Beowulf Cluster Architecture Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Beowulf Cluster Architecture Pdf Beowulf cluster architecture pdf Continue What is Beowulf? Beowulf is a way to create a supercomputer from a bunch of small computers. Smaller computers are connected together by LAN (local network), which is usually Ethernet. Historically, these small computers have been cheap computers; even Pentium I and 486 Linux-powered cars! It was an appeal. Using cheap equipment that no one wanted and using it to create something similar to a supercomputer. It is said that the idea of Beowulf could allow a modest university department or a small research team to get a computer that can run in the gigaflop range (a billion floating points per second). Typically, only mega-rich corporations like IBM, ATT and NSA can afford such amazing computing power. In the taxonom of parallel computing, the beowulf cluster is somewhere below the massive parallel processor (MPP) and the workstation network (NOW). Why Beowulf Besides getting the equivalent of a supercomputer is literally for a fraction of the cost, some other benefits of the Beowulf cluster: Reducing supplier dependency. No proprietary hardware/software means that you are in complete control of the system and can scale it or modify it as you please without paying for corporate assistance. You don't have to limit yourself to one supplier's equipment. Most Beowulf clusters control the Linux operating system, known for its stability and speed. Also known for its price (free). ScalabilityL there are almost no restrictions on how big Beowulf can be scaled. If you find 486 near a dumpster waiting to be picked up, grab it and just add it to your cluster. Since all Beowulfs are Linux, you are sure that everything you write for one Beowulf will perform correctly on other Beowulfs. The story of Beowulf's First Beowulf was developed in 1994 by the Center for Excellence in Space Data and Information Sciences (CESDIS), a NASA contractor at the Goddard Space Flight Center in Greenbelt, Maryland. It was originally developed by Don Becker and Thomas Sterling and consisted of 16 Intel DX4 processors connected to the 10MBit/sec ethernet. Beowulf was also built for researchers with parallel programming experience. Many of these researchers have spent years fighting MPP suppliers and system administrators for detailed performance information and struggling with underdeveloped tools and new programming models. This leads to a do-it-yourself attitude. Another reality they encounter is that access to a large machine often means access to a tiny fraction of the machine's resources shared by many users. For these users, creating a cluster that they can monitor and fully use the results in a more efficient, higher-performance, computing platform. Realizing that learning how to build and manage a Beowulf cluster is an investment; Exploring the specifics of a particular supplier enslaves you to this supplier. These rigid cores of parallel programmers are primarily interested in high-performance computing applied to complex problems. At Supercomputing '96 NASA and ME showcased clusters costing less than $50,000 that achieved more than gigaflop/S sustainable performance. A year later, NASA researchers at the Goddard Space Flight Center combined two clusters of a total of 199 P6 processors and launched a PVM version of the PPM code (Piece-wise Parabolic Method) at a steady speed of 10.1 Gflop/s. In the same week (actually, on the floor of Supercomputing '97) Caltech's 140 node cluster ran N-body problems at a speed of 10.9 Gflop/s. This does not mean that the Beowulf clusters are supercomputers, it just means that you can build a Beowulf that is large enough to attract the interest of user supercomputers. In addition to an experienced parallel programmer, Beowulf clusters were built and used by a programmer with little or no parallel programming. In fact, Beowulf clusters provide universities, often with limited resources, an excellent platform for teaching parallel programming courses and providing cost-effective computing for their computational scientists. The cost of a startup in a university situation is minimal for the usual reasons: most students interested in such a project are likely to run Linux on their own computers, creating a laboratory and studying parallel recording programs is part of the learning experience. In the taxony of parallel computers, Beowulf clusters fall somewhere between MPP (Massively Parallel Processors like nCube, CM5, Convex SPP, Cray T3D, Cray T3E, etc.) and NOW (Network WorkStations). The Beowulf project benefits from the development of both classes of architecture. MPPs tend to be larger and have a lower network of communication delays than the Beowulf cluster. Programmers still have to worry about terrain, load balancing, detail, and overhead communications to get better performance. Even on shared memory machines, many programmers develop their messaging-style programs. Programs that do not require fine-grain computing and communication can usually be