November 19-20, 2015
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Mississippi River Find
The Journal of Diving History, Volume 23, Issue 1 (Number 82), 2015 Item Type monograph Publisher Historical Diving Society U.S.A. Download date 04/10/2021 06:15:15 Link to Item http://hdl.handle.net/1834/32902 First Quarter 2015 • Volume 23 • Number 82 • 23 Quarter 2015 • Volume First Diving History The Journal of The Mississippi River Find Find River Mississippi The The Journal of Diving History First Quarter 2015, Volume 23, Number 82 THE MISSISSIPPI RIVER FIND This issue is dedicated to the memory of HDS Advisory Board member Lotte Hass 1928 - 2015 HISTORICAL DIVING SOCIETY USA A PUBLIC BENEFIT NONPROFIT CORPORATION PO BOX 2837, SANTA MARIA, CA 93457 USA TEL. 805-934-1660 FAX 805-934-3855 e-mail: [email protected] or on the web at www.hds.org PATRONS OF THE SOCIETY HDS USA BOARD OF DIRECTORS Ernie Brooks II Carl Roessler Dan Orr, Chairman James Forte, Director Leslie Leaney Lee Selisky Sid Macken, President Janice Raber, Director Bev Morgan Greg Platt, Treasurer Ryan Spence, Director Steve Struble, Secretary Ed Uditis, Director ADVISORY BOARD Dan Vasey, Director Bob Barth Jack Lavanchy Dr. George Bass Clement Lee Tim Beaver Dick Long WE ACKNOWLEDGE THE CONTINUED Dr. Peter B. Bennett Krov Menuhin SUPPORT OF THE FOLLOWING: Dick Bonin Daniel Mercier FOUNDING CORPORATIONS Ernest H. Brooks II Joseph MacInnis, M.D. Texas, Inc. Jim Caldwell J. Thomas Millington, M.D. Best Publishing Mid Atlantic Dive & Swim Svcs James Cameron Bev Morgan DESCO Midwest Scuba Jean-Michel Cousteau Phil Newsum Kirby Morgan Diving Systems NJScuba.net David Doubilet Phil Nuytten Dr. -
NAVSEA Does Not Provide a Specific Address to Submit FOIA Requests, So Use This
Description of document: FOIA CASE LOGS for: US Navy Naval Sea Systems Command, Washington Navy Yard DC for FY 2006 – FY 2007 Requested date: 27-May-2007 Released date: 12-July-2007 Posted date: 11-January-2008 Title of Document Freedom of Information & Privacy Program Case Log For Period 10/01/2005 to 06/01/2007 Date/date range of document: 03-October-2005 – 30-May-2007 Source of document: NAVSEA does not provide a specific address to submit FOIA requests, so use this: Commander Naval Sea Systems Command 1333 Isaac Hull Ave., SE Washington Navy Yard, DC 20376-1080 Phone: 202-781-0000 The governmentattic.org web site (“the site”) is noncommercial and free to the public. The site and materials made available on the site, such as this file, are for reference only. The governmentattic.org web site and its principals have made every effort to make this information as complete and as accurate as possible, however, there may be mistakes and omissions, both typographical and in content. The governmentattic.org web site and its principals shall have neither liability nor responsibility to any person or entity with respect to any loss or damage caused, or alleged to have been caused, directly or indirectly, by the information provided on the governmentattic.org web site or in this file DEPARTMENT OF THE NAVY NAVAL SEA SYSTEMS COMMAND 1333 ISAAC HULL AVE SE WASHINGTON NAVY YARD DC 20376-0001 IN REPLY TO 5720 Ser 00D3J/2007F060232 JUL 1 22007 This is the final response to your May 27, 2007 Freedom of Information Act (FOIA) request in which you seek a copy of the FOIA Case Log for NSSC for the time period FY2006 and FY2007-to-date. -
Bioluminescence and Vision on the Deep-Seafloor July 14
doi: 10.25923/68x1-wz68 Bioluminescence and Vision on the Deep-Seafloor July 14 – July 27 Table of Contents 1) Cruise overview 2 2) Description of operations 3 3) Scientific sample processing 4 4) Outreach and Education 5 5) Itinerary 6 6) Personnel and Berthing Plan 6 7) Organizational Structure 6 8) Equipment List 7 9) Deposition of Data 7 10) Reports and Publications 8 11) Emergency Information 8 12) Communications 8 13) Hazmat Inventory 8 14) Meals 9 15) Appendices a. Detailed project description 10 b. Primary operating area map 13 c. Data management plan 14 d. MSDS Sheets 1 Cruise Overview a) Chief Scientist: Dr. Tamara Frank Halmos