Fmri Analysis on the GPU - Possibilities and Challenges

Total Page:16

File Type:pdf, Size:1020Kb

Fmri Analysis on the GPU - Possibilities and Challenges fMRI Analysis on the GPU - Possibilities and Challenges Anders Eklund, Mats Andersson and Hans Knutsson Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Anders Eklund, Mats Andersson and Hans Knutsson, fMRI Analysis on the GPU - Possibilities and Challenges, 2012, Computer Methods and Programs in Biomedicine, (105), 2, 145-161. http://dx.doi.org/10.1016/j.cmpb.2011.07.007 Copyright: Elsevier http://www.elsevier.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69677 fMRI Analysis on the GPU - Possibilities and Challenges Anders Eklunda,b,∗, Mats Anderssona,b, Hans Knutssona,b aDivision of Medical Informatics, Department of Biomedical Engineering bCenter for Medical Image Science and Visualization (CMIV) Link¨opingUniversity, Sweden Abstract Functional magnetic resonance imaging (fMRI) makes it possible to non-invasively measure brain activity with high spatial res- olution. There are however a number of issues that have to be addressed. One is the large amount of spatio-temporal data that needs to be processed. In addition to the statistical analysis itself, several preprocessing steps, such as slice timing correction and motion compensation, are normally applied. The high computational power of modern graphic cards has already successfully been used for MRI and fMRI. Going beyond the first published demonstration of GPU-based analysis of fMRI data, all the preprocessing steps and two statistical approaches, the general linear model (GLM) and canonical correlation analysis (CCA), have been implemented on a GPU. For an fMRI dataset of typical size (80 volumes with 64 x 64 x 22 voxels), all the preprocessing takes about 0.5 s on the GPU, compared to 5 s with an optimized CPU implementation and 120 s with the commonly used statistical parametric mapping (SPM) software. A random permutation test with 10 000 permutations, with smoothing in each permutation, takes about 50 s if three GPUs are used, compared to 0.5 - 2.5 h with an optimized CPU implementation. The presented work will save time for researchers and clinicians in their daily work and enables the use of more advanced analysis, such as non-parametric statistics, both for conventional fMRI and for real-time fMRI. Keywords: Functional magnetic resonance imaging (fMRI), Graphics processing unit (GPU), CUDA, General linear model (GLM), Canonical correlation analysis (CCA), Random permutation test 1. Introduction & Motivation of MRI have been image reconstruction [13], fiber mapping from diffusion tensor MRI data [12], image registration [9, 11] Functional magnetic resonance imaging (fMRI), introduced and visualization of brain activity [15, 16, 17]. The main advan- by Ogawa et al. [1], besides conventional MRI and diffusion tage of GPUs compared to CPUs is the much higher degree of MRI [2] is a modality that is becoming more and more common parallelism. As the time series are normally regarded as inde- as a tool for planning brain surgery and understanding of the pendent in fMRI analysis, it is perfectly suited for parallel im- brain. One problem with fMRI is the large amount of spatio- plementations. The first work about fMRI analysis on the GPU temporal data that needs to be processed. A normal experiment is the work by Gembris et al. [14] that used the GPU to speedup results in voxels that are of the size 2-4 mm in each dimension the calculation of correlations between voxel time series, a tech- and the collected volumes are for example of the resolution 64 nique that commonly is used in resting state fMRI [18] for iden- x 64 x 32 voxels. For a typical acquisition speed of one volume tifying functional brain networks. Liu et al. [19] have also used every other second, a 5 minute long fMRI experiment will result the GPU to speedup correlation analysis. We recently used the in 150 volumes that need to be processed. Before the data can GPU to create an interactive interface, with 3D visualization, be analyzed statistically, it has to be preprocessed in order to, for exploratory functional connectivity analysis [6]. Another for example, compensate for head movement and to account example is the work by da Silva [10] that used the GPU to for the fact that the slices in a volume are collected at slightly speedup the simulation of a Bayesian multilevel model. A cor- different time points. responding fMRI CUDA package, cudaBayesreg [20] was cre- Graphic processing units (GPUs) have already been applied ated for the statistical program R. A final example is the Mat- to a variety of fields [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] to lab - GPU interface Jacket [21] that has been used to speedup achieve significant speedups (2 - 100 times), compared to opti- some parts of the commonly used statistical parametric map- mized CPU implementations. Applications of GPUs in the field ping (SPM) software [22]. ∗ Corresponding author at: Division of Medical Informatics, Department In this work the first complete fMRI GPU processing pipeline of Biomedical Engineering, Linkoping¨ University, University hospital, 581 85 Linkoping,¨ Sweden, Tel: +46 (0)13 28 67 25 is presented, where both the preprocessing and the statistical Email address: [email protected] (Anders Eklund) analysis is performed on the GPU. The following sections fur- Preprint submitted to Computer Methods and Programs in Biomedicine January 23, 2012 ther justify the use of GPUs for fMRI analysis. 