Phylogenetics and Comparative Methods David D

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetics and Comparative Methods David D I.16 Phylogenetics and Comparative Methods David D. Ackerly OUTLINE GLOSSARY 1. The role of phylogenetics in ecology See figure 1 for illustrations of main terms. 2. Phylogenies and the analysis of trait correlations branch lengths. These may indicate either the number 3. Phylogenetic signal: Pattern and significance of inferred character changes or a measure of rela- 4. Phylogenetics and community ecology tive or absolute time along any particular branch 5. Prospects for the future connecting two nodes. If the molecular data un- derlying a phylogeny do not violate a molecular The study of ecology frequently draws on comparative ob- clock, a single rate may be imposed such that branch servations and experiments that rely on the similarities lengths will represent relative time, and contem- and differences among species and the correlations among poraneous taxa will be placed at the same distance species traits and the environment. In such studies, con- from the root (i.e., the same age). If a molecular sideration of the phylogenetic relationships among species clock is violated, rate-smoothing methods have provides valuable information for statistical inference and an been developed to obtain the best-supported esti- understanding of evolutionary history underlying present- mate of relative time. Fossils and biogeographic or day ecological patterns. From a statistical perspective, re- paleoecological information may then be used to lated species do not necessarily provide independent data calibrate these branch lengths and convert them to points for hypothesis tests, due to inheritance of shared char- units of absolute time. Rate-smoothing and cali- acteristics from common ancestors. This similarity can be bration methods are fraught with difficulty, and addressed through a variety of statistical techniques, in- branch lengths should be treated with caution. cluding the widely used method of phylogenetic independent (Note that branch lengths may also be set arbitrarily contrasts. Independent contrasts play a particularly valuable for convenience when one is drawing trees, in which role in the analysis of trait and trait–environment corre- case they have no intrinsic biological meaning.) lations and may point toward alternative interpretations of character states. Phylogenetic trees are reconstructed comparative data. In community ecology, measures of the based on analysis of a matrix of characters,where phylogenetic clustering or spacing of co-occurring species each character can take on one of two or more provide a useful tool to test alternative processes underlying states (binary or multistate, respectively) for each community assembly. Co-occurrence of close relatives most taxon in the group. Phylogenies can be reconstructed likely reflects ecological filtering, in which related species from molecular and/or morphological data, although with similar traits share the ability to tolerate local condi- the former are now much more common. Analyses tions. The reverse pattern of phylogenetic spacing of co- that include morphological data are advantageous as occurring species may reflect a variety of processes, and they make it possible to incorporate taxa or fossils additional observations of species traits in relation to envi- for which molecular data are not available. ronment and interacting taxa will be necessary to address lineage. This refers to a single line of ancestor–descendant underlying processes. Use of comparative methods has in- relationship, connecting nodes within a phylogeny. creased dramatically with the rapid growth in phylogenetic most recent common ancestor (MRCA). The MRCA is information and computing power and will continue to play the most recent node that is shared by any two taxa an important role in ecological research. in a tree. 118 Autecology branch In Great Britain there are 32 indigenous trees[:] node of these 19 or more than half ...have their sexes A separated—an enormous proportion compared with the remainder of the British flora: nor is this B wholly owing to a chance coincidence in some C one Family having many trees & having a ten- dency to separated sexes: for the 32 trees belong D terminal polytomy taxa to nine Families, & the trees with separate sexes (’tips’) to five Families. E MRCA of —Charles Darwin, manuscript for Natural root or F and G basal F Selection (unpublished) node G H In the quote above, Darwin observes an interesting pattern among plant species of Great Britain. He notes clade containing that among trees, the proportion of species that have species E, F, G, and H individuals of separate sexes (as in humans and most Figure 1. Example of a phylogenetic tree for eight taxa (A–H), illus- vertebrates) is much higher than among the flora as a trating some of the terms in the glossary. This tree is ultrametric, meaning that all terminal taxa are equidistant from the root of the whole, most of which is composed of shrubs and her- tree. baceous