Statistical Inference for the Linguistic and Non-Linguistic Past

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Inference for the Linguistic and Non-Linguistic Past Statistical inference for the linguistic and non-linguistic past Igor Yanovich DFG Center for Advanced Study “Words, Bones, Genes and Tools” Universität Tübingen July 6, 2017 Igor Yanovich 1 / 46 Overview of the course Overview of the course 1 Today: trees, as a description and as a process 2 Classes 2-3: simple inference of language-family trees 3 Classes 4-5: computational statistical inference of trees and evolutionary parameters 4 Class 6: histories of languages and of genes 5 Class 7: simple spatial statistics 6 Class 8: regression taking into account linguistic relationships; synthesis of the course Igor Yanovich 2 / 46 Overview of the course Learning outcomes By the end of the course, you should be able to: 1 read and engage with the current literature in linguistic phylogenetics and in spatial statistics for linguistics 2 run phylogenetic and basic spatial analyses on linguistic data 3 proceed further in the subject matter on your own, towards further advances in the field Igor Yanovich 3 / 46 Overview of the course Today’s class 1 Overview of the course 2 Language families and their structures 3 Trees as classifications and as process depictions 4 Linguistic phylogenetics 5 Worries about phylogenetics in linguistics vs. biology 6 Quick overview of the homework 7 Summary of Class 1 Igor Yanovich 4 / 46 Language families and their structures Language families and their structures Igor Yanovich 5 / 46 Language families and their structures Dravidian A modification of [Krishnamurti, 2003, Map 1.1], from Wikipedia Igor Yanovich 6 / 46 Language families and their structures Dravidian [Krishnamurti, 2003]’s classification: Dravidian family South Dravidian Central Dravidian North Dravidian SD I SD II Tamil Malay¯al.am Kannad.a Telugu Kolami Brahui (70M) (38M) (40M) (75M) (0.1M) (4M) (Numbers of speakers from Wikipedia) Igor Yanovich 7 / 46 Language families and their structures Dravidian: similarities and differences Proto-Dr. Tamil Malay¯al.am Kannada Telugu Kolami Brahui *y¯at.u ‘goat, sheep’ y¯at.u, ¯at.u ¯at.u ¯ad.u ¯et.a ‘ram’ — h¯et. *n¯ir ‘water’ n¯ir n¯ir n¯ir, n¯iru n¯iru ¯ir d¯ir *kay ‘hand’ kai kai, kayyi kayi, kayyi, key c¯eyi key — From [Krishnamurti, 2003] and [Burrow and Emeneau, 1984] http://dsal.uchicago.edu/dictionaries/burrow/ From [Krishnamurti, 2003] Igor Yanovich 8 / 46 Language families and their structures Dravidian: similarities and differences From [Krishnamurti, 2003] Igor Yanovich 9 / 46 Trees as classifications and as process depictions Trees as classifications and as process depictions Igor Yanovich 10 / 46 Trees as classifications and as process depictions Two interpretations of the tree: (i) classification Tree as classification: captures the similarity between different languages within the family The closer A and B are in the tree, the more similar they are Dravidian family South Dravidian Central Dravidian North Dravidian SD I SD II Tamil Malay¯al.am Kannad.a Telugu Kolami Brahui (70M) (38M) (40M) (75M) (0.1M) (4M) A bit of tree terminology: daughter, mother, sister; clade; root; internal node, leave/tip/terminal node; polytomy, binary branching Igor Yanovich 11 / 46 Trees as classifications and as process depictions Quick exercise: closeness in a tree? Exercise 1: how to define closeness in a tree reasonably? Dravidian family South Dravidian Central Dravidian North Dravidian SD I SD II Tamil Malay¯al.am Kannad.a Telugu Kolami Brahui (70M) (38M) (40M) (75M) (0.1M) (4M) Igor Yanovich 12 / 46 Trees as classifications and as process depictions Two interpretations of the tree: (ii) depiction of the history Proto-Dravidian Proto-South Dr. Proto-Central Dr. Proto-North Dr. time Proto-SD I Proto-SD II Tamil Malay¯al.am Kannad.a Telugu Kolami Brahui (70M) (38M) (40M) (75M) (0.1M) (4M) Igor Yanovich 13 / 46 Trees as classifications and as process depictions Presuppositions of the “history tree” At the root, we have a single language It develops as time goes by, and sometimes divides into several How to connect the tree and innovations? Perspective 1: nodes are distinct languages ) once many new features appear, we have many languages instead of one Perspective 2: nodes are linguistic communities ) communities get isolated, and gradually accumulate different innovations Igor Yanovich 14 / 46 Trees as classifications and as process depictions The comparative method: mapping