1.3. High Quality Visualization Visualization of brain activity is perhaps the most obvious 1.1. Towards Higher Temporal and Spatial Resolution application of GPUs for fMRI data, as demonstrated by Roßler¨ et al. [15] and Jainek et al. [16]. In our recent work [17] the low An alternative to fMRI is electroencephalography (EEG), resolution fMRI activity volume is fused with the high resolu- which provides direct information about the electrical activ- tion anatomical volume by treating the fMRI signal as a light ity of neural ensambles compared to fMRI, which at present source, such that the brain activity glows from the inside of the depicts activation related blood flow changes. The sampling brain. The brain activity is in real-time estimated by perform- rate can therefore be lower, which accomodates the lower speed ing canonical correlation analysis (CCA) on a sliding window possible with fMRI. An aim of ongoing efforts is to achieve an of data. acquisition speed for volume data previously only possible for single slice data. Approaches investigated currently are com- 1.4. More Advanced Conventional Analysis pressed sensing [23], parallel imaging [24] and EEG-like MR imaging [25]. A higher computational power is not only needed for real- The advantage of fMRI compared to EEG is a much higher time analysis, in 2008 Cusack et al. [36] used a PC cluster with spatial resolution, which can be increased even further by using 98 processors to analyze 1400 fMRI datasets from 330 subjects. stronger magnetic fields. Heidemann et al. [26] have proposed Woolrich et al. [37] proposed a fully Bayesian spatio-temporal how to obtain an isotropic voxel size of 0.65 mm with a 7T modeling of fMRI data based on Markov chain Monte Carlo MR scanner. With a repetition time of 3.5 seconds they obtain methods. The downside of their approach is the required com- volumes of the resolution 169 x 240 x 30 voxels, which are putation time. In 2004 the calculations for a single slice needed much more demanding to process than volumes of the more 6 h, i.e. a total of 5 days for a typical fMRI dataset with 20 common resolution 64 x 64 x 32 voxels. slices. Nichols and Holmes [38] describe how to apply permu- Increasing temporal and spatial resolution will put even more tation tests for multi-subject fMRI data, instead of parametric stress on standard computers and is one reason to use GPUs for tests such as the general linear model. In 2001 it took 2 hours future fMRI analysis. to perform 2000 permutations for between subject analysis. There is thus a need of more computational power, both for conventional fMRI and for real-time fMRI. This need is not 1.2. More Advanced Real-Time Analysis unique to the field of fMRI, it basically exists for any kind of medical image analysis, since the amount of data that is col- Another reason to use GPUs is to enable more advanced real- lected for each subject has increased tremendously during the time analysis. There are several applications of real-time fMRI, last decades. an overview is given by deCharms [27]. One of the possible ap- plications is interactive brain mapping where the fMRI analysis runs in real-time. The physician then sees the result of the anal- 1.5. Using a GPU instead of a PC Cluster ysis directly and can interactively ask the subject to perform Previous and many current approaches to high performance different tasks, rather than performing a number of experiments computing (HPC) have to a large extent been based on PC clus- and then look at static activity maps. ters, which generally cause less acquisition costs than dedicated There are only three approaches to perform the statistical parallel computers, but still more than single-PC solutions and analysis faster, focusing the analysis on a region of interest in- also require more efforts for administration. An application of stead of the whole brain, calculating the same thing in a smarter PC clusters for fMRI data processing has been described by way or increasing the processing power. Cox et al. [28] in 1995 Stef-Praun et al. [39]. The parallel computational power of a proposed a recursive algorithm to be able to run the fMRI anal- modern graphics card provides a more efficient and less expen- ysis in real-time and a sliding window approach was proposed sive alternative.