College of Natural Sciences and Oceanography Nova Southeastern University 8000 N Ocean Drive Dania Beach, FL 33004 [email protected] 954-262-3637 b) Vessel: RV Pelican, LUMCON, Cruise number: TBD c) Study Areas: 1) GC234: 27.74637 -91.22292; 450 – 550 m – giant seep site with corals, bacterial mats, hydrates, tubeworms 2) GB903: 27.07993 -92.81657; 1050 nm depth – lush, rich coral site discovered last year by Eric Cordes; only one previous visit 3) GC852: 27.110242 -91.166113; 1400 m depth – large seep site with big coral mount in center; lots of Bathynomus described in area 4) EX1402L3 Dive 12: 26.618528 -91.109674; 1920 m depth – briefly explorer in 2014 by Okeanos Explorer. No collections. Scattered black areas suggestive of bacterial mats. Sea pens, shrimp, polychaetes, squat lobsters, octocorals and bamboo corals also mentioned as present. Near old shipwreck 2 5) EX1202L3 Dive 10: 27.13613 -90.482398; 1165 m depth – briefly explored by Okeanos Explorer in 2012. -
ASX Presentation
STARFEST 2009 Special Report: Major Astronomy & Space Conferences Presented On: August 22, 2009 Presented By: ASX ‐ Farnaz Ghadaki (President) ‐ Nivedita Chandrasekhar (Project Director) ‐ Iman Datta (Secretary) http://asx.sa.utoronto.ca/ [email protected] Page 1 Agenda • ASX Introduction • Report on ISDC –International Space Development Conference (May 2008) • Report on Canadian Space Summit (Nov. 2008) • Report on SpaceFest (Feb. 2009) • Report on ASX’s Annual Symposium • Notable upcoming symposia/conferences • Q & A http://asx.sa.utoronto.ca/ [email protected] Page 2 ASX Introduction • ASX is the Astronomy & Space Exploration Society at the University of Toronto • ASX’s mission: educate, excite, and inspire students and the general public about astronomy and space exploration • ASX members consist of students, professionals and anyone having an interest (or just curiosity) in the fields of astronomy and space • ASX has no membership fees, and provides most of its events FREE of charge http://asx.sa.utoronto.ca/ [email protected] Page 3 ASX Highlights • Established by students in 2003 • Rapidly grown to over 1600 members • Host the LARGEST student‐run event in the GTA: The Annual ‘Expanding Canada’s Frontiers’ Symposium • Organize variety of other events throughout the year: Film Viewing Faces of Space (FoS) Talks Observing Panel Discussions http://asx.sa.utoronto.ca/ [email protected] Page 4 ASX and IYA • ASX participated in the Toronto Astronomy Festival (Jan. 10) @ OSC – Exhibitor & on planning committee • ASX Symposium (Jan. 23) embraced theme of international cooperation • Earth Hour Observing Event (Mar. 28) in collaboration with U of T Astronomy Dept • Co‐host of Yuri’s Night Celebration (Apr. -
Towards Autonomous Localization of an Underwater Drone
TOWARDS AUTONOMOUS LOCALIZATION OF AN UNDERWATER DRONE A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Computer Science by Nathan Sfard June 2018 c 2018 Nathan Sfard ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Towards Autonomous Localization of an Underwater Drone AUTHOR: Nathan Sfard DATE SUBMITTED: June 2018 COMMITTEE CHAIR: Lynne Slivovsky, Ph.D. Professor of Computer Engineering COMMITTEE MEMBER: John Seng, Ph.D. Professor of Computer Science COMMITTEE MEMBER: Xiao-Hua Yu, Ph.D. Professor of Electrical Engineering iii ABSTRACT Towards Autonomous Localization of an Underwater Drone Nathan Sfard Autonomous vehicle navigation is a complex and challenging task. Land and aerial vehicles often use highly accurate GPS sensors to localize themselves in their envi- ronments. These sensors are ineffective in underwater environments due to signal attenuation. Autonomous underwater vehicles utilize one or more of the following approaches for successful localization and navigation: inertial/dead-reckoning, acous- tic signals, and geophysical data. This thesis examines autonomous localization in a simulated environment for an OpenROV Underwater Drone using a Kalman Fil- ter. This filter performs state estimation for a dead reckoning system exhibiting an additive error in location measurements. We evaluate the accuracy of this Kalman Filter by analyzing the effect each parameter has on accuracy, then choosing the best combination of parameter values to assess the overall accuracy of the Kalman Filter. We find that the two parameters with the greatest effects on the system are the con- stant acceleration and the measurement uncertainty of the system. -
