Foliar Application of Phosphorus Compounds Dirk Barèl Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spectroscopy of Neutron-Rich 34,35,36,37,38 P Populated In
PHYSICAL REVIEW C 92, 044308 (2015) , , , , Spectroscopy of neutron-rich 34 35 36 37 38P populated in binary grazing reactions R. Chapman,1,* A. Hodsdon,1 M. Bouhelal,2 F. Haas,3 X. Liang,1 F. Azaiez,4 Z. M. Wang,1 B. R. Behera,5 M. Burns,1 E. Caurier,3 L. Corradi,5 D. Curien,3 A. N. Deacon,6 Zs. Dombradi,´ 7 E. Farnea,8 E. Fioretto,5 A. Gadea,5 F. Ibrahim,4 A. Jungclaus,9 K. Keyes,1 V. Kumar, 1 S. Lunardi,8 N. Marginean,˘ 5,10 G. Montagnoli,8 D. R. Napoli,5 F. Nowacki,3 J. Ollier,1,11 D. O’Donnell,1,12 A. Papenberg,1 G. Pollarolo,13 M.-D. Salsac,14 F. Scarlassara,8 J. F. Smith,1 K. M. Spohr,1 M. Stanoiu,10 A. M. Stefanini,5 S. Szilner,5,15 M. Trotta,5 and D. Verney4 1School of Engineering and Computing, University of the West of Scotland, Paisley PA1 2BE, United Kingdom, and The Scottish Universities Physics Alliance (SUPA) 2Laboratoire de Physique Appliquee´ et Theorique,´ Universite´ Larbi Tebessa,´ Tebessa,´ Algerie´ 3IPHC, UMR7178, CNRS-IN2P3, and Universite´ de Strasbourg, F-67037 Strasbourg Cedex 2, France 4IPN, IN2P3-CNRS and Universite´ Paris-Sud, F-91406 Orsay Cedex, France 5INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova, Italy 6Schuster Laboratory, University of Manchester, Manchester M13 9PL, United Kingdom 7MTA ATOMKI, P.O. Box 51, H-4001 Debrecen, Hungary 8Dipartimento di Fisica and INFN-Sezione di Padova, Universita` di Padova, I35131 Padova, Italy 9Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain 10Horia Hulubei National Institute of Physics and Nuclear Engineering-IFIN-HH, Strasse Atomistilor No. -
Mechanosynthesis of Magnesium and Calcium Salt?Urea Ionic Cocrystal
Letter pubs.acs.org/journal/ascecg Mechanosynthesis of Magnesium and Calcium Salt−Urea Ionic Cocrystal Fertilizer Materials for Improved Nitrogen Management Kenneth Honer, Eren Kalfaoglu, Carlos Pico, Jane McCann, and Jonas Baltrusaitis* Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States *S Supporting Information ABSTRACT: Only 47% of the total fertilizer nitrogen applied to the environment is taken up by the plants whereas approximately 40% of the total fertilizer nitrogen lost to the environment reverts back into unreactive atmospheric dinitrogen that greatly affects the global nitrogen cycle including increased energy consumption for NH3 synthesis, as well as accumulation of nitrates in drinking water. In this letter, we provide a mechanochemical method of inorganic magnesium and calcium salt−urea ionic cocrystal synthesis to obtain enhanced stability nitrogen fertilizers. The solvent-free mechanochemical synthesis presented can result in a greater manufacturing process sustainability by reducing or eliminating the need for solution handling and evaporation. NH3 emission testing suggests that urea ionic cocrystals are capable of decreasing NH3 emissions to the environment when compared to pure urea, thus providing implications for a sustainable global solution to the management of the nitrogen cycle. KEYWORDS: Fertilizers, Nitrogen, urea, Mechanochemistry, Cocrystal, pXRD, NH3 Emissions, Stability ■ INTRODUCTION ammonia as opposed to up to 61.1% of soil treated with urea 7,8 fi only, which suggests that major improvements to the global Atmospheric dinitrogen, N2, xation to synthesize ammonia, 9,10 ’ 1 nitrogen cycle are achievable. Additionally, urea molecular NH3, consumes more than 1% of the world s primary energy. -
Naturally Chelated Foliar Blends