Recommended publications
  • A GPU-Based Architecture for Real-Time Data Assessment at Synchrotron Experiments Suren Chilingaryan, Andreas Kopmann, Alessandro Mirone, Tomy Dos Santos Rolo
    A GPU-based Architecture for Real-Time Data Assessment at Synchrotron Experiments Suren Chilingaryan, Andreas Kopmann, Alessandro Mirone, Tomy dos Santos Rolo Abstract—Current imaging experiments at synchrotron beam to understand functionality of devices and organisms and to lines often lack a real-time data assessment. X-ray imaging optimize technological processes [1], [2]. cameras installed at synchrotron facilities like ANKA provide In recent years, synchrotron tomography has seen a tremen- millions of pixels, each with a resolution of 12 bits or more, and take up to several thousand frames per second. A given dous decrease of total acquisition time [3]. Based on available experiment can produce data sets of multiple gigabytes in a photon flux densities at modern synchrotron sources ultra-fast few seconds. Up to now the data is stored in local memory, X-ray imaging could enable investigation of the dynamics of transferred to mass storage, and then processed and analyzed off- technological and biological processes with a time scale down line. The data quality and thus the success of the experiment, can, to the milliseconds range in the 3D. Using modern CMOS therefore, only be judged with a substantial delay, which makes an immediate monitoring of the results impossible. To optimize based detectors it is possible to reach up to several thousand the usage of the micro-tomography beam-line at ANKA we have frames per second. For example, frame rates of 5000 images ported the reconstruction software to modern graphic adapters per second were achieved using a filtered white beam from which offer an enormous amount of calculation power.
    [Show full text]
  • Развитие На Gpgpu Супер-Компютрите. Възможности За Приложение На Nvidia Cuda При Паралелната Обработка На Сигнали И Изображения
    РАЗВИТИЕ НА GPGPU СУПЕР-КОМПЮТРИТЕ. ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ НА NVIDIA CUDA ПРИ ПАРАЛЕЛНАТА ОБРАБОТКА НА СИГНАЛИ И ИЗОБРАЖЕНИЯ ас.д-р Георги Петров, Филип Андонов - НБУ департамент “Телекомуникации”, департамент “Информатика” е-mail: [email protected], [email protected] Развитието на софтуерните системи и алгоритмите за цифрова обработка и анализ на сигнали и изображения, позволиха такива системи да се интегрират в класически приложения ползвани практически във всяка една човешка дейност, от системите за графична обработка и предпечат на произведения на изкуството, кино филми, аудио записи, 3D анимация и игри, до високо прецизните медицински компютърни томографи и магнитни резонансни скенери, както и системите за сигнална обработка, компресия на цифрово видео и много други сфери и приложения. Макар наличните на пазара компютърни конфигурации днес да надвишават хилядократно по производителност и бързодействие своите предшественици от преди 10 години, тези системи са оптимизирани за работа с така наречените настолни приложения. Този тип приложения са оптимизирани за офис работа, основно текстови и графични редактори, гледане на цифрово видео и слушане на музика, уеб приложения и др. Класическите процесорни архитектури (Intel, AMD х86, х64 модели) предлагани днес на пазара в най-разнообразни конфигурации 2, 4 и 8 ядрени процесорни блокове, които позволяват многократно повишаване на бързодействието на потребителския и системен софтуер. Тези системи са създадени предимно за символна обработка и последователни изчисления, което ги прави нефункционални в приложения за сигнална и статистическа обработка. За научни изчисления години наред се разработват клъстерни супер компютърни системи, като: Connection Machine (1980), MasPar (1987), Cray (1972-1995, която се слива със Silicon Graphics през 1996), в които става възможно паралелизирането на отделните изчислителни задачи.
    [Show full text]
  • Título: Aceleración De Aplicaciones Científicas Mediante Gpus. Alumno: Diego Luis Caballero De Gea. Directores: Xavier Martor
    Título: Aceleración de Aplicaciones Científicas mediante GPUs. Alumno: Diego Luis Caballero de Gea. Directores: Xavier Martorell Bofill (UPC), Juan Fernández Peinador (UM) y Javier Cuenca Muñoz (UM). Departamento: Arquitectura de Computadores (UPC) y Arquitectura y Tecnología de Computadores (UM). Fecha: Junio de 2010. Universidad de Murcia Universidad Politécnica de Cataluña Facultad de Informática Aceleración de Aplicaciones Científicas mediante GPUs Proyecto Fin de Carrera Diego Luis Caballero de Gea Junio de 2010 Dirigido por: Xavier Martorell Bofill Departamento de Arquitectura de Computadores. Universidad Politécnica de Cataluña. Juan Fernández Peinador Departamento de Arquitectura y Tecnología de Computadores. Universidad de Murcia. Javier Cuenca Muñoz Departamento de Arquitectura y Tecnología de Computadores. Universidad de Murcia. Índice General Abstract ........................................................................................................................... 14 1. Introducción y Contexto del Proyecto .................................................................... 15 1.1 Introducción ..................................................................................................... 15 1.2 Contexto del Proyecto ...................................................................................... 16 1.3 Estructura del Documento ............................................................................... 17 1.4 Planificación Inicial ........................................................................................