Modeling and Simulation of Motion of an Underwater Robot
2016 International Symposium on Nonlinear Theory and Its Applications, NOLTA2016, Yugawara, Japan, November 27th-30th, 2016 Modeling and Simulation of Motion of an Underwater Robot Ryo Inoharay, Kaito Isogaiy, Hideo Nakanoz, and Hideaki Okazakiy yGraduate School of Engineering, Shonan Institute of Technology 1–1–25, Tsujidounishikaigan, Fujisawa-shi, Kanagawa Prefecture 251-8511, Japan zFaculty of Engineering, Shonan Institute of Technology 1–1–25, Tsujidounishikaigan, Fujisawa-shi, Kanagawa Prefecture 251-8511, Japan Email: [email protected], [email protected], [email protected], [email protected] Abstract—This paper presents how system dynamics ics [1] of an underwater robot based on [2], [4]. The time and system control equations for an underwater robot were parameter t for all the stated variables, such as r(t), or Ω(t), derived using an Arnold-type operator to control the Open- etc., is omitted for convenience. We use the following no- ROV. Typical behavior of the OpenROV on MATLAB nu- tation as [2] (Fig 2): merical simulations is illustrated. ei 2 w (i = 1; 2; 3) are the base vectors of a right-handed Cartesian stationary coordinate system at the origin O; 2 = ; ; 1. Introduction Ei W (i 1 2 3) are the base vectors of a right moving coordinate system connected to the body at the center of Although there are several designs, control system equa- the mass Oc. tions, and dynamic equations for underwater robots, such as [1], unified methods to describe the dynamic equations Definition 1 Let w and W be oriented euclidean spaces for the rigid body kinetics of an underwater robot have yet (i.e. -
Concepts and Approaches for Mars Exploration1
June 24, 2012 Concepts and Approaches for Mars Exploration1 ‐ Report of a Workshop at LPI, June 12‐14, 2012 – Stephen Mackwell2 (LPI) Michael Amato (NASA Goddard), Bobby Braun (Georgia Institute of Technology), Steve Clifford (LPI), John Connolly (NASA Johnson), Marcello Coradini (ESA), Bethany Ehlmann (Caltech), Vicky Hamilton (SwRI), John Karcz (NASA Ames), Chris McKay (NASA Ames), Michael Meyer (NASA HQ), Brian Mulac (NASA Marshall), Doug Stetson (SSECG), Dale Thomas (NASA Marshall), and Jorge Vago (ESA) Executive Summary Recent deep cuts in the budget for Mars exploration at NASA necessitate a reconsideration of the Mars robotic exploration program within NASA’s Science Mission Directorate (SMD), especially in light of overlapping requirements with future planning for human missions to the Mars environment. As part of that reconsideration, a workshop on “Concepts and Approaches for Mars Exploration” was held at the USRA Lunar and Planetary Institute in Houston, TX, on June 12‐14, 2012. Details of the meeting, including abstracts, video recordings of all sessions, and plenary presentations, can be found at http://www.lpi.usra.edu/meetings/marsconcepts2012/. Participation in the workshop included scientists, engineers, and graduate students from academia, NASA Centers, Federal Laboratories, industry, and international partner organizations. Attendance was limited to 185 participants in order to facilitate open discussion of the critical issues for Mars exploration in the coming decades. As 390 abstracts were submitted by individuals interested in participating in the workshop, the Workshop Planning Team carefully selected a subset of the abstracts for presentation based on their appropriateness to the workshop goals, and ensuring that a broad diverse suite of concepts and ideas was presented. -
Exploration of the Jovian System by EJSM (Europa Jupiter System Mission): Origin of Jupiter and Evolution of Satellites