innovations to a tree 1 Assume that the modern diversity of a family is created by a tree-like process of community splitting 2 Identify regular correspondences between identical-by-descent items roots morphemes phonemes 3 A constraints problem: find a tree s.t. subsequent changes starting from the common state at the root can result in the modern languages ) the result is a labelled tree where changes are associated with specific branches Igor Yanovich 15 / 46 Trees as classifications and as process depictions The comparative method: mapping innovations to a tree Selected changes reconstructed by [Krishnamurti, 2003]: Proto-Dravidian *e ! *i*u Proto-South Dr. Proto-Central Dr. Proto-North Dr. time novel ‘she’ *n- Proto-SD I Proto-SD II ! * ; - Tamil Malay¯al.am Kannad.a Telugu Kolami Brahui (70M) (38M) (40M) (75M) (0.1M) (4M) Igor Yanovich 16 / 46 Trees as classifications and as process depictions The comparative method: mapping innovations to a tree SouthD SD I SD II TaMa Tamil Malay¯al.am Kannad.a Telugu Gondi *c- ! ∅− apical loss, etc. Igor Yanovich 17 / 46 Trees as classifications and as process depictions Complications: lateral transfer Old Norse they ?3sg; - s PGermanic Northern Middle English they ; 3sg - Old English s h¯i, 3sg -th Southern Middle English Present-Day English h¯i, 3sg -th they; 3sg -s Igor Yanovich 18 / 46 Trees as classifications and as process depictions Innovations on a tree In principle, the tree model assumes that innovations happen on specific branches of the tree. In practice, this is unrealistic: Some innovations span sets of dialects/languages not forming a clade There exists secondary lateral transfer [Bammesberger, 1992]: “Since linguistic subgrouping can be carried out only on the basis of shared innovations, some of the traits which are peculiarly characteristic of Germanic and set Germanic off from all the related languages must be listed here. It is probably true to say that none of these characteristics is limited to Germanic; but the sum total of the traits to be mentioned is peculiar to Germanic.” Igor Yanovich 19 / 46 Trees as classifications and as process depictions Exercise Unrealistic position: languages develop in a tree-like process, and innovations always apply to clades. Exercise 2: formulate two reasonable alternative positions on how languages develop through time (3-4 sentences each) Tree-with-exceptions position: The challenge: explain the exceptions to the tree-like pattern Something-other-than-a-tree position: The challenge: explain why a large part of innovation patterns is often consistent with the simple-tree model Igor Yanovich 20 / 46 Linguistic phylogenetics Linguistic phylogenetics Igor Yanovich 21 / 46 Linguistic phylogenetics Linguistic phylogenetics Practical compromise: work with the tree model, but with the understanding of its limitations. Linguistic phylogenetics: the study of genetic (i.e. descent-based) relationships between languages By-hand phylogenetics: uses the classical comparative method to identify innovations employs assumptions about dialect contact to explain deviations from the tree structure aims to rely on the complete set of available data: phonology, morphology, lexis, syntax, semantics Igor Yanovich 22 / 46 Linguistic phylogenetics Linguistic phylogenetics By-hand phylogenetics: uses the classical comparative method to identify innovations employs assumptions about dialect contact to explain deviations from the tree structure aims to rely on the complete set of available data: phonology, morphology, lexis, syntax, semantics Computational phylogenetics: employs methods from computational biology (sometimes modified to better fit linguistic data) relies on classical historical linguistics for gold standard phylogenies and often identity-by-descent categorizaton is based in practice on circumscribed datasets Igor Yanovich 23 / 46 Linguistic phylogenetics By-hand vs. computational phylogenetics Humans: are good at incorporating different types of evidence are good at constructing scientific, logical proofs are bad at processing many similar datapoints (because boring and resource-intensive) are bad at correctly estimating probabilities Computers: are good at processing very, very many similar datapoints are good at estimating probabilities given a set of assumptions cannot by themselves incorporate different types of evidence cannot interpret the numerical results they produce Igor Yanovich 24 / 46 Linguistic phylogenetics By-hand vs. computational phylogenetics [Krishnamurti, 2003]: by-hand analysis of the Dravidian family painstaking linguistic-reconstruction work weighing information from many types of data explicitly noting deviations from the strict tree model (e.g. Telugu) A simple computational analysis of the Dravidian family: 1 compile a dataset coding the presence of cognate lexemes (=lexemes identical by descent) in 18 Dravidian languages. (The data by [Rama, 2017], published by him on GitHub.) 