Fertigation for citrus trees By Mongi Zekri, Brian Boman and Tom Obreza icroirrigation is an important with overhead sprinkler irrigation. component of citrus produc- Research has also shown the impor- Mtion systems in Florida. For tant advantage of microsprinklers for citrus trees, microirrigation (Figure 1) freeze protection of citrus. is more desirable than other irrigation Microirrigation combined with methods for several reasons: water properly managed, water savings with fertigation (Figure 2) — applying conservation, fertilizer manage- microirrigation systems can amount to small amounts of soluble fertilizer ment efficiency and freeze protec- as much as 80 percent compared with through irrigation systems directly tion. Research has shown that when subirrigation and 50 percent compared to the root zone — provides precise Figure 1. Microsprinkler irrigation of citrus trees. Figure 2. Fertigation system for citrus trees. Naturally Chelated ORDER Foliar Blends ONLINE Clear natural chelates for higher analysis, better results and affordable prices. www.moreoranges.com (866) 375-2487 14 CITRUS INDUSTRY • March 2014 Figure 3. Fertigation system including backflow prevention devices. timing and application of water and ces are in place and working properly. solution should be mixed with irriga- fertilizer nutrients in citrus production. The time required for water to tion water in a jar (at the same dilu- Fertilizer can be prescription-applied travel from the injection point to the tion rate that is used in the irrigation in small doses and at particular times farthest emitter is generally 20 to 30 system) to determine if any precipitate when those nutrients are needed. This minutes for most microirrigation sys- or milkiness occurs within one to two capability helps growers increase tems. -
THE NATURAL RADIOACTIVITY of the BIOSPHERE (Prirodnaya Radioaktivnost' Iosfery)
XA04N2887 INIS-XA-N--259 L.A. Pertsov TRANSLATED FROM RUSSIAN Published for the U.S. Atomic Energy Commission and the National Science Foundation, Washington, D.C. by the Israel Program for Scientific Translations L. A. PERTSOV THE NATURAL RADIOACTIVITY OF THE BIOSPHERE (Prirodnaya Radioaktivnost' iosfery) Atomizdat NMoskva 1964 Translated from Russian Israel Program for Scientific Translations Jerusalem 1967 18 02 AEC-tr- 6714 Published Pursuant to an Agreement with THE U. S. ATOMIC ENERGY COMMISSION and THE NATIONAL SCIENCE FOUNDATION, WASHINGTON, D. C. Copyright (D 1967 Israel Program for scientific Translations Ltd. IPST Cat. No. 1802 Translated and Edited by IPST Staff Printed in Jerusalem by S. Monison Available from the U.S. DEPARTMENT OF COMMERCE Clearinghouse for Federal Scientific and Technical Information Springfield, Va. 22151 VI/ Table of Contents Introduction .1..................... Bibliography ...................................... 5 Chapter 1. GENESIS OF THE NATURAL RADIOACTIVITY OF THE BIOSPHERE ......................... 6 § Some historical problems...................... 6 § 2. Formation of natural radioactive isotopes of the earth ..... 7 §3. Radioactive isotope creation by cosmic radiation. ....... 11 §4. Distribution of radioactive isotopes in the earth ........ 12 § 5. The spread of radioactive isotopes over the earth's surface. ................................. 16 § 6. The cycle of natural radioactive isotopes in the biosphere. ................................ 18 Bibliography ................ .................. 22 Chapter 2. PHYSICAL AND BIOCHEMICAL PROPERTIES OF NATURAL RADIOACTIVE ISOTOPES. ........... 24 § 1. The contribution of individual radioactive isotopes to the total radioactivity of the biosphere. ............... 24 § 2. Properties of radioactive isotopes not belonging to radio- active families . ............ I............ 27 § 3. Properties of radioactive isotopes of the radioactive families. ................................ 38 § 4. Properties of radioactive isotopes of rare-earth elements . -
Growwithpeters.Com © 2020 ICL Fertilizers, Worldwide Rights Reserved
