Wave Theory of Optical Waveguides

Total Page:16

File Type:pdf, Size:1020Kb

Wave Theory of Optical Waveguides Chapter 1 Wave Theory of Optical Waveguides The basic concepts and equations of electromagnetic wave theory required for the comprehension of lightwave propagation in optical waveguides are presented. The light confinement and formation of modes in the waveguide are qualitatively explained, taking the case of a slab waveguide. Maxwell’s equations, boundary conditions, and the complex Poynting vector are described as they form the basis for the following chapters. 1.1. WAVEGUIDE STRUCTURE Optical fibers and optical waveguides consist of a core, in which light is confined, and a cladding, or substrate surrounding the core, as shown in Fig. 1.1. The refractive index of the core n1 is higher than that of the cladding n0. Therefore the light beam that is coupled to the end face of the waveguide is confined in the core by total internal reflection. The condition for total internal − reflection at the core–cladding interface is given by n1 sin/2 n0. Since = 2 − 2 the angle is related with the incident angle by sin n1 sin n1 n0, we obtain the critical condition for the total internal reflection as −1 2 − 2 ≡ sin n1 n0 max (1.1) The refractive-index difference between core and cladding is of the order of − = n1 n0 001. Then max in Eq. (1.1) can be approximated by 2 − 2 max n1 n0 (1.2) 1 2 Wave Theory of Optical Waveguides Figure 1.1 Basic structure and refractive-index profile of the optical waveguide. max denotes the maximum light acceptance angle of the waveguide and is known as the numerical aperture (NA). The relative refractive-index difference between n1 and n0 is defined as n2 − n2 n − n = 1 0 1 0 2 (1.3) 2n1 n1 is commonly expressed as a percentage. The numerical aperture NA is related to the relative refractive-index difference by √ = NA max n1 2 (1.4) The maximum angle√ for the propagating light within the core is given by = = max max/n1 2. For typical optical waveguides, NA 021 and max = = = = 12 max 81 when n1 147 1% for n0 1455. 1.2. FORMATION OF GUIDED MODES We have accounted for the mechanism of mode confinement and have indi- cated that the angle must not exceed the critical angle. Even though the angle is smaller than the critical angle, light rays with arbitrary angles are not able to propagate in the waveguide. Each mode is associated with light rays at a discrete angle of propagation, as given by electromagnetic wave analysis. Here we describe the formation of modes with the ray picture in the slab wave- guide [1], as shown in Fig. 1.2. Let us consider a plane wave propagating along the z-direction with inclination angle . The phase fronts of the plane waves are perpendicular to the light rays. The wavelength and the wavenumber of light in = the core are /n1 and kn1k 2/, respectively, where is the wavelength of light in vacuum. The propagation constants along z and x (lateral direction) are expressed by = kn1 cos (1.5) = kn1 sin (1.6) Formation of Guided Modes 3 Figure 1.2 Light rays and their phase fronts in the waveguide. Before describing the formation of modes in detail, we must explain the phase shift of a light ray that suffers total reflection. The reflection coefficient of the totally reflected light, which is polarized perpendicular to the incident plane (plane formed by the incident and reflected rays), as shown in Fig. 1.3, is given by [2] A n sin + j n2 cos2 − n2 r = r = 1 1 0 (1.7) A − 2 2 − 2 i n1 sin j n1 cos n0 When we express the complex reflection coefficient r as r = exp−j, the amount of phase shift is obtained as n2 cos2 − n2 2 =− −1 1 0 =− −1 − 2 tan 2 tan 2 1 (1.8) n1 sin sin where Eq. (1.3) has been used. The foregoing phase shift for the totally reflected light is called the Goos–Hänchen shift [1, 3]. Let us consider the phase difference between the two light rays belonging to the same plane wave in Fig. 1.2. Light ray PQ, which propagates from point P to Q, does not suffer the influence of reflection. On the other hand, light ray RS, Figure 1.3 Total reflection of a plane wave at a dielectric interface. 