2 run computational phylogenetic algorithms on these data 3 interpret the results Igor Yanovich 25 / 46 Linguistic phylogenetics Computational phylogenetics: example Tree based on Maximum Parsimony on [Rama, 2017]’s data: Igor Yanovich 26 / 46 Linguistic phylogenetics Computational
Recommended publications
  • Species Concepts Should Not Conflict with Evolutionary History, but Often Do
    ARTICLE IN PRESS Stud. Hist. Phil. Biol. & Biomed. Sci. xxx (2008) xxx–xxx Contents lists available at ScienceDirect Stud. Hist. Phil. Biol. & Biomed. Sci. journal homepage: www.elsevier.com/locate/shpsc Species concepts should not conflict with evolutionary history, but often do Joel D. Velasco Department of Philosophy, University of Wisconsin-Madison, 5185 White Hall, 600 North Park St., Madison, WI 53719, USA Department of Philosophy, Building 90, Stanford University, Stanford, CA 94305, USA article info abstract Keywords: Many phylogenetic systematists have criticized the Biological Species Concept (BSC) because it distorts Biological Species Concept evolutionary history. While defences against this particular criticism have been attempted, I argue that Phylogenetic Species Concept these responses are unsuccessful. In addition, I argue that the source of this problem leads to previously Phylogenetic Trees unappreciated, and deeper, fatal objections. These objections to the BSC also straightforwardly apply to Taxonomy other species concepts that are not defined by genealogical history. What is missing from many previous discussions is the fact that the Tree of Life, which represents phylogenetic history, is independent of our choice of species concept. Some species concepts are consistent with species having unique positions on the Tree while others, including the BSC, are not. Since representing history is of primary importance in evolutionary biology, these problems lead to the conclusion that the BSC, along with many other species concepts, are unacceptable. If species are to be taxa used in phylogenetic inferences, we need a history- based species concept. Ó 2008 Elsevier Ltd. All rights reserved. When citing this paper, please use the full journal title Studies in History and Philosophy of Biological and Biomedical Sciences 1.
    [Show full text]
  • Phylogenetic Comparative Methods: a User's Guide for Paleontologists
    Phylogenetic Comparative Methods: A User’s Guide for Paleontologists Laura C. Soul - Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA David F. Wright - Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA and Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Abstract. Recent advances in statistical approaches called Phylogenetic Comparative Methods (PCMs) have provided paleontologists with a powerful set of analytical tools for investigating evolutionary tempo and mode in fossil lineages. However, attempts to integrate PCMs with fossil data often present workers with practical challenges or unfamiliar literature. In this paper, we present guides to the theory behind, and application of, PCMs with fossil taxa. Based on an empirical dataset of Paleozoic crinoids, we present example analyses to illustrate common applications of PCMs to fossil data, including investigating patterns of correlated trait evolution, and macroevolutionary models of morphological change. We emphasize the importance of accounting for sources of uncertainty, and discuss how to evaluate model fit and adequacy. Finally, we discuss several promising methods for modelling heterogenous evolutionary dynamics with fossil phylogenies. Integrating phylogeny-based approaches with the fossil record provides a rigorous, quantitative perspective to understanding key patterns in the history of life. 1. Introduction A fundamental prediction of biological evolution is that a species will most commonly share many characteristics with lineages from which it has recently diverged, and fewer characteristics with lineages from which it diverged further in the past. This principle, which results from descent with modification, is one of the most basic in biology (Darwin 1859).