plants. He explained the high frequency of separate sexes as an adaptation to promote cross- fertilization in trees: because trees are large and have phylogenetic distance. The phylogenetic distance be- many flowers, the chance that an insect would carry tween two nodes or taxa refers to the sum of branch pollen from one flower to another of the same indi- lengths from one tip (or internal node) down to the vidual is quite high. If all the flowers on a tree are of the MRCA and back up to another tip (or node) of a same sex, these repeated visits by pollinators will not tree. The phylogenetic distance matrix is an nÂn lead to high levels of self-fertilization. matrix (for n taxa) of such distances among all Darwin’s observations provide a nice example of pairs of taxa, with 0s in the diagonal. what we now call comparative biology, which draws phylogeny. A phylogeny, or phylogenetic tree, is a on comparisons of the similarities and differences branching diagram showing the hierarchy of evo- among species to test ecological and evolutionary hy- lutionary relationships among a group of taxa (ex- potheses. In addition, what Darwin recognized intui- tant and/or extinct). Terminal taxa or tips are tively is that a simple count of the number of species connected by branches to internal nodes that in- exhibiting different characteristics might not be ade- dicate a hypothesized ancestor. A clade includes all quate to support his argument. If many of the species of the taxa (extant and extinct) that descend from a are drawn from the same family (that is, closely related node. Phylogenies can be either rooted or un- in evolutionary terms), they are likely to share many rooted, where the root represents the hypothesized ecological characteristics. Thus, a group with many ancestor of all taxa on the tree. tree species may also contain many species with sepa- polytomy. This refers to a node with three or more rate sexes, reflecting their descent from a common daughter nodes. A soft polytomy indicates uncer- ancestor. But if the evolutionary argument is sound— tainty, where the true bifurcating relationships that trees should evolve separate sexes because of the among the daughters are unknown. A hard poly- problem of self-fertilization—then this combination of tomy represents a hypothesis of near simultaneous traits should evolve independently in many different divergence where the sequence of individual speci- taxonomic groups, and this is indeed what Darwin ation events cannot be meaningfully resolved. Most observed. phylogenetic comparative methods treat polytomies Throughout the past 150 years, since the publica- as either hard or soft but do not always make the tion of Darwin’s On the Origin of Species, comparative distinction explicit. biology has played a central role in ecology and evo- ultrametric. An ultrametric tree is one in which all lutionary biology. In essence, each species alive today terminal taxa are contemporaneous; more precisely, (or in the past) represents the outcome of a long, nat- the sum of the branch lengths from the root to each ural experiment. The results reflect the contemporary tip is the same for all tips. Phylogenies of extant taxa ecology of a species—interactions with the abiotic en- will be ultrametric if branch lengths have been ad- vironment and with other forms of life—as well as the justed to represent relative or absolute time. cumulative legacy of the past. Evolution works slowly, Phylogenetics 119 and most features are passed down from ancestor to win’s example above) and the study of community descendant with little change. A penguin appears beau- ecology. In addition, I provide a brief discussion of the tifully adapted to the challenges of surviving and re- concept of phylogenetic signal, a general term for the producing under the extreme conditions of Antarctic similarity among close relatives. life. But these adaptations must be understood in his- In the discussion below, it is assumed that a phy- torical context: penguins are birds, and this experiment logeny is available for each group under consideration. in polar living started with very specific initial condi- Most phylogenies are based on molecular data, par- tions, including egg-laying, a feathered pelt, forelimbs ticularly DNA sequences, sometimes combined with modified into wings, and so on. Comparative research, morphological or other characteristics. The computa- placing penguins in the broader context of other birds tional methods used to search for the best-supported and viewing them side by side with their closest rela- phylogeny are continually being improved and are tives (loons, albatrosses, petrels, and shearwaters) is beyond the scope of this chapter. Regardless of the critical to an understanding and appreciation of their method used, it is important to recognize that every contemporary ecology and behavior. phylogeny is a hypothesis of relationships, and like any In the past 30 years, comparative biology has grown scientific hypothesis, it is subject to revision and im- rapidly as a new generation of methods emerged, com- provement.