4 Wave Theory of Optical Waveguides propagating from point R to S, is reflected two times (at the upper and lower core–cladding interfaces). Since points P and R or points Q and S are on the same phase front, optical paths PQ and RS (including the Goos–Hänchen shifts caused by the two total reflections) should be equal, or their difference should be an integral multiple of 2. Since the distance between points Q and R is 2a/tan − 2a tan , the distance between points P and Q is expressed by 2a 1 = − 2a tan cos = 2a − 2 sin (1.9) 1 tan sin Also, the distance between points R and S is given by 2a = (1.10) 2 sin The phase-matching condition for the optical paths PQ and RS then becomes + − = kn12 2 kn11 2m (1.11) where m is an integer. Substituting Eqs. (1.8)–(1.10) into Eq. (1.11) we obtain the condition for the propagation angle as m 2 tan kn a sin − = − 1 (1.12) 1 2 sin2 Equation (1.12) shows that the propagation angle of a light ray is discrete and is determined by the waveguide structure (core radius a, refractive index n1, refractive-index difference ) and the wavelength of the light source (wavenumber is k = 2/ [4]. The optical field distribution that satisfies the phase-matching condition of Eq. (1.12) is called the mode. The allowed value of propagation constant [Eq. (1.5)] is also discrete and is denoted as an eigenvalue. The mode that has the minimum angle in Eq. (1.12) m=0 is the fundamental mode; the other modes, having larger angles, are higher-order modes m 1. Figure 1.4 schematically shows the formation of modes (standing waves) for (a) the fundamental mode and (b) a higher-order mode, respectively, through the interference of light waves. In the figure the solid line represents a positive phase front and a dotted line represents a negative phase front, respectively. The electric field amplitude becomes the maximum (minimum) at the point where two positive (negative) phase fronts interfere. In contrast, the electric field amplitude becomes almost zero near the core–cladding interface, since positive and negative phase fronts cancel out each other. Therefore the field distribution along the x-(transverse) direction becomes a standing wave and varies periodically along = = the z direction with the period p /n1/cos 2/. Formation of Guided Modes 5 Figure 1.4 Formation of modes: (a) Fundamental mode, (b) higher-order mode. = 2 − 2 Since n1 sin sin n√1 n0 from Fig. 1.1, Eqs. (1.1) and (1.3) give the propagation angle as sin 2. When we introduce the parameter sin = √ (1.13) 2 which is normalized to 1, the phase-matching Eq. (1.12) can be rewritten as √ cos−1 + m/2 kn a 2 = (1.14) 1 The term on the left-hand side of Eq. (1.14) is known as the normalized frequency, and it is expressed by √ = v kn1a 2 (1.15) When we use the normalized frequency v, the propagation characteristics of the waveguides can be treated generally (independent of each waveguide structure). 6 Wave Theory of Optical Waveguides The relationship between normalized frequency v and (propagation constant ), Eq. (1.14), is called the dispersion equation. Figure 1.5 shows the dispersion curves of a slab waveguide. The crossing point between = cos−1 + m/2/ = and v gives m for each mode number m, and the propagation constant m is obtained from Eqs. (1.5) and (1.13). It is known from Fig. 1.5 that only the fundamental mode with m = 0 can = exist when v<vc /2. vc determines the single-mode condition of the slab waveguide—in other words, the condition in which higher-order modes are cut off. Therefore it is called the cutoff v-value. When we rewrite the cutoff condition in terms of the wavelength we obtain √ = 2 c an1 2 (1.16) vc Figure 1.5 Dispersion curves of a slab waveguide. Maxwell’s Equations 7 c is called the cutoff (free-space) wavelength. The waveguide operates in a single = mode for wavelengths longer than c. For example, c 08 m when the core = = = = width 2a 354 m for the slab waveguide of n1 146 03%n0 1455. 1.3. MAXWELL’S EQUATIONS Maxwell’s equations in a homogeneous and lossless dielectric medium are written in terms of the electric field e and magnetic field h as [5] h × e =− (1.17) t e × h = (1.18) t where and denote the permittivity and permeability of the medium, respec- = tively. and are related to their respective values in a vacuum of 0 × −12 = × −7 8854 10 F/m and 0 4 10 H/m by = 2 0n (1.19a) = 0 (1.19b) where n is the refractive index. The wavenumber of light in the medium is then expressed as [5] √ √ = = = n 00 kn (1.20) In Eq. (1.20), is an angular frequency of the sinusoidally varying electromag- netic fields with respect to time; k is the wavenumber in a vacuum, which is related to the angular frequency by √ k = = (1.21) 0 0 c In Eq.