    [Show full text]
  • Lineages, Splits and Divergence Challenge Whether the Terms Anagenesis and Cladogenesis Are Necessary
    Biological Journal of the Linnean Society, 2015, , – . With 2 figures. Lineages, splits and divergence challenge whether the terms anagenesis and cladogenesis are necessary FELIX VAUX*, STEVEN A. TREWICK and MARY MORGAN-RICHARDS Ecology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand Received 3 June 2015; revised 22 July 2015; accepted for publication 22 July 2015 Using the framework of evolutionary lineages to separate the process of evolution and classification of species, we observe that ‘anagenesis’ and ‘cladogenesis’ are unnecessary terms. The terms have changed significantly in meaning over time, and current usage is inconsistent and vague across many different disciplines. The most popular definition of cladogenesis is the splitting of evolutionary lineages (cessation of gene flow), whereas anagenesis is evolutionary change between splits. Cladogenesis (and lineage-splitting) is also regularly made synonymous with speciation. This definition is misleading as lineage-splitting is prolific during evolution and because palaeontological studies provide no direct estimate of gene flow. The terms also fail to incorporate speciation without being arbitrary or relative, and the focus upon lineage-splitting ignores the importance of divergence, hybridization, extinction and informative value (i.e. what is helpful to describe as a taxon) for species classification. We conclude and demonstrate that evolution and species diversity can be considered with greater clarity using simpler, more transparent terms than anagenesis and cladogenesis. Describing evolution and taxonomic classification can be straightforward, and there is no need to ‘make words mean so many different things’. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.
    [Show full text]
  • Learning the “Game” of Life: Reconstruction of Cell Lineages Through Crispr-Induced Dna Mutations
    LEARNING THE “GAME” OF LIFE: RECONSTRUCTION OF CELL LINEAGES THROUGH CRISPR-INDUCED DNA MUTATIONS JIAXIAO CAI, DA KUANG, ARUN KIRUBARAJAN, MUKUND VENKATESWARAN ABSTRACT. Multi-cellular organisms are composed of many billions of individuals cells that exist by the mutation of a single stem cell. The CRISPR-based molecular-tools induce DNA mutations, which allows us to study the mutation lineages of various multi-ceulluar organisms. However, to date no lineage reconstruction algorithms have been examined for their performance/robustness across various molecular tools, datasets and sizes of lineage trees. In addition, it is unclear whether classical machine learning algorithms, deep neural networks or some combination of the two are the best approach for this task. In this paper, we introduce 1) a simulation framework for the zygote development process to achieve a dataset size required by deep learning models, and 2) various supervised and unsupervised approaches for cell mutation tree reconstruction. In particular, we show how deep generative models (Autoencoders and Variational Autoencoders), unsupervised clustering methods (K-means), and classical tree reconstruction algorithms (UPGMA) can all be used to trace cell mutation lineages. 1. INTRODUCTION Multi-cellular organisms are composed of billions or trillions of different interconnected cells that derive from a single cell through repeated rounds of cell division — knowing the cell lineage that produces a fully developed organism from a single cell provides the framework for understanding when, where, and how cell fate decisions are made. The recent advent of new CRISPR-based molecular tools synthetically induced DNA mutations and made it possible to solve lineage of complex model organisms at single-cell resolution.[1] Starting in early embryogenesis, CRISPR-induced mutations occur stochastically at introduced target sites, and these mutations are stably inherited by the offspring of these cells and immune to further change.