Recommended publications
  • Lecture Notes: the Mathematics of Phylogenetics
    Lecture Notes: The Mathematics of Phylogenetics Elizabeth S. Allman, John A. Rhodes IAS/Park City Mathematics Institute June-July, 2005 University of Alaska Fairbanks Spring 2009, 2012, 2016 c 2005, Elizabeth S. Allman and John A. Rhodes ii Contents 1 Sequences and Molecular Evolution 3 1.1 DNA structure . .4 1.2 Mutations . .5 1.3 Aligned Orthologous Sequences . .7 2 Combinatorics of Trees I 9 2.1 Graphs and Trees . .9 2.2 Counting Binary Trees . 14 2.3 Metric Trees . 15 2.4 Ultrametric Trees and Molecular Clocks . 17 2.5 Rooting Trees with Outgroups . 18 2.6 Newick Notation . 19 2.7 Exercises . 20 3 Parsimony 25 3.1 The Parsimony Criterion . 25 3.2 The Fitch-Hartigan Algorithm . 28 3.3 Informative Characters . 33 3.4 Complexity . 35 3.5 Weighted Parsimony . 36 3.6 Recovering Minimal Extensions . 38 3.7 Further Issues . 39 3.8 Exercises . 40 4 Combinatorics of Trees II 45 4.1 Splits and Clades . 45 4.2 Refinements and Consensus Trees . 49 4.3 Quartets . 52 4.4 Supertrees . 53 4.5 Final Comments . 54 4.6 Exercises . 55 iii iv CONTENTS 5 Distance Methods 57 5.1 Dissimilarity Measures . 57 5.2 An Algorithmic Construction: UPGMA . 60 5.3 Unequal Branch Lengths . 62 5.4 The Four-point Condition . 66 5.5 The Neighbor Joining Algorithm . 70 5.6 Additional Comments . 72 5.7 Exercises . 73 6 Probabilistic Models of DNA Mutation 81 6.1 A first example . 81 6.2 Markov Models on Trees . 87 6.3 Jukes-Cantor and Kimura Models .
    [Show full text]
  • Poaceae: Bambusoideae) Christopher Dean Tyrrell Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2008 Systematics of the neotropical woody bamboo genus Rhipidocladum (Poaceae: Bambusoideae) Christopher Dean Tyrrell Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Tyrrell, Christopher Dean, "Systematics of the neotropical woody bamboo genus Rhipidocladum (Poaceae: Bambusoideae)" (2008). Retrospective Theses and Dissertations. 15419. https://lib.dr.iastate.edu/rtd/15419 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Systematics of the neotropical woody bamboo genus Rhipidocladum (Poaceae: Bambusoideae) by Christopher Dean Tyrrell A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Ecology and Evolutionary Biology Program of Study Committee: Lynn G. Clark, Major Professor Dennis V. Lavrov Robert S. Wallace Iowa State University Ames, Iowa 2008 Copyright © Christopher Dean Tyrrell, 2008. All rights reserved. 1457571 1457571 2008 ii In memory of Thomas D. Tyrrell Festum Asinorum iii TABLE OF CONTENTS ABSTRACT iv CHAPTER 1. GENERAL INTRODUCTION 1 Background and Significance 1 Research Objectives 5 Thesis Organization 6 Literature Cited 6 CHAPTER 2. PHYLOGENY OF THE BAMBOO SUBTRIBE 9 ARTHROSTYLIDIINAE WITH EMPHASIS ON RHIPIDOCLADUM Abstract 9 Introduction 10 Methods and Materials 13 Results 19 Discussion 25 Taxonomic Treatment 26 Literature Cited 31 CHAPTER 3.