    [Show full text]
  • PAP Advanced Computer Architectures 1 Motivation
    Advanced Computer Architectures GPU (Graphics processing unit), GPGPU (General-purpose computing on GPU; General-purpose GPU) and GPU Computing Czech Technical University in Prague, Faculty of Electrical Engineering Slides authors: Michal Štepanovský, update Pavel Píša B4M35PAP Advanced Computer Architectures 1 Motivation • Tianhe-1A - Chinese Academy of Sciences' Institute of Process Engineering (CAS-IPE) • Molecular simulations of 110 milliards atoms (1.87 / 2.507 PetaFLOPS) • Rmax: 2.56 Pflops, Rpeak: 4,7 PFLOPS • 7 168 Nvidia Tesla M2050 (448 Thread processors, 512 GFLOPS FMA) • 14 336 Xeon X5670 (6 cores / 12 threads) • „If the Tianhe-1A were built only with CPUs, it would need more than 50,000 CPUs and consume more than 12MW. As it is, the Tianhe-1A consumes 4.04MW.“ http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/ which leads to 633 GFlop/kWatt (K Computer - 830 GFlop/kWatt) • It uses own interconnection network: Arch, 160 Gbps • There are already three supercomputers utilizing graphics cards in China, Tianhe-1 (AMD Radeon HD 4870 X2), Nebulae (nVidia Tesla C2050) and Tianhe-1A • http://i.top500.org/system/176929 • http://en.wikipedia.org/wiki/Tianhe-I B4M35PAP Advanced Computer Architectures 2 Motivation Tianhe-2 • 33.86 PFLOPS • Power consumption 17 MW • Kylin Linux • 16,000 nodes, each built from 2 Intel Ivy Bridge Xeon processors and 3 Intel Xeon Phi coprocessors (61 cores) = 32000 CPU and 48000 coprocessors, 3 120 000 cores in total • Fortran, C, C++, Java, OpenMP, and
    [Show full text]
  • Andre Luiz Rocha Tupinamba
    Universidade do Estado do Rio de Janeiro Centro de Tecnologia e Ciências Faculdade de Engenharia André Luiz Rocha Tupinambá DistributedCL: middleware de proces samento distribuído em GPU com interface da API OpenCL Rio de Janeiro 2013 André Luiz Rocha Tupinambá DistributedCL: middleware de processamento distribuído em GPU com interface da API OpenCL Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Eletrônica, da Universidade d o Estado do Rio de Janeiro. Área de concentração: Redes de Telecomunicações. Orientador: Prof. D r. Alexandre Sztajnberg Rio de Janeiro 2013 CATALOGAÇÃO NA FONTE UERJ / REDE SIRIUS / BIBLIOTECA CTC/B T928 Tupinambá, André Luiz Rocha. DistributedCL: middleware de processamento distribuído em GPU com interface da API OpenCL / André Luiz Rocha Tupinambá. - 2013. 89fl.: il. Orientador: Alexandre Sztajnberg. Dissertação (Mestrado) – Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia. 1. Engenharia Eletrônica. 2. Processamento eletrônico de dados - Processamento distribuído – Dissertações. I. Sztajnberg Alexandre. II. Universidade do Estado do Rio de Janeiro. III. Título. CDU 004.72.057.4 Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta dissertação, desde que citada a fonte. Assinatura Data André Luiz Rocha Tupinambá DistributedCL: middleware de processamento distribuído em GPU com interface da API OpenCL Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Eletrônica, da Universidade do Estado do Rio de Janeiro. Área de concentração: Redes de Telecomunicações. Aprovada em 10 de julho de 2013 Banca examinadora: Prof. Dr. Alexandre Sztajnberg (Orientador) Instituto de Matemática e Estatística – UERJ Profª.