Trans. JSASS Aerospace Tech. Japan Vol. 8, No. ists27, pp. Tk_35-Tk_38, 2010 Topics Exploration of the Jovian System by EJSM (Europa Jupiter System Mission): Origin of Jupiter and Evolution of Satellites 1) 2) 2) 2) 3) By Sho SASAKI , Masaki FUJIMOTO , Takeshi TAKASHIMA , Hajime YANO , Yasumasa KASABA , 4) 4) 2) 2) Yukihiro TAKAHASHI , Jun KIMURA , Tatsuaki OKADA , Yasuhiro KAWAKATSU , 2) 2) 2) 2) 2) Yuichi TSUDA , Jun-ichiro KAWAGUCHI , Ryu FUNASE , Osamu MORI , Mutsuko MORIMOTO , 5) 6) 7) Masahiro IKOMA , Takeshi NAGANUMA , Atsushi YAMAJI , 8) 9) Hauke HUSSMANN , Kei KURITA and JUPITER WORKING GROUP 1)National Astronomical Observatory of Japan, Oshu, Japan 2)The Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan 3)Tohoku University, Sendai, Japan 4)Hokkaido University, Sapporo, Japan 5)Tokyo Institute of Technology, Tokyo, Japan 6)Hiroshima University, Higashi-Hiroshima, Japan 7)Kyoto University, Kyoto, Japan 8)German Aerospace Center, Berlin, Germany 9)Earthquake Research Institute, The University of Tokyo, Tokyo, Japan (Received July 16th, 2009) EJSM (Europa Jupiter System Mission) is a planned Jovian system mission with three spacecraft aiming at coordinated observations of the Jovian satellites especially Europa and the magnetosphere, atmosphere and interior of Jupiter. It was formerly called "Laplace" mission. In October 2007, it was selected as one of future ESA scientific missions Cosmic Vision (2015-2025). From the beginning, Japanese group is participating in the discussion process of the mission. JAXA will take a role on the magnetosphere spinner JMO (Jupiter Magnetosphere Orbiter). On the other hand, ESA will take charge of JGO (Jupiter Ganymede Orbiter) and NASA will be responsible for JEO (Jupiter Europa Orbiter). -
Independent and Interacting Effects of Multiple
A Dissertation Submitted to the Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree by Examining Committee Members: © Copyright 2020 by Alexis M Weinnig All Rights Reserved ii ABSTRACT Human population growth and global industrial development are driving potentially irreversible anthropogenic impacts on the natural world, including altering global climate and ocean conditions and exposing oceanic environments to a wide range of pollutants. While there are numerous studies highlighting the variable effects of climate change and pollution on marine organisms independently, there are very few studies focusing on the potential interactive effects of these stressors. The deep-sea is under increasing threat from these anthropogenic stressors, especially cold-water coral (CWC) communities which contribute to nutrient and carbon cycling, as well as providing biogenic habitats, feeding grounds, and nurseries for many fishes and invertebrates. The primary goals of this dissertation are to assess the vulnerability of CWCs to independent and interacting anthropogenic stressors in their environment; including natural hydrocarbon seepage, hydrocarbon and dispersant concentrations released during an accidental oil spill (i.e. Deepwater Horizon), and the interacting effects of climate change-related factors and hydrocarbon/dispersant exposure. To address these goals, multiple stressor experiments were implemented to assess the effects of current and future conditions [(a) temp: 8°C and pH: 7.9; (b) temp: 8°C and pH: 7.6; (c) temp: 12°C and pH: 7.9; (d) temp: 12°C and pH: 7.6] and oil spill exposure (oil, dispersant, oil + dispersant combined) on coral health using the CWC Lophelia pertusa. Phenotypic response was assessed through observations of diagnostic characteristics that were combined into an average health rating at four points during exposure and recovery. -
Scientific Field Training for Human Planetary