PRODUCT ANALYSIS AND RATES IDEAL FOR WATER TYPES 1 to 2 1 2 3 4 0 60 150 200 240+ All-Purpose Low High 15-2-20 PPM CALCIUM CARBONATE Formulation Alkalinity Alkalinity PANSY, SALVIA & VINCA SKU# E99130, G99130 Formulated for compact growth and bright blossoms on WEIGHT (IN OUNCES) OF PRODUCT NEEDED TO MIX pansy, salvia, vinca, etc . with high Nitrate, low Phosphate ONE GALLON OF CONCENTRATE and extra Boron . Target Fertilizer Common Injector Ratios EC (mmhos/cm) • A (All-Purpose) formulation for constant, balanced Concentration of Target Feed nutrition (N/ppm) After 1:15 1:100 1:128 1:200 1:300 Rate After • Most effective with Water Types 1 and 2 Dilution Dilution • Contains Calcium, Magnesium and other minor 25 0 .3 2 .3 2 .9 4 .5 6 .8 0 .21 elements 50 0 .7 4 .5 5 .8 9 .0 13 .5 0 .42 GUARANTEED ANALYSIS 15-2-20 75 1 .0 6 .8 8 .6 13 .5 20 .3 0 .62 Total Nitrogen (N) . .. 15% 100 1 .4 9 .0 11 .5 18 .0 27 .0 0 .83 1 .4% Ammoniacal Nitrogen 12 .8% Nitrate Nitrogen 125 1 .7 11 .3 14 .4 22 .5 33 .8 1 .04 0 .8% Urea Nitrogen 150 2 .0 13 .5 17 .3 27 .0 40 .5 1 .25 Available Phosphate (P2O5) . 2% 175 2 .4 15 .8 20 .2 31 .5 47 .3 1 .45 Soluble Potash (K2O) . 20% Calcium (Ca) . 3 .75% 200 2 .7 18 .0 23 .0 36 .0 54 .0 1 .66 Magnesium (Mg) . -
Improved Solubility Compound Fertilizer
Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 569 513 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.6: C05B 17/02, C05C 5/04, of the grant of the patent: C05D 9/02, C05G 1/00 12.11.1997 Bulletin 1997/46 (86) International application number: (21) Application number: 92905776.8 PCT/US92/00850 Date of 31.01.1992 (22) filing: (87) International publication number: WO 92/13813 (20.08.1992 Gazette 1992/22) (54) IMPROVED SOLUBILITY COMPOUND FERTILIZER COMPOSITIONS Losliche Dungemittelzusammenstellungen COMPOSITIONS POUR ENGRAIS SOUS FORME DE COMPOSES SOLIDES A SOLUBILITE ACCRUE (84) Designated Contracting States: (74) Representative: De Hoop, Eric et al AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE Octrooibureau Vriesendorp & Gaade P.O. Box 266 (30) Priority: 31.01.1991 US 648644 2501 AW Den Haag (NL) (43) Date of publication of application: (56) References cited: 18.11.1993 Bulletin 1993/46 GB-A- 2 072 644 (60) Divisional application: 97200001.2 • Chemical Abstracts, volume 93, no. 11,15 September 1980, (Columbus, Ohio, US) see page (73) Proprietor: OMS INVESTMENTS, Inc. 622, abstract 113193d, & PI 7908335 Wilmington, Delaware 19801 (US) (ULTRAFERTIL S.A.) 04-03-1980 (72) Inventors: Remarks: • VETANOVETZ, Richard, P. •Divisional application 97200001 .2 filed on Emmaus, PA 18049 (US) 03/01/97. • PETERS, Robert •The file contains technical information submitted Allentown, PA 18104 (US) after the application was filed and not included in this specification DO CO lo O) CO LO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted. -
Uncertainties in Cancer Risk Coefficients for Environmental Exposure to Radionuclides
OAK RIDGE ORNL/TM-2006/583 NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY Uncertainties in Cancer Risk Coefficients for Environmental Exposure to Radionuclides An Uncertainty Analysis for Risk Coefficients Reported in Federal Guidance Report No. 13 January 2007 Prepared by D. J. Pawela R. W. Leggettb K. F. Eckermanb C. B. Nelsona aOffice of Radiation and Indoor Air U.S. Environmental Protection Agency Washington, DC 20460 bOak Ridge National Laboratory Oak Ridge, Tennessee 37831 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: [email protected] Web site: http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: 865-576-8401 Fax: 865-576-5728 E-mail: [email protected] Web site: http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. -
MEDICAL RADIOISOTOPES PRODUCTION WITHOUT a NUCLEAR REACTOR the Vast Majority of the Public Thinks That Research Reactors, Such 1 Introduction 2
