A GPU-Based Architecture for Real-Time Data Assessment at Synchrotron Experiments Suren Chilingaryan, Andreas Kopmann, Alessandro Mirone, Tomy Dos Santos Rolo

Total Page:16

File Type:pdf, Size:1020Kb

A GPU-Based Architecture for Real-Time Data Assessment at Synchrotron Experiments Suren Chilingaryan, Andreas Kopmann, Alessandro Mirone, Tomy Dos Santos Rolo A GPU-based Architecture for Real-Time Data Assessment at Synchrotron Experiments Suren Chilingaryan, Andreas Kopmann, Alessandro Mirone, Tomy dos Santos Rolo Abstract—Current imaging experiments at synchrotron beam to understand functionality of devices and organisms and to lines often lack a real-time data assessment. X-ray imaging optimize technological processes [1], [2]. cameras installed at synchrotron facilities like ANKA provide In recent years, synchrotron tomography has seen a tremen- millions of pixels, each with a resolution of 12 bits or more, and take up to several thousand frames per second. A given dous decrease of total acquisition time [3]. Based on available experiment can produce data sets of multiple gigabytes in a photon flux densities at modern synchrotron sources ultra-fast few seconds. Up to now the data is stored in local memory, X-ray imaging could enable investigation of the dynamics of transferred to mass storage, and then processed and analyzed off- technological and biological processes with a time scale down line. The data quality and thus the success of the experiment, can, to the milliseconds range in the 3D. Using modern CMOS therefore, only be judged with a substantial delay, which makes an immediate monitoring of the results impossible. To optimize based detectors it is possible to reach up to several thousand the usage of the micro-tomography beam-line at ANKA we have frames per second. For example, frame rates of 5000 images ported the reconstruction software to modern graphic adapters per second were achieved using a filtered white beam from which offer an enormous amount of calculation power. We were ESRF’s ID19 wiggler source [4]. Using a larger effective able to reduce the reconstruction time from multiple hours to just pixel size the frame rates of 40000 images per second were a few minutes with a sample dataset of 20 GB. Using the new reconstruction software it is possible to provide a near real-time reported [5]. As a result of improved image acquisition, a given visualization and significantly reduce the time needed for the first experiment can produce data sets of multiple gigabytes in a evaluation of the reconstructed sample. The main paradigm of few seconds. There is a major challenge to process these data our approach is 100% utilization of all system resources. The in reasonable amount of time facilitating on-line reconstruction compute intensive parts are offloaded to the GPU. While the and fast feedback. GPU is reconstructing one slice, the CPUs are used to prepare Two main approaches are used at the moment to handle the the next one. A special attention is devoted to minimize data transfers between the host and GPU memory and to execute I/O huge data-sets produced at the tomographic setups. operations in parallel with the computations. It could be shown • At TopoTomo beam-line of ANKA (synchrotron facility that for our application not the computational part but the data at KIT [5]) up to now the data was stored in local transfers are now limiting the speed of the reconstruction. Several memory, transferred to mass storage, and then processed changes in the architecture of the DAQ system are proposed to overcome this second bottleneck. The article will introduce the and analyzed off-line. The data quality and thus the system architecture, describe the hardware platform in details, success of the experiment can only be judged with a and analyze performance gains during the first half year of substantial delay, which makes an immediate monitoring operation. of the results impossible. • Second alternative is supercomputer-based processing, expensive in terms of money and power consumption. For I. INTRODUCTION example, a pipelined data acquisition system combining a RIVEN by substantial developments in digital detector fast detector system, high speed data networks, and mas- D technology there is presently a tremendous progress sively parallel computers was employed at synchrotron at going on in X-ray technology offering broad applications in Aragonne National Laboratory to acquire and reconstruct the fields of medical diagnostics, homeland security, non- a full tomogram in tens of minutes [3]. destructive testing, materials research and others. X-ray imag- Instead we decided to use computation power of modern ing permits spatially resolved visualization of the 2D and graphic adapters provided by NVIDIA and AMD. Including 3D structures in materials and organisms which is crucial hundreds of simple processors used to transform vertexes in for the understanding of their properties. Further it allows 3D space they offer a way to speed up the process of more than defect recognition in devices in a broad resolution range one order of magnitude at low cost and with good scalability. A from the macro down to the nano-scale. Additional resolution peak performance of fastest