    [Show full text]
  • Species Concepts Should Not Conflict with Evolutionary History, but Often Do
    ARTICLE IN PRESS Stud. Hist. Phil. Biol. & Biomed. Sci. xxx (2008) xxx–xxx Contents lists available at ScienceDirect Stud. Hist. Phil. Biol. & Biomed. Sci. journal homepage: www.elsevier.com/locate/shpsc Species concepts should not conflict with evolutionary history, but often do Joel D. Velasco Department of Philosophy, University of Wisconsin-Madison, 5185 White Hall, 600 North Park St., Madison, WI 53719, USA Department of Philosophy, Building 90, Stanford University, Stanford, CA 94305, USA article info abstract Keywords: Many phylogenetic systematists have criticized the Biological Species Concept (BSC) because it distorts Biological Species Concept evolutionary history. While defences against this particular criticism have been attempted, I argue that Phylogenetic Species Concept these responses are unsuccessful. In addition, I argue that the source of this problem leads to previously Phylogenetic Trees unappreciated, and deeper, fatal objections. These objections to the BSC also straightforwardly apply to Taxonomy other species concepts that are not defined by genealogical history. What is missing from many previous discussions is the fact that the Tree of Life, which represents phylogenetic history, is independent of our choice of species concept. Some species concepts are consistent with species having unique positions on the Tree while others, including the BSC, are not. Since representing history is of primary importance in evolutionary biology, these problems lead to the conclusion that the BSC, along with many other species concepts, are unacceptable. If species are to be taxa used in phylogenetic inferences, we need a history- based species concept. Ó 2008 Elsevier Ltd. All rights reserved. When citing this paper, please use the full journal title Studies in History and Philosophy of Biological and Biomedical Sciences 1.
    [Show full text]
  • In Defence of the Three-Domains of Life Paradigm P.T.S
    van der Gulik et al. BMC Evolutionary Biology (2017) 17:218 DOI 10.1186/s12862-017-1059-z REVIEW Open Access In defence of the three-domains of life paradigm P.T.S. van der Gulik1*, W.D. Hoff2 and D. Speijer3* Abstract Background: Recently, important discoveries regarding the archaeon that functioned as the “host” in the merger with a bacterium that led to the eukaryotes, its “complex” nature, and its phylogenetic relationship to eukaryotes, have been reported. Based on these new insights proposals have been put forward to get rid of the three-domain Model of life, and replace it with a two-domain model. Results: We present arguments (both regarding timing, complexity, and chemical nature of specific evolutionary processes, as well as regarding genetic structure) to resist such proposals. The three-domain Model represents an accurate description of the differences at the most fundamental level of living organisms, as the eukaryotic lineage that arose from this unique merging event is distinct from both Archaea and Bacteria in a myriad of crucial ways. Conclusions: We maintain that “a natural system of organisms”, as proposed when the three-domain Model of life was introduced, should not be revised when considering the recent discoveries, however exciting they may be. Keywords: Eucarya, LECA, Phylogenetics, Eukaryogenesis, Three-domain model Background (English: domain) as a higher taxonomic level than The discovery that methanogenic microbes differ funda- regnum: introducing the three domains of cellular life, Ar- mentally from Bacteria such as Escherichia coli or Bacillus chaea, Bacteria and Eucarya. This paradigm was proposed subtilis constitutes one of the most important biological by Woese, Kandler and Wheelis in PNAS in 1990 [2].
    [Show full text]
  • Phylogenetics Topic 2: Phylogenetic and Genealogical Homology
    Phylogenetics Topic 2: Phylogenetic and genealogical homology Phylogenies distinguish homology from similarity Previously, we examined how rooted phylogenies provide a framework for distinguishing similarity due to common ancestry (HOMOLOGY) from non-phylogenetic similarity (ANALOGY). Here we extend the concept of phylogenetic homology by making a further distinction between a HOMOLOGOUS CHARACTER and a HOMOLOGOUS CHARACTER STATE. This distinction is important to molecular evolution, as we often deal with data comprised of homologous characters with non-homologous character states. The figure below shows three hypothetical protein-coding nucleotide sequences (for simplicity, only three codons long) that are related to each other according to a phylogenetic tree. In the figure the nucleotide sequences are aligned to each other; in so doing we are making the implicit assumption that the characters aligned vertically are homologous characters. In the specific case of nucleotide and amino acid alignments this assumption is called POSITIONAL HOMOLOGY. Under positional homology it is implicit that a given position, say the first position in the gene sequence, was the same in the gene sequence of the common ancestor. In the figure below it is clear that some positions do not have identical character states (see red characters in figure below). In such a case the involved position is considered to be a homologous character, while the state of that character will be non-homologous where there are differences. Phylogenetic perspective on homologous characters and homologous character states ACG TAC TAA SYNAPOMORPHY: a shared derived character state in C two or more lineages. ACG TAT TAA These must be homologous in state.