    [Show full text]
  • Phylogenetics
    Phylogenetics What is phylogenetics? • Study of branching patterns of descent among lineages • Lineages – Populations – Species – Molecules • Shift between population genetics and phylogenetics is often the species boundary – Distantly related populations also show patterning – Patterning across geography What is phylogenetics? • Goal: Determine and describe the evolutionary relationships among lineages – Order of events – Timing of events • Visualization: Phylogenetic trees – Graph – No cycles Phylogenetic trees • Nodes – Terminal – Internal – Degree • Branches • Topology Phylogenetic trees • Rooted or unrooted – Rooted: Precisely 1 internal node of degree 2 • Node that represents the common ancestor of all taxa – Unrooted: All internal nodes with degree 3+ Stephan Steigele Phylogenetic trees • Rooted or unrooted – Rooted: Precisely 1 internal node of degree 2 • Node that represents the common ancestor of all taxa – Unrooted: All internal nodes with degree 3+ Phylogenetic trees • Rooted or unrooted – Rooted: Precisely 1 internal node of degree 2 • Node that represents the common ancestor of all taxa – Unrooted: All internal nodes with degree 3+ • Binary: all speciation events produce two lineages from one • Cladogram: Topology only • Phylogram: Topology with edge lengths representing time or distance • Ultrametric: Rooted tree with time-based edge lengths (all leaves equidistant from root) Phylogenetic trees • Clade: Group of ancestral and descendant lineages • Monophyly: All of the descendants of a unique common ancestor • Polyphyly:
    [Show full text]
  • Advances in Computational Methods for Phylogenetic Networks in the Presence of Hybridization
    Advances in Computational Methods for Phylogenetic Networks in the Presence of Hybridization R. A. Leo Elworth, Huw A. Ogilvie, Jiafan Zhu, and Luay Nakhleh Abstract Phylogenetic networks extend phylogenetic trees to allow for modeling reticulate evolutionary processes such as hybridization. They take the shape of a rooted, directed, acyclic graph, and when parameterized with evolutionary parame- ters, such as divergence times and population sizes, they form a generative process of molecular sequence evolution. Early work on computational methods for phylo- genetic network inference focused exclusively on reticulations and sought networks with the fewest number of reticulations to fit the data. As processes such as incom- plete lineage sorting (ILS) could be at play concurrently with hybridization, work in the last decade has shifted to computational approaches for phylogenetic net- work inference in the presence of ILS. In such a short period, significant advances have been made on developing and implementing such computational approaches. In particular, parsimony, likelihood, and Bayesian methods have been devised for estimating phylogenetic networks and associated parameters using estimated gene trees as data. Use of those inference methods has been augmented with statistical tests for specific hypotheses of hybridization, like the D-statistic. Most recently, Bayesian approaches for inferring phylogenetic networks directly from sequence data were developed and implemented. In this chapter, we survey such advances and discuss model assumptions as well as methods’ strengths and limitations. We also discuss parallel efforts in the population genetics community aimed at inferring similar structures. Finally, we highlight major directions for future research in this area. R. A. Leo Elworth Rice University e-mail: [email protected] Huw A.
    [Show full text]
  • Reading Phylogenetic Trees: a Quick Review (Adapted from Evolution.Berkeley.Edu)
    Biological Trees Gloria Rendon SC11 Education June, 2011 Biological trees • Biological trees are used for the purpose of classification, i.e. grouping and categorization of organisms by biological type such as genus or species. Types of Biological trees • Taxonomy trees, like the one hosted at NCBI, are hierarchies; thus classification is determined by position or rank within the hierarchy. It goes from kingdom to species. • Phylogenetic trees represent evolutionary relationships, or genealogy, among species. Nowadays, these trees are usually constructed by comparing 16s/18s ribosomal RNA. • Gene trees represent evolutionary relationships of a particular biological molecule (gene or protein product) among species. They may or may not match the species genealogy. Examples: hemoglobin tree, kinase tree, etc. TAXONOMY TREES Exercise 1: Exploring the Species Tree at NCBI •There exist many taxonomies. •In this exercise, we will examine the taxonomy at NCBI. •NCBI has a taxonomy database where each category in the tree (from the root to the species level) has a unique identifier called taxid. •The lineage of a species is the full path you take in that tree from the root to the point where that species is located. •The (NCBI) taxonomy common tree is therefore the tree that results from adding together the full lineages of each species in a particular list of your choice. Exercise 1: Exploring the Species Tree at NCBI • Open a web browser on NCBI’s Taxonomy page http://www.ncbi.nlm.n ih.gov/Taxonomy/ • Click on each one of the names here to look up the taxonomy id (taxid) of each one of the five categories of the taxonomy browser: Archaea, bacteria, Eukaryotes, Viroids and Viruses.