graphic cards exceeds one teraflop in the time domain gives insight in the temporal structure (for single precision numbers). Top gaming desktops include evolution and thus access to dynamics of processes allowing up to four of such cards and, thus, producing about 5 teraflops of computational power. Compared to 100 gigaflops provided S. Chilingaryan and A. Kopmann are with Institute of Data Processing and Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany by commonly used servers, this gives a potential speedup of (telephone: +49 724 7826579, e-mail: [email protected]) 50 times [6], [7]. A. Mirone is with European Synchrotron Radiation Facility, Grenoble, To provide this enormous computational power to devel- France T. dos Santos Rolo is with Institute for Synchrotron Radiation, Karlsruhe opers NVIDIA released a CUDA (Common Unified Device Institute of Technology, Karlsruhe, Germany Architecture [8]) toolkit. It extends C language with few 978-1-4244-7110-2/10/$26.00 ©2010 IEEE syntactical constructs used for GPU programming. CUDA details about PyHST and our optimizations are presented. The exploits data parallelism: basically the architecture allows to performance evaluation, a discussion of I/O bottleneck, and a execute a sequence of mathematical operations, so called ker- review of available hardware platforms are provided in fifth nels, simultaneously over a multi-dimensional set of data. API section. Finally, conclusion summarizes presented information. includes functions to transfer the data from the system memory to GPU memory, execute kernels to process these data, and II. IMAGING AT SYNCHROTRON LIGHT SOURCES transfer the results back to the system memory. For developer convenience NVIDIA and community have released a number Fundamentally, the imaging at synchrotron light sources of libraries implementing many standard algorithms. NVIDIA is working as follows. The sample is placed at horizontal CUDA SDK includes cuFFT - an interface to perform multi- platform and evenly rotated in front of a pixel detector. The dimensional FFT (Fast Fourier Transformations), cuBLAS - a parallel X-rays are penetrating the sample and the pixel de- BLAS (Basic Linear Algebra Subprograms) implementation, tector registers series of parallel 2D projections of the sample and cudpp - a collection of parallel reduction algorithms. There density at different angles. These projections along with the are community implementations of LAPACK (Linear Algebra coordinates of the rotation axis and the angle between slices PACKage) and quantity of computer vision algorithms [9], are the input data for PyHST. To reconstruct a 3D image from [10], [11]. projection PyHST employs a FBP algorithm. All projections In addition to vendor-dependent programming toolkits, like are replicated in 3D space across the X-rays direction and CUDA, Khronos Group have introduced OpenCL (Open Com- integrated, see Fig. 1. Since the sample is rotating round the puting Language [12]), a new industry standard for par- strictly vertical axis, the sample can be seen as a sequence of allel programming. The architecture of OpenCL is similar horizontal slices which can be reconstructed separately. If the to CUDA, but, unlike the proprietary NVIDIA technology, center of rotation is located at a center of coordinate system it allows to execute developed application on both AMD then to find a value of point with coordinates (x, y) in slice z, it and NVIDIA GPUs as well as on general-purpose multi- is necessary to compute the following sum over all projections: P − core/multiprocessor CPUs. Pp=1 Ip(xcos(pα) ysin(pα), z) where P is a number of FBP (Filtered Back Projection) is a standard method to projections, α is an angle between projections, and Ip is a p- reconstruct 3D image of object from multiplicity of tomo- th projection. Since the projections are digital images of finite graphic projections [13]. PyHST (High Speed Tomography resolutions, the linear interpolation is performed to get density in Python [14]) is a fast implementation of filtered back- value at position xcos(pα) − ysin(pα) [13], [20]. projection developed at ESRF (European Synchrotron Radi- ation Facility) and used currently at synchrotrons at ESRF and KIT [5]. While it uses heavily optimized C-code for performance intensive parts of algorithm, the processing of typical data set with nowadays Xeon servers is still requiring about one hour of computations. In order to increase speed of processing and achieve a near real-time performance we accelerated reconstruction by offloading most of the computa- tions to GPU with the help of CUDA toolkit. The optimized version of PyHST is able to reconstruct a typical 3D image (3 gigavoxel image is reconstructed from 2000 projections) in only 40 seconds using a GPU server equipped with 4 graphic cards, I/O time excluded. It is approximately 30 times faster Fig. 1. Image reconstruction using back-projection algorithm. The sample is evenly rotating and pixel detectors registers series of parallel projections at compared to 8-core Xeon server used before. different angles (left). All registered projections are replicated across direction There are a few other research projects aiming to GPU- of incidence and integrated (right).