Recommended publications
  • Principles of Optics
    Principles of optics Electromagnetic theory of propagation, interference and diffraction of light MAX BORN MA, Dr Phil, FRS Nobel Laureate Formerly Professor at the Universities of Göttingen and Edinburgh and EMIL WOLF PhD, DSc Wilson Professor of Optical Physics, University of Rochester, NY with contributions by A.B.BHATIA, P.C.CLEMMOW, D.GABOR, A.R.STOKES, A.M.TAYLOR, P.A.WAYMAN AND W.L.WILCOCK SEVENTH (EXPANDED) EDITION CAMBRIDGE UNIVERSITY PRESS Contents Historical introduction xxv I Basic properties of the electromagnetic field 1 1.1 The electromagnetic field 1 1.1.1 Maxwells equations 1 1.1.2 Material equations 2 1.1.3 Boundary conditions at a surface of discontinuity 4 1.1.4 The energy law of the electromagnetic field 7 1.2 The wave equation and the velocity of light 11 1.3 Scalar waves 14 1.3.1 Plane waves 15 1.3.2 Spherical waves 16 1.3.3 Harmonie waves. The phase velocity 16 1.3.4 Wave packets. The group velocity 19 1.4 Vector waves 24 1.4.1 The general electromagnetic plane wave 24 1.4.2 The harmonic electromagnetic plane wave 25 (a) Elliptic polarization 25 (b) Linear and circular polarization 29 (c) Characterization of the state of polarization by Stoltes parameters 31 1.4.3 Harmonie vector waves of arbitrary form 33 1.5 Reflection and refraction of a plane wave 38 1.5.1 The laws of reflection and refraction 38 1.5.2 Fresnel formulae 40 1.5.3 The reflectivity and transmissivity; polarization an reflection and refraction 43 1.5.4 Total reflection 49 1.6 Wave propagation in a stratified medium.
    [Show full text]
  • Colloquiumcolloquium
    ColloquiumColloquium History and solution of the phase problem in the theory of structure determination of crystals from X-ray diffraction experiments Emil Wolf Department of Physics and Astronomy Institute of Optics University of Rochester 3:45 pm, Wednesday, Nov 18, 2009 B.Sc. and Ph.D. Bristol University Baush & Lomb 109 D.Sc. University of Edinburgh U. of Rochester 1959 - Tea 3:30 B&L Lobby Wilson Professor of Optical Physics JointlyJointly sponsoredsponsored byby The most important researches carried out in this field will be reviewed and a recently DepartmentDepartment ofof PhysicsPhysics andand AstronomyAstronomy obtained solution of the phase problem will be presented. History and solution of the phase problem in the theory of structure determination of crystals from X-ray diffraction experiments Emil Wolf Department of Physics and Astronomy and The Institute of Optics University of Rochester Abstract Since the pioneering work of Max von Laue on interference and diffraction of X-rays carried out almost a hundred years ago, numerous attempts have been made to determine structures of crystalline media from X-ray diffraction experiments. Usefulness of all of them has been limited by the inability of measuring phases of the diffracted beams. In this talk the most important researches carried out in this field will be reviewed and a recently obtained solution of the phase problem will be presented. Biography Emil Wolf is Wilson Professor of Optical Physics at the University of Rochester, and is reknowned for his work in physical optics. He has received many awards, including the Ives Medal of the Optical Society of America, the Albert A.