ported and run effectively on Beowulf clusters. NOW programming is usually an attempt to collect unused cycles at an already established base of workstations in the lab or on campus. Programming in this environment requires algorithms that are extremely tolerant of load balancing problems and long communication delays. Any program that works on NOW will work at least as well on the cluster. The Beowulf-class cluster computer differs from the workstation network with several subtle but significant characteristics. First, nodes in a cluster For the cluster. This helps to alleviate load balancing problems, as the performance of individual nodes is not prone Factors. In addition, because the co join network is isolated from the external network, the network load is determined only by the application that runs on the cluster. This alleviates the problems associated with the unpredictable delay in THES. All nodes of the cluster are in the administrative jurisdiction of the cluster. For example, the cluster accession network is not visible from the outside world, so the only authentication required between processors is for the integrity of the system. At NOW, one has to be concerned about network security. Another example is Beowulf software, which provides a global process identifier. This allows the process mechanism on one site to send signals to the process at other nodes in the system, all within the user's domain. This is not allowed on SEICHU. Finally, the operating system settings can be configured to improve performance. For example, a workstation should be configured to provide the best interactive feel (instant responses, short buffers, etc.), but in a cluster nodes can be configured to provide better bandwidth for coarse-grained jobs because they don't interact directly with users. The Beowulf project grew out of the first Beowulf machine and also the Beowulf community grew out of the NASA project. Like the Linux community, the Beowulf community is a loosely organized confederation of researchers and developers. Each organization has its own agenda and its own set of reasons for developing a specific component or aspect of the Beowulf system. As a result, Beowulf cluster computers range from multiple clusters of the site to several hundred clusters of the site. Some systems have been built by computational scientists and are used in operational conditions, others have been built as test sites for system research, while others serve as an inexpensive platform for the study of parallel programming. Most people in the Beowulf community are independent, do-it-yourself'er. Since everyone is doing their job, the notion of having central control in the Beowulf community just doesn't make sense. The community is united by the willingness of its members to share ideas and discuss successes and failures in their development efforts. Mechanisms that facilitate this interaction are Beowulf mailing lists, individual web pages and occasional meetings or seminars. The future of the Beowulf project will be determined collectively by individual organizations contributing to the Beowulf project and the future of the COTS mass market. As microprocessor technology continues to evolve and high-speed networks become profitable, and as more app developers move to parallel platforms, the Beowulf project will evolve to fill its niche. Borg, 52-knot Beowulf Cluster, McGill University pulsar group to search for pulsations from binary pulsars Beowulf Cluster a cluster that is usually identical, a commodity-grade computer combined in a small local network with libraries and programs installed that allow processing to be shared between them. The result is a high-performance parallel computing cluster of low-cost personal computer hardware. The name Beowulf originally refers to a particular computer built in 1994 by Thomas Sterling and Donald Becker at NASA. The name Beowulf comes from a one-note poem of the old English language of the same name. No particular piece of software defines a cluster as Beowulf. Beowulf clusters typically work with Unix operating system such as BSD, Linux or Solaris, usually built from free open source software. Commonly used parallel processing libraries include a messaging interface (MPI) and a parallel virtual machine (PVM). Both of these allow the programmer to split the task between a group of network computers and collect processing results. Examples of MPI software include Open MPI or MPICH. There are additional MPI implementations. As of 2014, Beowulf systems operate around the world, mainly in support of scientific computing. Details of the development of the first Beowulf cluster in Barcelona supercomputer center Description of the Beowulf cluster, from the original as-to, which was published by Jacek Radaevski and Douglas Eadline as part of the Linux Documentation Project in 1998. Beowulf is a multicomital architecture that can be used for parallel computing. It is a system that usually consists of one server node, and one or more client nodes are connected through Ethernet or some other network.