Recommended publications
  • Fmri Analysis on the GPU - Possibilities and Challenges
    fMRI Analysis on the GPU - Possibilities and Challenges Anders Eklund, Mats Andersson and Hans Knutsson Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Anders Eklund, Mats Andersson and Hans Knutsson, fMRI Analysis on the GPU - Possibilities and Challenges, 2012, Computer Methods and Programs in Biomedicine, (105), 2, 145-161. http://dx.doi.org/10.1016/j.cmpb.2011.07.007 Copyright: Elsevier http://www.elsevier.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69677 fMRI Analysis on the GPU - Possibilities and Challenges Anders Eklunda,b,∗, Mats Anderssona,b, Hans Knutssona,b aDivision of Medical Informatics, Department of Biomedical Engineering bCenter for Medical Image Science and Visualization (CMIV) Link¨opingUniversity, Sweden Abstract Functional magnetic resonance imaging (fMRI) makes it possible to non-invasively measure brain activity with high spatial res- olution. There are however a number of issues that have to be addressed. One is the large amount of spatio-temporal data that needs to be processed. In addition to the statistical analysis itself, several preprocessing steps, such as slice timing correction and motion compensation, are normally applied. The high computational power of modern graphic cards has already successfully been used for MRI and fMRI. Going beyond the first published demonstration of GPU-based analysis of fMRI data, all the preprocessing steps and two statistical approaches, the general linear model (GLM) and canonical correlation analysis (CCA), have been implemented on a GPU. For an fMRI dataset of typical size (80 volumes with 64 x 64 x 22 voxels), all the preprocessing takes about 0.5 s on the GPU, compared to 5 s with an optimized CPU implementation and 120 s with the commonly used statistical parametric mapping (SPM) software.
    [Show full text]
  • Развитие На Gpgpu Супер-Компютрите. Възможности За Приложение На Nvidia Cuda При Паралелната Обработка На Сигнали И Изображения
    РАЗВИТИЕ НА GPGPU СУПЕР-КОМПЮТРИТЕ. ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ НА NVIDIA CUDA ПРИ ПАРАЛЕЛНАТА ОБРАБОТКА НА СИГНАЛИ И ИЗОБРАЖЕНИЯ ас.д-р Георги Петров, Филип Андонов - НБУ департамент “Телекомуникации”, департамент “Информатика” е-mail: [email protected], [email protected] Развитието на софтуерните системи и алгоритмите за цифрова обработка и анализ на сигнали и изображения, позволиха такива системи да се интегрират в класически приложения ползвани практически във всяка една човешка дейност, от системите за графична обработка и предпечат на произведения на изкуството, кино филми, аудио записи, 3D анимация и игри, до високо прецизните медицински компютърни томографи и магнитни резонансни скенери, както и системите за сигнална обработка, компресия на цифрово видео и много други сфери и приложения. Макар наличните на пазара компютърни конфигурации днес да надвишават хилядократно по производителност и бързодействие своите предшественици от преди 10 години, тези системи са оптимизирани за работа с така наречените настолни приложения. Този тип приложения са оптимизирани за офис работа, основно текстови и графични редактори, гледане на цифрово видео и слушане на музика, уеб приложения и др. Класическите процесорни архитектури (Intel, AMD х86, х64 модели) предлагани днес на пазара в най-разнообразни конфигурации 2, 4 и 8 ядрени процесорни блокове, които позволяват многократно повишаване на бързодействието на потребителския и системен софтуер. Тези системи са създадени предимно за символна обработка и последователни изчисления, което ги прави нефункционални в приложения за сигнална и статистическа обработка. За научни изчисления години наред се разработват клъстерни супер компютърни системи, като: Connection Machine (1980), MasPar (1987), Cray (1972-1995, която се слива със Silicon Graphics през 1996), в които става възможно паралелизирането на отделните изчислителни задачи.