    [Show full text]
  • Download Principles of Physical Optics 1St Edition Free Ebook
    PRINCIPLES OF PHYSICAL OPTICS 1ST EDITION DOWNLOAD FREE BOOK Charles A Bennett | --- | --- | --- | 9780470122129 | --- | --- Principles Of Adaptive Optics If you wish to place a tax exempt order please contact us. He has collaborated with Oak Ridge National Laboratory sincewhere he is currently an adjunct research and development associate Principles of Physical Optics 1st edition the Advanced Laser and Optical Technology and Development group. Magnetic Lenses. Connect with:. A beginning might be the recalling of one's career-long association with it. All Pages Books Journals. When I asked for it, he argued that as a theorist he had a greater need for the book than I, an experimentalist, did. Principles of Physical Optics Bennett, Charles a. Complete Electron Guns. Search icon An illustration of a magnifying glass. Physical Optics. This includes detailed discussions on geometric optics, superposition and interference, and diffraction. Institutional Subscription. If you wish to place a tax exempt order please Principles of Physical Optics 1st edition us. This includes detailed discussions on. Breathing a breath of fresh air into the field of optics, Principles of Principles of Physical Optics 1st edition Optics is the first new entry in the field in the last 20 years. Another colleague borrowed my newly-purchased copy and was slow to return it. Readers will also find the latest information on lasers, optical imaging, polarization, and nonlinear optics. Seller Rating:. Thanks in advance for your time. Systematically describes a number of sub-topics in the field. About the Author Charles A. In physical optics, the wave property of light is considered. Additional Collections.
    [Show full text]
  • Snowpack Optical Properties in the Infrared
    BUREAU OF RECLAMATION LIBRARY REPORT 79-11 Snowpack optical properties in the infrared 70 s ~ <S> \ * *=> l,***»r AUb?8 1979 'ZSSSff* For conversion of SI metric units to U.S./British customary units of measurement consult ASTM Standard E380, Metric Practice Guide, published by the American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa. 19103. BUREAU OF RECLAMATION DENVER U6RARY 92028164 isoEfiim ■ ^ ^ l RREL Report 79-11 Oi Snowpack optical properties in the infrared Roger H. Berger May 1979 Prepared for DIRECTORATE OF MILITARY PROGRAMS OFFICE, CHIEF OF ENGINEERS By UNITED STATES ARMY CORPS OF ENGINEERS COLD REGIONS RESEARCH AND ENGINEERING LABORATORY HANOVER, NEW HAMPSHIRE, U.S.A. Approved for public release; distribution unlimited. Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. R E P O R T N U M B E R 2. GOVT ACCESSION NO. 3. RECIPIENTS CATALOG-NUMBER ' -G R R E L 1 Report 79-11 4. T IT L E (and Subtitle) J 5. TYPE OF REPORT & PERIOD COVERED 3 SNOWPACK OPTICAL PROPERTIES IN THE INFRARED 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR!» 8. CONTRACT OR GRANT NUMBER!» Roger H. Berger s 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK A R E A & WORK UNIT NUMBERS U .S.% rny Cold Regions Research and Engineering Labefatury™ DA Project 4A762730AT42 Hanover, New Hampshire 03755 ^ Technical Area A1, Work Unit 004 11. CONTROLLING OFFICE NAME AND ADDRESS 12. R E P O R T D A T E Directorate of Military Programs ^ May 1979 Office, Chief of Engineers 13.