Recommended publications
  • A GPU-Based Architecture for Real-Time Data Assessment at Synchrotron Experiments Suren Chilingaryan, Andreas Kopmann, Alessandro Mirone, Tomy Dos Santos Rolo
    A GPU-based Architecture for Real-Time Data Assessment at Synchrotron Experiments Suren Chilingaryan, Andreas Kopmann, Alessandro Mirone, Tomy dos Santos Rolo Abstract—Current imaging experiments at synchrotron beam to understand functionality of devices and organisms and to lines often lack a real-time data assessment. X-ray imaging optimize technological processes [1], [2]. cameras installed at synchrotron facilities like ANKA provide In recent years, synchrotron tomography has seen a tremen- millions of pixels, each with a resolution of 12 bits or more, and take up to several thousand frames per second. A given dous decrease of total acquisition time [3]. Based on available experiment can produce data sets of multiple gigabytes in a photon flux densities at modern synchrotron sources ultra-fast few seconds. Up to now the data is stored in local memory, X-ray imaging could enable investigation of the dynamics of transferred to mass storage, and then processed and analyzed off- technological and biological processes with a time scale down line. The data quality and thus the success of the experiment, can, to the milliseconds range in the 3D. Using modern CMOS therefore, only be judged with a substantial delay, which makes an immediate monitoring of the results impossible. To optimize based detectors it is possible to reach up to several thousand the usage of the micro-tomography beam-line at ANKA we have frames per second. For example, frame rates of 5000 images ported the reconstruction software to modern graphic adapters per second were achieved using a filtered white beam from which offer an enormous amount of calculation power.
    [Show full text]
  • Fmri Analysis on the GPU - Possibilities and Challenges
    fMRI Analysis on the GPU - Possibilities and Challenges Anders Eklund, Mats Andersson and Hans Knutsson Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Anders Eklund, Mats Andersson and Hans Knutsson, fMRI Analysis on the GPU - Possibilities and Challenges, 2012, Computer Methods and Programs in Biomedicine, (105), 2, 145-161. http://dx.doi.org/10.1016/j.cmpb.2011.07.007 Copyright: Elsevier http://www.elsevier.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69677 fMRI Analysis on the GPU - Possibilities and Challenges Anders Eklunda,b,∗, Mats Anderssona,b, Hans Knutssona,b aDivision of Medical Informatics, Department of Biomedical Engineering bCenter for Medical Image Science and Visualization (CMIV) Link¨opingUniversity, Sweden Abstract Functional magnetic resonance imaging (fMRI) makes it possible to non-invasively measure brain activity with high spatial res- olution. There are however a number of issues that have to be addressed. One is the large amount of spatio-temporal data that needs to be processed. In addition to the statistical analysis itself, several preprocessing steps, such as slice timing correction and motion compensation, are normally applied. The high computational power of modern graphic cards has already successfully been used for MRI and fMRI. Going beyond the first published demonstration of GPU-based analysis of fMRI data, all the preprocessing steps and two statistical approaches, the general linear model (GLM) and canonical correlation analysis (CCA), have been implemented on a GPU. For an fMRI dataset of typical size (80 volumes with 64 x 64 x 22 voxels), all the preprocessing takes about 0.5 s on the GPU, compared to 5 s with an optimized CPU implementation and 120 s with the commonly used statistical parametric mapping (SPM) software.