    [Show full text]
  • Título: Aceleración De Aplicaciones Científicas Mediante Gpus. Alumno: Diego Luis Caballero De Gea. Directores: Xavier Martor
    Título: Aceleración de Aplicaciones Científicas mediante GPUs. Alumno: Diego Luis Caballero de Gea. Directores: Xavier Martorell Bofill (UPC), Juan Fernández Peinador (UM) y Javier Cuenca Muñoz (UM). Departamento: Arquitectura de Computadores (UPC) y Arquitectura y Tecnología de Computadores (UM). Fecha: Junio de 2010. Universidad de Murcia Universidad Politécnica de Cataluña Facultad de Informática Aceleración de Aplicaciones Científicas mediante GPUs Proyecto Fin de Carrera Diego Luis Caballero de Gea Junio de 2010 Dirigido por: Xavier Martorell Bofill Departamento de Arquitectura de Computadores. Universidad Politécnica de Cataluña. Juan Fernández Peinador Departamento de Arquitectura y Tecnología de Computadores. Universidad de Murcia. Javier Cuenca Muñoz Departamento de Arquitectura y Tecnología de Computadores. Universidad de Murcia. Índice General Abstract ........................................................................................................................... 14 1. Introducción y Contexto del Proyecto .................................................................... 15 1.1 Introducción ..................................................................................................... 15 1.2 Contexto del Proyecto ...................................................................................... 16 1.3 Estructura del Documento ............................................................................... 17 1.4 Planificación Inicial ........................................................................................
    [Show full text]
  • PAP Advanced Computer Architectures 1 Motivation
    Advanced Computer Architectures GPU (Graphics processing unit), GPGPU (General-purpose computing on GPU; General-purpose GPU) and GPU Computing Czech Technical University in Prague, Faculty of Electrical Engineering Slides authors: Michal Štepanovský, update Pavel Píša B4M35PAP Advanced Computer Architectures 1 Motivation • Tianhe-1A - Chinese Academy of Sciences' Institute of Process Engineering (CAS-IPE) • Molecular simulations of 110 milliards atoms (1.87 / 2.507 PetaFLOPS) • Rmax: 2.56 Pflops, Rpeak: 4,7 PFLOPS • 7 168 Nvidia Tesla M2050 (448 Thread processors, 512 GFLOPS FMA) • 14 336 Xeon X5670 (6 cores / 12 threads) • „If the Tianhe-1A were built only with CPUs, it would need more than 50,000 CPUs and consume more than 12MW. As it is, the Tianhe-1A consumes 4.04MW.“ http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/ which leads to 633 GFlop/kWatt (K Computer - 830 GFlop/kWatt) • It uses own interconnection network: Arch, 160 Gbps • There are already three supercomputers utilizing graphics cards in China, Tianhe-1 (AMD Radeon HD 4870 X2), Nebulae (nVidia Tesla C2050) and Tianhe-1A • http://i.top500.org/system/176929 • http://en.wikipedia.org/wiki/Tianhe-I B4M35PAP Advanced Computer Architectures 2 Motivation Tianhe-2 • 33.86 PFLOPS • Power consumption 17 MW • Kylin Linux • 16,000 nodes, each built from 2 Intel Ivy Bridge Xeon processors and 3 Intel Xeon Phi coprocessors (61 cores) = 32000 CPU and 48000 coprocessors, 3 120 000 cores in total • Fortran, C, C++, Java, OpenMP, and
    [Show full text]
  • Andre Luiz Rocha Tupinamba