    [Show full text]
  • Arxiv:1604.01800V1 [Physics.Optics]
    BIREFRINGENCE PHENOMENA REVISITED Dante D. Pereira1, Baltazar J. Ribeiro2 and Bruno Gon¸calves3 1Centro Federal de Educa¸c˜ao Tecnol´ogica Celso Suckow da Fonseca CEFET-RJ, 27.600-000, Valen¸ca, Rio de Janeiro, Brazil 2Centro Federal de Educa¸c˜ao Tecnol´ogica de Minas Gerais CEFET-MG, 37.250-000, Nepomuceno, Minas Gerais, Brazil 3Instituto Federal de Educa¸c˜ao, Ciˆencia e Tecnologia do Sudeste de Minas Gerais IF Sudeste MG, 36080-001, Juiz de Fora, Minas Gerais, Brazil Abstract The propagation of electromagnetic waves is investigated in the context of the isotropic and nonlinear dielectric media at rest in the eikonal limit of the geometrical optics. Taking into account the functional dependence ε = ε(E,B) and µ = µ(E,B) for the dielectric coefficients, a set of phenomena related to the birefringence of the electromagnetic waves induced by external fields are derived and discussed. Our results contemplate the known cases already reported in the literature: Kerr, Cotton-Mouton, Jones and magnetoelectric effects. Moreover, new effects are presented here as well as the perspectives of its experimental confirmations. PACS numbers: 03.50.De, 04.20.-q, 42.25.Lc 1 Introduction Electromagnetic waves in nonlinear media propagate according to Maxwell’s equations com- plemented by certain phenomenological constitutive relations linking strengths and induced fields [1]. Depending on the dielectric properties of the medium and also on the presence of applied external fields, a variety of optical effects can be found. One of such an effects which has received significant attention of the scientific community in the last years is the birefringence phenomenon (or duble refraction) [2, 3].
    [Show full text]
  • Fundamentals
    1 Fundamentals 1.1. CHARACTERISTICS OF FEMTOSECOND LIGHT PULSES Femtosecond (fs) light pulses are electromagnetic wave packets and as such are fully described by the time and space dependent electric field. In the frame of a semiclassical treatment the propagation of such fields and the interaction with matter are governed by Maxwell’s equations with the material response given by a macroscopic polarization. In this first chapter we will summarize the essential notations and definitions used throughout the book. The pulse is characterized by measurable quantities that can be directly related to the electric field. A complex representation of the field amplitude is particularly convenient in dealing with propagation problems of electromagnetic pulses. The next section expands on the choice of field representation. 1.1.1. Complex Representation of the Electric Field Let us consider first the temporal dependence of the electric field neglecting its spatial and polarization dependence, i.e., E(x, y, z, t) = E(t). A complete description can be given either in the time or the frequency domain. Even though the measured quantities are real, it is generally more convenient to use complex representation. For this reason, starting with the real E(t), one defines the complex 1 2 Fundamentals spectrum of the field strength E˜ (), through the complex Fourier transform (F): ∞ − E˜ () = F {E(t)} = E(t)e itdt =|E˜ ()|ei() (1.1) −∞ In the definition (1.1), |E˜ ()| denotes the spectral amplitude, and ()isthe spectral phase. Here and in what follows, complex quantities related to the field are typically written with a tilde. Because E(t) is a real function, E˜ () = E˜ ∗(−) holds.
    [Show full text]
  • History of Physics (14) Recollections of Max Born
    Nr. 47 November 2015 SPG MITTEILUNGEN COMMUNICATIONS DE LA SSP AUSZUG - EXTRAIT History of Physics (14) Recollections of Max Born Emil Wolf Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 USA This article has been downloaded from: http://www.sps.ch/fileadmin/articles-pdf/2015/Mitteilungen_History_14.pdf © see http://www.sps.ch/bottom_menu/impressum/ SPG Mitteilungen Nr. 47 History of Physics (14) At the end of the International Year of Light IYL2015 of the UNESCO we would like to remember one of the pioneers of modern optics, Max Born. Based on his Optik from 1933, Born and his assistant Emil Wolf published 1959 the Principles of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, even today one of the most read mon- ographies in optics. They did not only describe the known physics of light at that time in a rigorous, elegant mathematical diction, but also worked out visionarily the basics of modern photonics, i.e. the important role of coherence functions and their propagation. It was more than a lucky coincidence that only one year later after their opus magnum was published, the laser was invented (1960). This nearly simultaneous appearance of the theory of coherent light sources and its hardware realization was a major reason to catapult optics to its modern variant, the photonics. We are very happy that Emil Wolf al- lowed us to reprint his memories of the history of the ‘Born & Wolf’. Bernhard Braunecker Recollections of Max Born Emil Wolf Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 USA Abstract.