    [Show full text]
  • Universidade Regional Do Noroeste Do Estado Do Rio Grande Do Sul
    0 UNIJUI - UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DCEEng – DEPARTAMENTO DE CIÊNCIAS EXATAS E ENGENHARIAS PROCESSAMENTO PARALELO COM ACELERADORES GRÁFICOS RODRIGO SCHIECK Santa Rosa, RS - Brasil 2012 1 RODRIGO SCHIECK PROCESSAMENTO PARALELO COM ACELERADORES GRÁFICOS Projeto apresentado na disciplina de Trabalho de Conclusão de Curso do curso de Ciência da Computação da Universidade do Noroeste do Estado do RS como requisito básico para apresentação do Trabalho de Conclusão de Curso. Orientador: Edson Luiz Padoin Santa Rosa – RS 2012 2 PROCESSAMENTO PARALELO COM ACELERADORES GRÁFICOS RODRIGO SCHIECK Projeto apresentado na disciplina de Trabalho de Conclusão de Curso do curso de Ciência da Computação da Universidade do Noroeste do Estado do RS como requisito básico para apresentação do Trabalho de Conclusão de Curso. ____________________________________ Orientador: Prof. Me. Edson Luiz Padoin BANCA EXAMINADORA ____________________________________ Prof. Me. Rogério Samuel de Moura Martins Santa Rosa – RS 2012 3 “A mente que se abre a uma nova ideia jamais voltará ao seu tamanho original.” Albert Einstein 4 Dedicatória Aos meus pais Armindo e Alda, e a minha esposa Elenice, pessoas que amo muito e que me apoiaram e incentivaram em toda esta trajetória, tornando mais este sonho uma realidade, mas que não seja o último, e sim apenas mais um dos muitos outros que virão. Na indisponibilidade de tempo, o qual não pude estar com eles, pois tive que mediar entre o trabalho e o estudo, mas que daqui pra frente pretendo compensar. 5 AGRADECIMENTOS Agradeço à Unijuí como um todo, pelo ótimo ambiente de ensino e corpo docente disponibilizado. Agradeço em especial aos meus pais, que além do auxílio financeiro me deram todo apoio e compreensão, sem o qual teria sido muito difícil superar algumas etapas desta longa trajetória.
    [Show full text]
  • Beowulf Cluster Architecture Pdf
    Beowulf cluster architecture pdf Continue What is Beowulf? Beowulf is a way to create a supercomputer from a bunch of small computers. Smaller computers are connected together by LAN (local network), which is usually Ethernet. Historically, these small computers have been cheap computers; even Pentium I and 486 Linux-powered cars! It was an appeal. Using cheap equipment that no one wanted and using it to create something similar to a supercomputer. It is said that the idea of Beowulf could allow a modest university department or a small research team to get a computer that can run in the gigaflop range (a billion floating points per second). Typically, only mega-rich corporations like IBM, ATT and NSA can afford such amazing computing power. In the taxonom of parallel computing, the beowulf cluster is somewhere below the massive parallel processor (MPP) and the workstation network (NOW). Why Beowulf Besides getting the equivalent of a supercomputer is literally for a fraction of the cost, some other benefits of the Beowulf cluster: Reducing supplier dependency. No proprietary hardware/software means that you are in complete control of the system and can scale it or modify it as you please without paying for corporate assistance. You don't have to limit yourself to one supplier's equipment. Most Beowulf clusters control the Linux operating system, known for its stability and speed. Also known for its price (free). ScalabilityL there are almost no restrictions on how big Beowulf can be scaled. If you find 486 near a dumpster waiting to be picked up, grab it and just add it to your cluster.
    [Show full text]
  • Friday, June 14, 13 Jeff Heaton
    GPU Programming In Java Using OpenCL Friday, June 14, 13 Jeff Heaton • EMail: [email protected] • Twitter: @jeffheaton • Blog: http://www.jeffheaton.com • GitHub: https://github.com/jeffheaton Friday, June 14, 13 ENCOG Lead developer for Encog. Encog is an advanced machine learning framework that supports a variety of advanced algorithms, as well as support classes to normalize and process data. http://www.heatonresearch.com/encog Friday, June 14, 13 WHAT IS GPGPU? • General-Purpose Computing on Graphics Processing Units • Use the GPU to greatly speed up certain parts of computer programs • Typically used for mathematically intense applications • A single mid to high-end GPU can accelerate a mathematically intense process • Multiple GPU’s can be used to replace a grid of computers Friday, June 14, 13 Desktop Supercomputers • The Fastra II Desktop Supercomputer • Built by the University of Antwerp • 7 GPUs • 2,850 Watts of power • Built with “gamer” hardware Friday, June 14, 13 FASTRA II PERFORMANCE Compared to CPU Clusters Friday, June 14, 13 NVIDIA HARDWARE • GeForce - These GPU’s are the gamer class. Most work fine with OpenCL/CUDA, however optimized for game use. • Quadro - These GPU’s are the workstation class. They will do okay with games, but are optimized for GPGPU. Improved double-precision floating point and memory transfers. • Tesla - These GPU’s are the datacenter class. Usually part of an integrated hardware solution. Usually ran “headless”. Available on Amazon EC2. Friday, June 14, 13 HOW A GAME USES A GPU • 32-bit (float) is typically used over 64-bit (double) • Computation is in very short-term computationally intensive bursts(fames) • Rarely does data “return”.
    [Show full text]