    [Show full text]
  • Развитие На Gpgpu Супер-Компютрите. Възможности За Приложение На Nvidia Cuda При Паралелната Обработка На Сигнали И Изображения
    РАЗВИТИЕ НА GPGPU СУПЕР-КОМПЮТРИТЕ. ВЪЗМОЖНОСТИ ЗА ПРИЛОЖЕНИЕ НА NVIDIA CUDA ПРИ ПАРАЛЕЛНАТА ОБРАБОТКА НА СИГНАЛИ И ИЗОБРАЖЕНИЯ ас.д-р Георги Петров, Филип Андонов - НБУ департамент “Телекомуникации”, департамент “Информатика” е-mail: [email protected], [email protected] Развитието на софтуерните системи и алгоритмите за цифрова обработка и анализ на сигнали и изображения, позволиха такива системи да се интегрират в класически приложения ползвани практически във всяка една човешка дейност, от системите за графична обработка и предпечат на произведения на изкуството, кино филми, аудио записи, 3D анимация и игри, до високо прецизните медицински компютърни томографи и магнитни резонансни скенери, както и системите за сигнална обработка, компресия на цифрово видео и много други сфери и приложения. Макар наличните на пазара компютърни конфигурации днес да надвишават хилядократно по производителност и бързодействие своите предшественици от преди 10 години, тези системи са оптимизирани за работа с така наречените настолни приложения. Този тип приложения са оптимизирани за офис работа, основно текстови и графични редактори, гледане на цифрово видео и слушане на музика, уеб приложения и др. Класическите процесорни архитектури (Intel, AMD х86, х64 модели) предлагани днес на пазара в най-разнообразни конфигурации 2, 4 и 8 ядрени процесорни блокове, които позволяват многократно повишаване на бързодействието на потребителския и системен софтуер. Тези системи са създадени предимно за символна обработка и последователни изчисления, което ги прави нефункционални в приложения за сигнална и статистическа обработка. За научни изчисления години наред се разработват клъстерни супер компютърни системи, като: Connection Machine (1980), MasPar (1987), Cray (1972-1995, която се слива със Silicon Graphics през 1996), в които става възможно паралелизирането на отделните изчислителни задачи.
    [Show full text]
  • Título: Aceleración De Aplicaciones Científicas Mediante Gpus. Alumno: Diego Luis Caballero De Gea. Directores: Xavier Martor
    Título: Aceleración de Aplicaciones Científicas mediante GPUs. Alumno: Diego Luis Caballero de Gea. Directores: Xavier Martorell Bofill (UPC), Juan Fernández Peinador (UM) y Javier Cuenca Muñoz (UM). Departamento: Arquitectura de Computadores (UPC) y Arquitectura y Tecnología de Computadores (UM). Fecha: Junio de 2010. Universidad de Murcia Universidad Politécnica de Cataluña Facultad de Informática Aceleración de Aplicaciones Científicas mediante GPUs Proyecto Fin de Carrera Diego Luis Caballero de Gea Junio de 2010 Dirigido por: Xavier Martorell Bofill Departamento de Arquitectura de Computadores. Universidad Politécnica de Cataluña. Juan Fernández Peinador Departamento de Arquitectura y Tecnología de Computadores. Universidad de Murcia. Javier Cuenca Muñoz Departamento de Arquitectura y Tecnología de Computadores. Universidad de Murcia. Índice General Abstract ........................................................................................................................... 14 1. Introducción y Contexto del Proyecto .................................................................... 15 1.1 Introducción ..................................................................................................... 15 1.2 Contexto del Proyecto ...................................................................................... 16 1.3 Estructura del Documento ............................................................................... 17 1.4 Planificación Inicial ........................................................................................