    [Show full text]
  • Rethinking the Foundations of the Theory of Special Relativity: Stellar Aberration and the Fizeau Experiment
    Rethinking the Foundations of the Theory of Special Relativity: Stellar Aberration and the Fizeau Experiment 1 2 A.F. Maers and R. Wayne 1Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853 USA 2Department of Plant Biology, Cornell University, Ithaca, NY14853 USA In a previous paper published in this journal, we described a new relativistic wave equation that accounts for the propagation of light from a source to an observer in two different inertial frames. This equation, which is based on the primacy of the Doppler effect, can account for the relativity of simultaneity and the observation that charged particles cannot exceed the speed of light. In contrast to the Special Theory of Relativity, it does so without the necessity of introducing the relativity of space and time. Here we show that the new relativistic wave equation based on the primacy of the Doppler effect is quantitatively more accurate than the standard theory based on the Fresnel drag coefficient or the relativity of space and time in accounting for the results of Fizeau’s experiment on the optics of moving media—the very experiment that Einstein considered to be “a crucial test in favour of the theory of relativity.” The new relativistic wave equation quantitatively describes other observations involving the optics of moving bodies, including stellar aberration and the null results of the Michelson- Morley experiment. In this paper, we propose an experiment to test the influence of the refractive index on the interference fringe shift generated by moving media. The Special Theory of Relativity, which is based on the relativity of space and time, and the new relativistic wave equation, which is based on the primacy of the Doppler effect, make different predictions concerning the influence of the refractive index on the optics of moving media.
    [Show full text]
  • Introductory Quantum Optics
    This page intentionally left blank Introductory Quantum Optics This book provides an elementary introduction to the subject of quantum optics, the study of the quantum-mechanical nature of light and its interaction with matter. The presentation is almost entirely concerned with the quantized electromag- netic field. Topics covered include single-mode field quantization in a cavity, quantization of multimode fields, quantum phase, coherent states, quasi- probability distribution in phase space, atom–field interactions, the Jaynes– Cummings model, quantum coherence theory, beam splitters and interferom- eters, nonclassical field states with squeezing etc., tests of local realism with entangled photons from down-conversion, experimental realizations of cavity quantum electrodynamics, trapped ions, decoherence, and some applications to quantum information processing, particularly quantum cryptography. The book contains many homework problems and a comprehensive bibliography. This text is designed for upper-level undergraduates taking courses in quantum optics who have already taken a course in quantum mechanics, and for first- and second-year graduate students. A solutions manual is available to instructors via [email protected]. C G is Professor of Physics at Lehman College, City Uni- versity of New York.He was one of the first to exploit the use of group theoretical methods in quantum optics and is also a frequent contributor to Physical Review A.In1992 he co-authored, with A. Inomata and H. Kuratsuji, Path Integrals and Coherent States for Su (2) and SU (1, 1). P K is a leading figure in quantum optics, and in addition to being President of the Optical Society of America in 2004, he is a Fellow of the Royal Society.
