 Bacteria;Actinobacteria;Acidimicrobidae;koll13;koll13_unclassified 81 25 Bacteria;Actinobacteria;Acidimicrobidae;Microthrixineae;Microthrixineae_unclassified
    [Show full text]