    [Show full text]
  • Phylogenetic Systematics As the Basis of Comparative Biology
    SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 73 Phylogenetic Systematics as the Basis of Comparative Biology KA. Funk and Daniel R. Brooks SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1990 ABSTRACT Funk, V.A. and Daniel R. Brooks. Phylogenetic Systematics as the Basis of Comparative Biology. Smithsonian Contributions to Botany, number 73, 45 pages, 102 figures, 12 tables, 199O.-Evolution is the unifying concept of biology. The study of evolution can be approached from a within-lineage (microevolution) or among-lineage (macroevolution) perspective. Phylogenetic systematics (cladistics) is the appropriate basis for all among-liieage studies in comparative biology. Phylogenetic systematics enhances studies in comparative biology in many ways. In the study of developmental constraints, the use of such phylogenies allows for the investigation of the possibility that ontogenetic changes (heterochrony) alone may be sufficient to explain the perceived magnitude of phenotypic change. Speciation via hybridization can be suggested, based on the character patterns of phylogenies. Phylogenetic systematics allows one to examine the potential of historical explanations for biogeographic patterns as well as modes of speciation. The historical components of coevolution, along with ecological and behavioral diversification, can be compared to the explanations of adaptation and natural selection. Because of the explanatory capabilities of phylogenetic systematics, studies in comparative biology that are not based on such phylogenies fail to reach their potential. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Srnithonhn Year. SERIES COVER DESIGN: Leaf clearing from the katsura tree Cercidiphyllumjaponicum Siebold and Zuccarini. Library of Cmgrcss Cataloging-in-PublicationDiaa Funk, V.A (Vicki A.), 1947- PhylogmttiC ryrtcmaticsas tk basis of canpamtive biology / V.A.
    [Show full text]
  • Allozyme Divergence and Phylogenetic Relationships Among Capra, Ovis and Rupicapra (Artyodactyla, Bovidae)
    Heredity'S? (1991) 281—296 Received 28 November 7990 Genetical Society of Great Britain Allozyme divergence and phylogenetic relationships among Capra, Ovis and Rupicapra (Artyodactyla, Bovidae) E. RANOI,* G. FUSCO,* A. LORENZINI,* S. TOSO & G. TOSIt *g7ftj Nez/c nate di 9/clog/a del/a Selvaggine, Via Ca Fornacetta, 9 Ozzano dell'EmiIia (Bo) Italy, and j-Dipartimento di B/Wag/a, Universitâ diM/lana, Via Ce/ar/a, 3 Mi/epa,Italy Geneticdivergence and phylogenetic relationships between the chamois (Rupicaprini, Rupkapra rupicapra rupicapra) and three species of the Caprini (Capra aegagrus hircus, Capra ibex ibex and Ovis amrnon musUnon) have been studied by multilocus protein electrophoresis. Dendrograms have been constructed both with distance and parsimony methods. Goat, sheep and chamois pair- wise genetic distances had very similar values, All the topologies showed that Capra, Ovis and Rupicapra originate from the same internode, suggesting the hypothesis of a common, and almost contemporaneous, ancestor. The estimated divergence times among the three genera ranged from 5.28 to 7.08 Myr. These findings suggest the need to reconsider the evolutionary relationships in the Caprinae. Keywords:allozymes,Caprinae, electrophoresis phylogenetic trees. caprid lineage since the lower or middle Miocene. Introduction ShaDer (1977) agrees with the outline given by Thenius Theevolutionary relationships of the subfamily & Hofer (1960) supporting the idea of a more recent Caprinae (Artyodactyla, Bovidae; Corbet, 1978) have origin of the Caprini, and in particular of a Pliocenic been discussed by Geist (197!) within the framework splitting of Ovis and Capra. In Geist's (1971) opinion of his dispersal theory of Ice Age mammal evolution.
    [Show full text]
  • Taxonomy and Classification Goals: Un Ders Tan D Traditi Onal and Hi Erarchi Cal Cl Assifi Cati Ons of Biodiversity, and What Information Classifications May Contain
    Taxonomy and classification Goals: Un ders tan d tra ditional and hi erarchi cal cl assifi cati ons of biodiversity, and what information classifications may contain. Readings: 1. Chapter 1. Figure 1-1 from Pough et al. Taxonomy and classification (cont ’d) Some new words This is a cladogram. Each branching that are very poiiint is a nod dEhbhe. Each branch, starti ng important: at the node, is a clade. 9 Cladogram 9 Clade 9 Synapomorphy (Shared, derived character) 9 Monophyly; monophyletic 9 PhlParaphyly; parap hlihyletic 9 Polyphyly; polyphyletic Definitions of cladogram on the Web: A dichotomous phylogenetic tree that branches repeatedly, suggesting the classification of molecules or org anisms based on the time sequence in which evolutionary branches arise. xray.bmc.uu.se/~kenth/bioinfo/glossary.html A tree that depicts inferred historical branching relationships among entities. Unless otherwise stated, the depicted branch lengt hs in a cl ad ogram are arbi trary; onl y th e b ranchi ng ord er is significant. See phylogram. www.bcu.ubc.ca/~otto/EvolDisc/Glossary.html TAKE-HOME MESSAGE: Cladograms tell us about the his tory of the re lati onshi ps of organi sms. K ey word : Hi st ory. Historically, classification of organisms was mainlyypg a bookkeeping task. For this monumental job, Carrolus Linnaeus invented the s ystem of binomial nomenclature that we are all familiar with. (Did you know that his name was Carol Linne? He liidhilatinized his own name th e way h e named speci i!)es!) Merely giving species names and arranging them according to similar groups was acceptable while we thought species were static entities .