june 4, 2010 | No. 710/711 MEDICAL RADIOISOTOPES PRODUCTION WITHOUT A NUCLEAR REACTOR The vast majority of the public thinks that research reactors, such 1 Introduction 2 as the High Flux Reactor (HFR) in Petten, the Netherlands, are 2 The Emergence and essential for the supply of medical radioisotopes. And indeed Development of these nuclear reactors are currently producing the vast majority of Nuclear Medicine 3 the isotopes. The nuclear industries like to maintain this widespread 3 Medical Radioisotopes & misunderstanding to justify their right to exist. A brief look in the Applications 8 history of nuclear medicine learns that all medical radioisotopes 4 Reactor-based were originally manufactured by another type of production. Radioisotopes Produced by (710/1.) Laka Foundation – On May 22, agriculture, industry and fundamental Cyclotrons? 12 a research report was published on the research. Though most isotopes have no alternatives for reactor-based production practical value, dozens of isotopes have 5 Recent Developments of medical isotopes: "Medical valuable applications. At present there and Prospects in Radioisotopes Production 17 Radioisotopes Production Without A are up to 200 radioisotopes used on a Nuclear Reactor", written by Henk van regular basis, and most of them are 6 Discussion, Conclusions and der Keur of the Laka Foundation. The produced artificially. Recommendations 19 report tries to find an answer to the key question: Is it possible to ban the use of Until 2007 there was an almost research reactors for the production of uninterrupted supply of cheap subsidized medical radioisotopes? It will make clear reactor-produced isotopes, there was no that the nuclear industry is using the need to search for alternatives. -
Periodic Table of Elements
The origin of the elements – Dr. Ille C. Gebeshuber, www.ille.com – Vienna, March 2007 The origin of the elements Univ.-Ass. Dipl.-Ing. Dr. techn. Ille C. Gebeshuber Institut für Allgemeine Physik Technische Universität Wien Wiedner Hauptstrasse 8-10/134 1040 Wien Tel. +43 1 58801 13436 FAX: +43 1 58801 13499 Internet: http://www.ille.com/ © 2007 © Photographs of the elements: Mag. Jürgen Bauer, http://www.smart-elements.com 1 The origin of the elements – Dr. Ille C. Gebeshuber, www.ille.com – Vienna, March 2007 I. The Periodic table............................................................................................................... 5 Arrangement........................................................................................................................... 5 Periodicity of chemical properties.......................................................................................... 6 Groups and periods............................................................................................................. 6 Periodic trends of groups.................................................................................................... 6 Periodic trends of periods................................................................................................... 7 Examples ................................................................................................................................ 7 Noble gases ....................................................................................................................... -
Fishery Bulletin of the Fish and Wildlife Service V.54
PHOSPHORUS EXCHANGE IN MARINE PHYTOPLANKTON BY THEODORE R. RICE FISHERY BULLETIN 80 UNITED STATES DEPARTMENT OF THE INTERIOR, Douglas McKay, Secretary FISH AND WILDLIFE SERVICE, John L. Farley, Director ABSTRACT Phosphorus exchange in Nitzschia· clostai'iu.In, isoiated and grown in pure culture, was demunstrated by using rudioactive phosphorus find was ~h()\\"n to "IlI'Y with changes in the phosphorus concentration of the medium amI with the ph~'sioiogical conditions of t,he cells. A modification of MiCluel's nutrient solutions was made to prevent the formation of precil)itates when autoclavecl, since it was necessary that'the radioactive phusphorus he eithel' in solution or within the ('elll>, Complete recovery of cells fur radioactive l\SSll~' was accomplished b~' using n