    Universidade do Estado do Rio de Janeiro Centro de Tecnologia e Ciências Faculdade de Engenharia André Luiz Rocha Tupinambá DistributedCL: middleware de proces samento distribuído em GPU com interface da API OpenCL Rio de Janeiro 2013 André Luiz Rocha Tupinambá DistributedCL: middleware de processamento distribuído em GPU com interface da API OpenCL Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Eletrônica, da Universidade d o Estado do Rio de Janeiro. Área de concentração: Redes de Telecomunicações. Orientador: Prof. D r. Alexandre Sztajnberg Rio de Janeiro 2013 CATALOGAÇÃO NA FONTE UERJ / REDE SIRIUS / BIBLIOTECA CTC/B T928 Tupinambá, André Luiz Rocha. DistributedCL: middleware de processamento distribuído em GPU com interface da API OpenCL / André Luiz Rocha Tupinambá. - 2013. 89fl.: il. Orientador: Alexandre Sztajnberg. Dissertação (Mestrado) – Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia. 1. Engenharia Eletrônica. 2. Processamento eletrônico de dados - Processamento distribuído – Dissertações. I. Sztajnberg Alexandre. II. Universidade do Estado do Rio de Janeiro. III. Título. CDU 004.72.057.4 Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta dissertação, desde que citada a fonte. Assinatura Data André Luiz Rocha Tupinambá DistributedCL: middleware de processamento distribuído em GPU com interface da API OpenCL Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Eletrônica, da Universidade do Estado do Rio de Janeiro. Área de concentração: Redes de Telecomunicações. Aprovada em 10 de julho de 2013 Banca examinadora: Prof. Dr. Alexandre Sztajnberg (Orientador) Instituto de Matemática e Estatística – UERJ Profª.
    [Show full text]
  • Universidade Regional Do Noroeste Do Estado Do Rio Grande Do Sul
    0 UNIJUI - UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DCEEng – DEPARTAMENTO DE CIÊNCIAS EXATAS E ENGENHARIAS PROCESSAMENTO PARALELO COM ACELERADORES GRÁFICOS RODRIGO SCHIECK Santa Rosa, RS - Brasil 2012 1 RODRIGO SCHIECK PROCESSAMENTO PARALELO COM ACELERADORES GRÁFICOS Projeto apresentado na disciplina de Trabalho de Conclusão de Curso do curso de Ciência da Computação da Universidade do Noroeste do Estado do RS como requisito básico para apresentação do Trabalho de Conclusão de Curso. Orientador: Edson Luiz Padoin Santa Rosa – RS 2012 2 PROCESSAMENTO PARALELO COM ACELERADORES GRÁFICOS RODRIGO SCHIECK Projeto apresentado na disciplina de Trabalho de Conclusão de Curso do curso de Ciência da Computação da Universidade do Noroeste do Estado do RS como requisito básico para apresentação do Trabalho de Conclusão de Curso. ____________________________________ Orientador: Prof. Me. Edson Luiz Padoin BANCA EXAMINADORA ____________________________________ Prof. Me. Rogério Samuel de Moura Martins Santa Rosa – RS 2012 3 “A mente que se abre a uma nova ideia jamais voltará ao seu tamanho original.” Albert Einstein 4 Dedicatória Aos meus pais Armindo e Alda, e a minha esposa Elenice, pessoas que amo muito e que me apoiaram e incentivaram em toda esta trajetória, tornando mais este sonho uma realidade, mas que não seja o último, e sim apenas mais um dos muitos outros que virão. Na indisponibilidade de tempo, o qual não pude estar com eles, pois tive que mediar entre o trabalho e o estudo, mas que daqui pra frente pretendo compensar. 5 AGRADECIMENTOS Agradeço à Unijuí como um todo, pelo ótimo ambiente de ensino e corpo docente disponibilizado. Agradeço em especial aos meus pais, que além do auxílio financeiro me deram todo apoio e compreensão, sem o qual teria sido muito difícil superar algumas etapas desta longa trajetória.