    [Show full text]
  • Phylogenetics of Buchnera Aphidicola Munson Et Al., 1991
    Türk. entomol. derg., 2019, 43 (2): 227-237 ISSN 1010-6960 DOI: http://dx.doi.org/10.16970/entoted.527118 E-ISSN 2536-491X Original article (Orijinal araştırma) Phylogenetics of Buchnera aphidicola Munson et al., 1991 (Enterobacteriales: Enterobacteriaceae) based on 16S rRNA amplified from seven aphid species1 Farklı yaprak biti türlerinden izole edilen Buchnera aphidicola Munson et al., 1991 (Enterobacteriales: Enterobacteriaceae)’nın 16S rRNA’ya göre filogenetiği Gül SATAR2* Abstract The obligate symbiont, Buchnera aphidicola Munson et al., 1991 (Enterobacteriales: Enterobacteriaceae) is important for the physiological processes of aphids. Buchnera aphidicola genes detected in seven aphid species, collected in 2017 from different plants and altitudes in Adana Province, Turkey were analyzed to reveal phylogenetic interactions between Buchnera and aphids. The 16S rRNA gene was amplified and sequenced for this purpose and a phylogenetic tree built up by the neighbor-joining method. A significant correlation between B. aphidicola genes and the aphid species was revealed by this phylogenetic tree and the haplotype network. Specimens collected in Feke from Solanum melongena L. was distinguished from the other B. aphidicola genes on Aphis gossypii Glover, 1877 (Hemiptera: Aphididae) with a high bootstrap value of 99. Buchnera aphidicola in Myzus spp. was differentiated from others, and the difference between Myzus cerasi (Fabricius, 1775) and Myzus persicae (Sulzer, 1776) was clear. Although, B. aphidicola is specific to its host aphid, certain nucleotide differences obtained within the species could enable specification to geographic region or host plant in the future. Keywords: Aphid, genetic similarity, phylogenetics, symbiotic bacterium Öz Obligat simbiyont, Buchnera aphidicola Munson et al., 1991 (Enterobacteriales: Enterobacteriaceae), yaprak bitlerinin fizyolojik olaylarının sürdürülmesinde önemli bir rol oynar.
    [Show full text]
  • Introductory Activities
    TEACHER’S GUIDE Introduction Dean Madden Introductory NCBE, University of Reading activities Version 1.0 CaseCase Studies introduction Introductory activities The activities in this section explain the basic principles behind the construction of phylogenetic trees, DNA structure and sequence alignment. Students are also intoduced to the Geneious software. Before carrying out the activities in the DNA to Darwin Case studies, students will need to understand: • the basic principles behind the construction of an evolutionary tree or phylogeny; • the basic structure of DNA and proteins; • the reasons for and the principle of alignment; • use of some features of the Geneious computer software (basic version). The activities in this introduction are designed to achieve this. Some of them will reinforce what students may already know; others involve new concepts. The material includes extension activities for more able students. Evolutionary trees In 1837, 12 years before the publication of On the Origin of Species, Charles Darwin famously drew an evolutionary tree in one of his notebooks. The Origin also included a diagram of an evolutionary tree — the only illustration in the book. Two years before, Darwin had written to his friend Thomas Henry Huxley, saying: ‘The time will come, I believe, though I shall not live to see it, when we shall have fairly true genealogical trees of each great kingdom of Nature.’ Today, scientists are trying to produce the ‘Tree of Life’ Darwin foresaw, using protein, DNA and RNA sequence data. Evolutionary trees are covered on pages 2–7 of the Student’s guide and in the PowerPoint and Keynote slide presentations.