    [Show full text]
  • Phylogenetic Comparative Methods
    Phylogenetic Comparative Methods Luke J. Harmon 2019-3-15 1 Copyright This is book version 1.4, released 15 March 2019. This book is released under a CC-BY-4.0 license. Anyone is free to share and adapt this work with attribution. ISBN-13: 978-1719584463 2 Acknowledgements Thanks to my lab for inspiring me, my family for being my people, and to the students for always keeping us on our toes. Helpful comments on this book came from many sources, including Arne Moo- ers, Brian O’Meara, Mike Whitlock, Matt Pennell, Rosana Zenil-Ferguson, Bob Thacker, Chelsea Specht, Bob Week, Dave Tank, and dozens of others. Thanks to all. Later editions benefited from feedback from many readers, including Liam Rev- ell, Ole Seehausen, Dean Adams and lab, and many others. Thanks! Keep it coming. If you like my publishing model try it yourself. The book barons are rich enough, anyway. Except where otherwise noted, this book is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit https: //creativecommons.org/licenses/by/4.0/. 3 Table of contents Chapter 1 - A Macroevolutionary Research Program Chapter 2 - Fitting Statistical Models to Data Chapter 3 - Introduction to Brownian Motion Chapter 4 - Fitting Brownian Motion Chapter 5 - Multivariate Brownian Motion Chapter 6 - Beyond Brownian Motion Chapter 7 - Models of discrete character evolution Chapter 8 - Fitting models of discrete character evolution Chapter 9 - Beyond the Mk model Chapter 10 - Introduction to birth-death models Chapter 11 - Fitting birth-death models Chapter 12 - Beyond birth-death models Chapter 13 - Characters and diversification rates Chapter 14 - Summary 4 Chapter 1: A Macroevolutionary Research Pro- gram Section 1.1: Introduction Evolution is happening all around us.
    [Show full text]
  • Turkish Honeybees
    Table 1. Presence or absence of diagnostic restriction sites in four regions of honeybee mtDNA, and Turkish Honeybees: Genetic structure of the noncoding intergenic region Variation and Evidence for a West Type 1, eastern Type 2, eastern Middle Fourth Lineage of Apis Gene Enzyme European Mediterranean Mediterranean African Eastern mellifera mtDNA Cytochrome b BglII 11 1 21 COI HincII 12 2 22 M. R. Palmer, D. R. Smith, and lsrRNA EcoRI 21 2 22 O. KaftanogÏlu COI XbaI 21 1 22 COI XbaI 22 1 22 Noncoding sequence PQ Q Q P0QP1Q The mtDNA of bees from 84 colonies of PQQ P0QQ PQQQ P QQQ Turkish honeybees (Apis mellifera) was 0 surveyed for variation at four diagnostic Western European, eastern Mediterranean, and African are three lineages of honeybee mtDNA characterized by restriction sites and the sequence of a restriction site and length differences. Type 1 and type 2 are two variants of the eastern Mediterranean lineage. noncoding intergenic region. These colo- ``Gene'' indicates the approximate location of restriction sites, ``Enzyme'' the restriction enzyme. The ``1'' sign indicates presence of a restriction site, ``2'' indicates its absence. A novel pattern of restriction sites was found nies came from 16 locations, ranging from in bees from Hatay, Turkey; here it is called ``Middle Eastern.'' Primers for cytochrome b reported in Crozier et al. European Turkey and the western Medi- (1991); others in Hall and Smith (1990). Terminology for structure of the noncoding region follows that of Cornuet terranean coast to the Caucasus Moun- et al. (1991). tains along the Georgian border, the east- ern Lake Van region, and the extreme ner et al.
    [Show full text]