    [Show full text]
  • PAP Advanced Computer Architectures 1 Motivation
    Advanced Computer Architectures GPU (Graphics processing unit), GPGPU (General-purpose computing on GPU; General-purpose GPU) and GPU Computing Czech Technical University in Prague, Faculty of Electrical Engineering Slides authors: Michal Štepanovský, update Pavel Píša B4M35PAP Advanced Computer Architectures 1 Motivation • Tianhe-1A - Chinese Academy of Sciences' Institute of Process Engineering (CAS-IPE) • Molecular simulations of 110 milliards atoms (1.87 / 2.507 PetaFLOPS) • Rmax: 2.56 Pflops, Rpeak: 4,7 PFLOPS • 7 168 Nvidia Tesla M2050 (448 Thread processors, 512 GFLOPS FMA) • 14 336 Xeon X5670 (6 cores / 12 threads) • „If the Tianhe-1A were built only with CPUs, it would need more than 50,000 CPUs and consume more than 12MW. As it is, the Tianhe-1A consumes 4.04MW.“ http://www.zdnet.co.uk/news/emerging-tech/2010/10/29/china-builds-worlds-fastest-supercomputer-40090697/ which leads to 633 GFlop/kWatt (K Computer - 830 GFlop/kWatt) • It uses own interconnection network: Arch, 160 Gbps • There are already three supercomputers utilizing graphics cards in China, Tianhe-1 (AMD Radeon HD 4870 X2), Nebulae (nVidia Tesla C2050) and Tianhe-1A • http://i.top500.org/system/176929 • http://en.wikipedia.org/wiki/Tianhe-I B4M35PAP Advanced Computer Architectures 2 Motivation Tianhe-2 • 33.86 PFLOPS • Power consumption 17 MW • Kylin Linux • 16,000 nodes, each built from 2 Intel Ivy Bridge Xeon processors and 3 Intel Xeon Phi coprocessors (61 cores) = 32000 CPU and 48000 coprocessors, 3 120 000 cores in total • Fortran, C, C++, Java, OpenMP, and
    [Show full text]
  • Andre Luiz Rocha Tupinamba
    Universidade do Estado do Rio de Janeiro Centro de Tecnologia e Ciências Faculdade de Engenharia André Luiz Rocha Tupinambá DistributedCL: middleware de proces samento distribuído em GPU com interface da API OpenCL Rio de Janeiro 2013 André Luiz Rocha Tupinambá DistributedCL: middleware de processamento distribuído em GPU com interface da API OpenCL Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Eletrônica, da Universidade d o Estado do Rio de Janeiro. Área de concentração: Redes de Telecomunicações. Orientador: Prof. D r. Alexandre Sztajnberg Rio de Janeiro 2013 CATALOGAÇÃO NA FONTE UERJ / REDE SIRIUS / BIBLIOTECA CTC/B T928 Tupinambá, André Luiz Rocha. DistributedCL: middleware de processamento distribuído em GPU com interface da API OpenCL / André Luiz Rocha Tupinambá. - 2013. 89fl.: il. Orientador: Alexandre Sztajnberg. Dissertação (Mestrado) – Universidade do Estado do Rio de Janeiro, Faculdade de Engenharia. 1. Engenharia Eletrônica. 2. Processamento eletrônico de dados - Processamento distribuído – Dissertações. I. Sztajnberg Alexandre. II. Universidade do Estado do Rio de Janeiro. III. Título. CDU 004.72.057.4 Autorizo, apenas para fins acadêmicos e científicos, a reprodução total ou parcial desta dissertação, desde que citada a fonte. Assinatura Data André Luiz Rocha Tupinambá DistributedCL: middleware de processamento distribuído em GPU com interface da API OpenCL Dissertação apresentada, como requisito parcial para obtenção do título de Mestre, ao Programa de Pós-Graduação em Engenharia Eletrônica, da Universidade do Estado do Rio de Janeiro. Área de concentração: Redes de Telecomunicações. Aprovada em 10 de julho de 2013 Banca examinadora: Prof. Dr. Alexandre Sztajnberg (Orientador) Instituto de Matemática e Estatística – UERJ Profª.