    [Show full text]
  • Principles of Optics
    Principles of optics Electromagnetic theory of propagation, interference and diffraction of light MAX BORN MA, Dr Phil, FRS Nobel Laureate Formerly Professor at the Universities of GoÈttingen and Edinburgh and EMIL WOLF PhD, DSc Wilson Professor of Optical Physics, University of Rochester, NY with contributions by A.B.BHATIA, P.C.CLEMMOW, D.GABOR, A.R.STOKES, A.M.TAYLOR, P.A.WAYMAN AND W.L.WILCOCK SEVENTH !EXPANDED) EDITION publishedby thepress syndicate oftheuniversityofcambridge The Pitt Building, Trumpington Street, Cambridge, United Kingdom cambridgeuniversity press The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC3207, Australia Ruiz de AlarcoÂn 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org Seventh !expanded) edition # Margaret Farley-Born and Emil Wolf 1999 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1959 by Pergamon Press Ltd, London Sixth edition 1980 Reprinted !with corrections) 1983, 1984, 1986, 1987, 1989, 1991, 1993 Reissued by Cambridge University Press 1997 Seventh !expanded) edition 1999 Reprinted with corrections, 2002 Reprinted 2003 Printed in the United Kingdom at the University Press, Cambridge A catalogue record for this book is available from the British Library Library
    [Show full text]
  • Front Matter
    Cambridge University Press 978-1-108-47743-7 — Principles of Optics 7th Edition Frontmatter More Information Principles of Optics Principles of Optics is one of the most highly cited and most influential physics books ever published, and one of the classic science books of the twentieth century. To celebrate the 60th anniversary of this remarkable book’s first publication, the seventh expanded edition has been reprinted with a special foreword by Sir Peter Knight. The seventh edition was the first thorough revision and expansion of this definitive text. Amongst the material introduced in the seventh edition is a section on CAT scans, a chapter on scattering from inhomogeneous media, including an account of the principles of diffraction tomography, an account of scattering from periodic potentials, and a section on the so-called Rayleigh-Sommerfield diffraction theory. This expansive and timeless book continues to be invaluable to advanced undergraduates, graduate students and researchers working in all areas of optics. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-47743-7 — Principles of Optics 7th Edition Frontmatter More Information To the Memory of Sir Ernest Oppenheimer © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-108-47743-7 — Principles of Optics 7th Edition Frontmatter More Information Principles ofO ptics MAX BORN MA, Dr Phil, FRS Nobel Laureate Formerly Professor at the Universities of GoÈttingen and Edinburgh and EMIL WOLF
    [Show full text]
  • Colloquiumcolloquium
    ColloquiumColloquium Unified Theory of Coherence and Polarization of Light and Some of Its Applications Emil Wolf Department of Physics and Astronomy Institute of Optics Special Time University of Rochester B.Sc. and Ph.D. Bristol University 2:30 pm, Monday, March 2, 2009 D.Sc. University of Edinburgh U. of Rochester 1959 - Sloan Auditorium, Goergen Building Wilson Professor of Optical Physics Refreshments provided Review of recent developments in the theories of coherence and polarization of light and application showing previously unknown aspects of the JointlyJointly sponsoredsponsored byby Hanbury Brown-Twiss effect. DepartmentDepartm ent ofof PhysicsPhysics andand AstronomyAstronomy Unified Theory of Coherence and Polarization of Light and Some of Its Applications Emil Wolf Department of Physics and Astronomy and The Institute of Optics University of Rochester Abstract After a brief review of the developments of the theories of coherence and polarization of light, an account will be given of a recently formulated unified theory of these two subjects. Examples of applications of the theory will then be given which elucidates changes of the state of polarization of a light beam propagating in free space, in fibers and in the turbulent atmosphere. It will also be shown that the unified theory reveals previously unknown aspects of the so-called Hanbury Brown-Twiss effect, originally introduced for measurements of stellar diameters and, more recently, applied to problems in high energy physics, nuclear physics and condensed matter physics. Biography Emil Wolf is Wilson Professor of Optical Physics at the University of Rochester, and is reknowned for his work in physical optics. He has received many awards, including the Ives Medal of the Optical Society of America, the Albert A.
    [Show full text]