harium-sulfate filter pad in a detachable tiltel'iug apparatus. The gl'entest exchange occurred when cells gl'own in high concentrntions (If phosphorus were tilter-washed. Also exchange between ('ells and medium wus determined while the cells were photo synthesizing, and when they wei'€' kept in the dark. A redistribution of intra cellular phosphorus between the inorganic and organir fractions occul'l"ed when cells wel'e placed in the light in medium .containing only a tmce of phosphorus.. Little phosphorus was converted into ~he organic state by cells kept in the dal'k. UNITED STATES DEPARTMENT OF THE INTERIOR, Douglas McKay, Secretary FISH AND WILDLIFE SERVICE, John L. Farley, Director PHOSPHORUS EXCHANGE IN MARINE PHYTOPLANKTON BY THEODORE R. RICE FISHERY BULLETIN 80 From Fishery Bulletin of the Fish and Wildlife Service VOLUME S4 UNITED STATES GOVERNMENT PRINTING OFFICE • WASHINGTON: 1953 For sale by the Superintendent of Documents, U. -
TG 17-5-17 Plus
DIRECTIONS FOR USE Mixing Concentrated Fertilizer Solutions: The table below lists how much Technigro fertilizer by weight to blend into a given volume of water to make a concentrated fertilizer solution. Recommended fertilizer concentrations are for a continuous feed program. However, the Technigro formula (NPK) and concentration (ppm) most suitable for individual use should be determined by soil and water analysis as well as plant response. Various target concentration and common injector ratios are included. Technigro dissolves faster in hot water. When mixing a concentrated solution with cold water, stir well and allow ample time for fertilizer to dissolve before using. USAGE RATES For fertilizers with 17% N analysis ppm N Ounces of fertilizer per gallon of water for given injector ratio No Injector 1:15 1:100 1:128 1:200 1:300 25 0.02 0.3 2.0 2.5 3.9 5.9 17- 5-17 Plus 50 0.04 0.6 3.9 5.0 7.9 11.8 Contains 3.5% Ca, 1.1% Mg 75 0.06 0.9 5.9 7.5 11.8 17.7 100 0.08 1.2 7.9 10.1 15.7 23.6 For Continuous Liquid Feed Programs - For Professional Use Only 150 0.12 1.8 11.8 15.1 23.6 35.3 200 0.16 2.4 15.7 20.1 31.4 47.1 GUARANTEED ANALYSIS 300 0.24 3.5 23.6 30.2 47.1 70.7 400 0.31 4.7 31.4 40.2 62.8 94.2 Total Nitrogen (N). -
Nutrient Content of Fertilizer Materials
A labama A & M and A uburn U niversities Nutrient Content ANR-174 of Fertilizer Materials The following tables can be used as quick purity of the product, or other materials blended reference guides to fertilizer materials. These with the product. Most values are for the fertilizer- materials may be used alone or blended with other grade product and not the pure chemical. The fertilizer materials to form a multinutrient fertilizer. chemical formulas given are for the primary active The actual nutrient content may vary from what compound. is listed, depending upon the manufacturer, the Primary and Secondary Nutrient Sources Percentage Approx. CaCO3 Material N PO5 K0 Ca Mg S Equiv./100 lb.† Comments Nitrogen Materials Ammonium nitrate‡ NH4NO3 34 0 0 0 0 0 -61 Ammonium nitrate limestone Ca and Mg depend on NH4NO3 + (CaCO3 + MgCO3) 20 0 0 6 4 0 0 limestone used Ammonium nitrate sulfate NH4NO3 + (NH4)SO4 30 0 0 0 0 5 -71 Ammonium sulfate‡ (NH4)SO4 1 0 0 0 0 24 -110 Anhydrous ammonia‡ Pressurized gas NH3 82 0 0 0 0 0 -148 Aqua ammonia NH4OH 16-5 0 0 0 0 0 -36 to -54 Calcium cyanamide Most alkaline N material CaCN 1 0 0 11 0 0 +63 Calcium nitrate Ca(NO3).4HO 15 0 0 21 0 0 +0 Calcium nitrate/urea (Calurea) Don’t blend with Ca(NO3) + 4CO(NH) 34 0 0 10 0 0 -36 superphosphate Crotonylidene diurea Slow-release (CDU) 32 0 0 0 0 0 NA Isobutylidene diurea Slow-release (IBDU) 31 0 0 0 0 0 NA Nitrogen solutions (N-SOL or UAN solutions)‡ (urea/ammonium nitrate): Solutions code: 3% UAN (35% urea + 45% A.N.) 32 0 0 0 0 0 -55 30(0-45-35) 30% UAN (33% urea + 4% A.N.) 30 0 0 0 0 0 -52 300(0-4-33) 8% UAN (30% urea + 40% A.N.) 28 0 0 0 0 0 -49 280(0-40-30) 1% AN (60% A.N.