    [Show full text]
  • Universidade Regional Do Noroeste Do Estado Do Rio Grande Do Sul
    0 UNIJUI - UNIVERSIDADE REGIONAL DO NOROESTE DO ESTADO DO RIO GRANDE DO SUL DCEEng – DEPARTAMENTO DE CIÊNCIAS EXATAS E ENGENHARIAS PROCESSAMENTO PARALELO COM ACELERADORES GRÁFICOS RODRIGO SCHIECK Santa Rosa, RS - Brasil 2012 1 RODRIGO SCHIECK PROCESSAMENTO PARALELO COM ACELERADORES GRÁFICOS Projeto apresentado na disciplina de Trabalho de Conclusão de Curso do curso de Ciência da Computação da Universidade do Noroeste do Estado do RS como requisito básico para apresentação do Trabalho de Conclusão de Curso. Orientador: Edson Luiz Padoin Santa Rosa – RS 2012 2 PROCESSAMENTO PARALELO COM ACELERADORES GRÁFICOS RODRIGO SCHIECK Projeto apresentado na disciplina de Trabalho de Conclusão de Curso do curso de Ciência da Computação da Universidade do Noroeste do Estado do RS como requisito básico para apresentação do Trabalho de Conclusão de Curso. ____________________________________ Orientador: Prof. Me. Edson Luiz Padoin BANCA EXAMINADORA ____________________________________ Prof. Me. Rogério Samuel de Moura Martins Santa Rosa – RS 2012 3 “A mente que se abre a uma nova ideia jamais voltará ao seu tamanho original.” Albert Einstein 4 Dedicatória Aos meus pais Armindo e Alda, e a minha esposa Elenice, pessoas que amo muito e que me apoiaram e incentivaram em toda esta trajetória, tornando mais este sonho uma realidade, mas que não seja o último, e sim apenas mais um dos muitos outros que virão. Na indisponibilidade de tempo, o qual não pude estar com eles, pois tive que mediar entre o trabalho e o estudo, mas que daqui pra frente pretendo compensar. 5 AGRADECIMENTOS Agradeço à Unijuí como um todo, pelo ótimo ambiente de ensino e corpo docente disponibilizado. Agradeço em especial aos meus pais, que além do auxílio financeiro me deram todo apoio e compreensão, sem o qual teria sido muito difícil superar algumas etapas desta longa trajetória.
    [Show full text]
  • Friday, June 14, 13 Jeff Heaton
    GPU Programming In Java Using OpenCL Friday, June 14, 13 Jeff Heaton • EMail: [email protected] • Twitter: @jeffheaton • Blog: http://www.jeffheaton.com • GitHub: https://github.com/jeffheaton Friday, June 14, 13 ENCOG Lead developer for Encog. Encog is an advanced machine learning framework that supports a variety of advanced algorithms, as well as support classes to normalize and process data. http://www.heatonresearch.com/encog Friday, June 14, 13 WHAT IS GPGPU? • General-Purpose Computing on Graphics Processing Units • Use the GPU to greatly speed up certain parts of computer programs • Typically used for mathematically intense applications • A single mid to high-end GPU can accelerate a mathematically intense process • Multiple GPU’s can be used to replace a grid of computers Friday, June 14, 13 Desktop Supercomputers • The Fastra II Desktop Supercomputer • Built by the University of Antwerp • 7 GPUs • 2,850 Watts of power • Built with “gamer” hardware Friday, June 14, 13 FASTRA II PERFORMANCE Compared to CPU Clusters Friday, June 14, 13 NVIDIA HARDWARE • GeForce - These GPU’s are the gamer class. Most work fine with OpenCL/CUDA, however optimized for game use. • Quadro - These GPU’s are the workstation class. They will do okay with games, but are optimized for GPGPU. Improved double-precision floating point and memory transfers. • Tesla - These GPU’s are the datacenter class. Usually part of an integrated hardware solution. Usually ran “headless”. Available on Amazon EC2. Friday, June 14, 13 HOW A GAME USES A GPU • 32-bit (float) is typically used over 64-bit (double) • Computation is in very short-term computationally intensive bursts(fames) • Rarely does data “return”.
    [Show full text]