    [Show full text]
  • Beowulf Cluster Architecture Pdf
    Beowulf cluster architecture pdf Continue What is Beowulf? Beowulf is a way to create a supercomputer from a bunch of small computers. Smaller computers are connected together by LAN (local network), which is usually Ethernet. Historically, these small computers have been cheap computers; even Pentium I and 486 Linux-powered cars! It was an appeal. Using cheap equipment that no one wanted and using it to create something similar to a supercomputer. It is said that the idea of Beowulf could allow a modest university department or a small research team to get a computer that can run in the gigaflop range (a billion floating points per second). Typically, only mega-rich corporations like IBM, ATT and NSA can afford such amazing computing power. In the taxonom of parallel computing, the beowulf cluster is somewhere below the massive parallel processor (MPP) and the workstation network (NOW). Why Beowulf Besides getting the equivalent of a supercomputer is literally for a fraction of the cost, some other benefits of the Beowulf cluster: Reducing supplier dependency. No proprietary hardware/software means that you are in complete control of the system and can scale it or modify it as you please without paying for corporate assistance. You don't have to limit yourself to one supplier's equipment. Most Beowulf clusters control the Linux operating system, known for its stability and speed. Also known for its price (free). ScalabilityL there are almost no restrictions on how big Beowulf can be scaled. If you find 486 near a dumpster waiting to be picked up, grab it and just add it to your cluster.
    [Show full text]
  • Friday, June 14, 13 Jeff Heaton
    GPU Programming In Java Using OpenCL Friday, June 14, 13 Jeff Heaton • EMail: [email protected] • Twitter: @jeffheaton • Blog: http://www.jeffheaton.com • GitHub: https://github.com/jeffheaton Friday, June 14, 13 ENCOG Lead developer for Encog. Encog is an advanced machine learning framework that supports a variety of advanced algorithms, as well as support classes to normalize and process data. http://www.heatonresearch.com/encog Friday, June 14, 13 WHAT IS GPGPU? • General-Purpose Computing on Graphics Processing Units • Use the GPU to greatly speed up certain parts of computer programs • Typically used for mathematically intense applications • A single mid to high-end GPU can accelerate a mathematically intense process • Multiple GPU’s can be used to replace a grid of computers Friday, June 14, 13 Desktop Supercomputers • The Fastra II Desktop Supercomputer • Built by the University of Antwerp • 7 GPUs • 2,850 Watts of power • Built with “gamer” hardware Friday, June 14, 13 FASTRA II PERFORMANCE Compared to CPU Clusters Friday, June 14, 13 NVIDIA HARDWARE • GeForce - These GPU’s are the gamer class. Most work fine with OpenCL/CUDA, however optimized for game use. • Quadro - These GPU’s are the workstation class. They will do okay with games, but are optimized for GPGPU. Improved double-precision floating point and memory transfers. • Tesla - These GPU’s are the datacenter class. Usually part of an integrated hardware solution. Usually ran “headless”. Available on Amazon EC2. Friday, June 14, 13 HOW A GAME USES A GPU • 32-bit (float) is typically used over 64-bit (double) • Computation is in very short-term computationally intensive bursts(fames) • Rarely does data “return”.
    [Show full text]