    [Show full text]
  • Phylogenetic Comparative Methods: a User's Guide for Paleontologists
    Phylogenetic Comparative Methods: A User’s Guide for Paleontologists Laura C. Soul - Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA David F. Wright - Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA and Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Abstract. Recent advances in statistical approaches called Phylogenetic Comparative Methods (PCMs) have provided paleontologists with a powerful set of analytical tools for investigating evolutionary tempo and mode in fossil lineages. However, attempts to integrate PCMs with fossil data often present workers with practical challenges or unfamiliar literature. In this paper, we present guides to the theory behind, and application of, PCMs with fossil taxa. Based on an empirical dataset of Paleozoic crinoids, we present example analyses to illustrate common applications of PCMs to fossil data, including investigating patterns of correlated trait evolution, and macroevolutionary models of morphological change. We emphasize the importance of accounting for sources of uncertainty, and discuss how to evaluate model fit and adequacy. Finally, we discuss several promising methods for modelling heterogenous evolutionary dynamics with fossil phylogenies. Integrating phylogeny-based approaches with the fossil record provides a rigorous, quantitative perspective to understanding key patterns in the history of life. 1. Introduction A fundamental prediction of biological evolution is that a species will most commonly share many characteristics with lineages from which it has recently diverged, and fewer characteristics with lineages from which it diverged further in the past. This principle, which results from descent with modification, is one of the most basic in biology (Darwin 1859).
    [Show full text]
  • Phylogenetic Definitions in the Pre-Phylocode Era; Implications for Naming Clades Under the Phylocode
    PaleoBios 27(1):1–6, April 30, 2007 © 2006 University of California Museum of Paleontology Phylogenetic definitions in the pre-PhyloCode era; implications for naming clades under the PhyloCode MiChAel P. TAylor Palaeobiology research Group, School of earth and environmental Sciences, University of Portsmouth, Portsmouth Po1 3Ql, UK; [email protected] The last twenty years of work on phylogenetic nomenclature have given rise to many names and definitions that are now considered suboptimal. in formulating permanent definitions under the PhyloCode when it is implemented, it will be necessary to evaluate the corpus of existing names and make judgements about which to establish and which to discard. This is not straightforward, because early definitions are often inexplicit and ambiguous, generally do not meet the requirements of the PhyloCode, and in some cases may not be easily recognizable as phylogenetic definitions at all. recognition of synonyms is also complicated by the use of different kinds of specifiers (species, specimens, clades, genera, suprageneric rank-based names, and vernacular names) and by definitions whose content changes under different phylogenetic hypotheses. in light of these difficulties, five principles are suggested to guide the interpreta- tion of pre-PhyloCode clade-names and to inform the process of naming clades under the PhyloCode: (1) do not recognize “accidental” definitions; (2) malformed definitions should be interpreted according to the intention of the author when and where this is obvious; (3) apomorphy-based and other definitions must be recognized as well as node-based and stem-based definitions; (4) definitions using any kind of specifier taxon should be recognized; and (5) priority of synonyms and homonyms should guide but not prescribe.
    [Show full text]
  • Lineages, Splits and Divergence Challenge Whether the Terms Anagenesis and Cladogenesis Are Necessary
    Biological Journal of the Linnean Society, 2015, , – . With 2 figures. Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary FELIX VAUX*, STEVEN A. TREWICK and MARY MORGAN-RICHARDS Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand Received 3 June 2015; revised 22 July 2015; accepted for publication 22 July 2015 Using the framework of evolutionary lineages to separate the process of evolution and classification of species, we observe that ‘anagenesis’ and ‘cladogenesis’ are unnecessary terms. The terms have changed significantly in meaning over time, and current usage is inconsistent and vague across many different disciplines. The most popular definition of cladogenesis is the splitting of evolutionary lineages (cessation of gene flow), whereas anagenesis is evolutionary change between splits. Cladogenesis (and lineage-splitting) is also regularly made synonymous with speciation. This definition is misleading as lineage-splitting is prolific during evolution and because palaeontological studies provide no direct estimate of gene flow. The terms also fail to incorporate speciation without being arbitrary or relative, and the focus upon lineage-splitting ignores the importance of divergence, hybridization, extinction and informative value (i.e. what is helpful to describe as a taxon) for species classification. We conclude and demonstrate that evolution and species diversity can be considered with greater clarity using simpler, more transparent terms than anagenesis and cladogenesis. Describing evolution and taxonomic classification can be straightforward, and there is no need to ‘make words mean so many different things’. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.
    [Show full text]
  • Statistical Inference for the Linguistic and Non-Linguistic Past
    Statistical inference for the linguistic and non-linguistic past Igor Yanovich DFG Center for Advanced Study “Words, Bones, Genes and Tools” Universität Tübingen July 6, 2017 Igor Yanovich 1 / 46 Overview of the course Overview of the course 1 Today: trees, as a description and as a process 2 Classes 2-3: simple inference of language-family trees 3 Classes 4-5: computational statistical inference of trees and evolutionary parameters 4 Class 6: histories of languages and of genes 5 Class 7: simple spatial statistics 6 Class 8: regression taking into account linguistic relationships; synthesis of the course Igor Yanovich 2 / 46 Overview of the course Learning outcomes By the end of the course, you should be able to: 1 read and engage with the current literature in linguistic phylogenetics and in spatial statistics for linguistics 2 run phylogenetic and basic spatial analyses on linguistic data 3 proceed further in the subject matter on your own, towards further advances in the field Igor Yanovich 3 / 46 Overview of the course Today’s class 1 Overview of the course 2 Language families and their structures 3 Trees as classifications and as process depictions 4 Linguistic phylogenetics 5 Worries about phylogenetics in linguistics vs. biology 6 Quick overview of the homework 7 Summary of Class 1 Igor Yanovich 4 / 46 Language families and their structures Language families and their structures Igor Yanovich 5 / 46 Language families and their structures Dravidian A modification of [Krishnamurti, 2003, Map 1.1], from Wikipedia Igor Yanovich 6 / 46 Language families and their structures Dravidian [Krishnamurti, 2003]’s classification: Dravidian family South Dravidian Central Dravidian North Dravidian SD I SD II Tamil Malay¯al.am Kannad.a Telugu Kolami Brahui (70M) (38M) (40M) (75M) (0.1M) (4M) (Numbers of speakers from Wikipedia) Igor Yanovich 7 / 46 Language families and their structures Dravidian: similarities and differences Proto-Dr.
    [Show full text]
  • Diversity-Dependent Cladogenesis Throughout Western Mexico: Evolutionary Biogeography of Rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus)
    City University of New York (CUNY) CUNY Academic Works Publications and Research New York City College of Technology 2016 Diversity-dependent cladogenesis throughout western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) Christopher Blair CUNY New York City College of Technology Santiago Sánchez-Ramírez University of Toronto How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/ny_pubs/344 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] 1Blair, C., Sánchez-Ramírez, S., 2016. Diversity-dependent cladogenesis throughout 2 western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: 3 Crotalus and Sistrurus ). Molecular Phylogenetics and Evolution 97, 145–154. 4 https://doi.org/10.1016/j.ympev.2015.12.020. © 2016. This manuscript version is made 5 available under the CC-BY-NC-ND 4.0 license. 6 7 8 Diversity-dependent cladogenesis throughout western Mexico: evolutionary 9 biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus) 10 11 12 CHRISTOPHER BLAIR1*, SANTIAGO SÁNCHEZ-RAMÍREZ2,3,4 13 14 15 1Department of Biological Sciences, New York City College of Technology, Biology PhD 16 Program, Graduate Center, The City University of New York, 300 Jay Street, Brooklyn, 17 NY 11201, USA. 18 2Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks 19 Street, Toronto, ON, M5S 3B2, Canada. 20 3Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, 21 ON, M5S 2C6, Canada. 22 4Present address: Environmental Genomics Group, Max Planck Institute for 23 Evolutionary Biology, August-Thienemann-Str.
    [Show full text]