Author's personal copy ARTICLE IN PRESS Planetary and Space Science 58 (2010) 920–930 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Scientific field training for human planetary exploration D.S.S. Lim a,b,n, G.L. Warman c, M.L. Gernhardt d, C.P. McKay a, T. Fong a, M.M. Marinova e, A.F. Davila a,b, D. Andersen b, A.L. Brady f, Z. Cardman g, B. Cowie h, M.D. Delaney i, A.G. Faire´n a,b, A.L. Forrest j, J. Heaton k, B.E. Laval j, R. Arnold d, P. Nuytten k, G. Osinski l, M. Reay k, D. Reid j, D. Schulze-Makuch m, R. Shepard n, G.F. Slater o, D. Williams p a NASA Ames Research Center, Mail-Stop 245-3, Moffett Field, 94035 CA, USA b SETI Institute, 515N. Whisman Road, Mountain View, 94043 CA, USA c ExperiencePoint, 800 West El Camino Real, Ste 180, Mountain View, 94025 CA, USA d NASA Johnson Space Center, 2101 NASA Parkway, Houston, TX 77058, USA e Planetary Science, California Institute of Technology, MC 150-12, Pasadena, CA, USA f Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada g University of North Carolina at Chapel Hill, Department of Marine Sciences, 340 Chapman Hall, CB 3300, Chapel Hill, NC 27599-3300, USA h Applied Geochemistry Group, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada i The Edge Diving Centre, 973 Marine Drive, North Vancouver, B.C., Canada j Department of Civil Engineering, University of British Columbia, Vancouver, B.C., Canada k Nuytco Research, 241A East 1st Street, -
Development of an Underwater Robot
School of Science & Engineering Capstone Design Development of an Underwater Robot Oumaima Lamaakel Supervised by Dr. Kevin Scott Smith Submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in General Engineering Spring 2018 2 DEVELOPMENT OF AN UNDERWATER ROBOT FOR MUD SAMPLES PICK UP Capstone Report Student Statement: The work submitted is solely prepared by Oumaima Lamaakel and it is original. Excerpts from other’s work have been clearly identified, acknowledged and listed in the list of references. The engineering drawings, computer programs, prototype development, and testing protocols reported in this document are also original and adhere to the engineering design ethics and safety measures. ______________________ Oumaima Lamaakel Approved by the supervisor: ______________________ Dr. Kevin Scott Smith 3 Acknowledgment I am highly indebted to my supervisors prof. Kevin Smith and prof. Lorraine Casazza for their guidance, constant supervision and support throughouts the whole year. I would like to express my gratitude to prof Veronique Van Lierde for helping understand the kinematics behind manipulators, prof. Asmae Khaldoun for her feedback regarding materials selection, prof. Yassine Salih Alj for his support and coordination work, the lab technician Mr Abderahim Boulakrouch, and Al Akhawayn University and the School of Science & Engineering for giving me the opportunity to pursue this project. My gratitude extends to the members of the ROV team, who helped me assemble the prototypes, especially Jade El Haimer for his invaluable help. I would also like to thank my dear family, friends for their support throughout my undergraduate education. 4 List of Tables and Figures Table 2 Comparison of Thrusters ........................................................................................... -
Title: Exploration of Europa Cynthia B
Title: Exploration of Europa Cynthia B. Phillips1, D. L. Blaney2, R. T. Pappalardo2, H. Hussman3, G. Collins4, R. M. Mastrapa1, J. F. Cooper5, R. Greeley6, J. B. Dalton2, T. A. Hurford5, E. B. Bierhaus7, F. Nimmo8, D. A. Williams6, D. A. Senske2, W. B. McKinnon9 1SETI Institute, 2NASA JPL/Caltech, 3DLR Institute of Planetary Research, Berlin, 4Wheaton College, 5NASA Goddard, 6Arizona State University, 7Lockheed Martin Corporation, 8 Univ. Calif. Santa Cruz, 9Washington University in St. Louis Corresponding Author: Cynthia B. Phillips Carl Sagan Center for the Study of Life in the Universe SETI Institute 515 N. Whisman Rd. Mountain View, CA 94043 [email protected] 650-810-0230 1. Introduction Data from the Galileo spacecraft revealed that Europa's icy surface likely hides a global subsurface ocean with a volume nearly three times that of Earth's oceans. The existence of liquid water in the outer solar system was once thought a remote possibility, but the combination of geological, gravitational, and magnetic field observations and theory make it appear likely that liquid water exists beneath Europa's icy surface. It is now recognized that oceans may exist within many large icy moons and potentially even within icy dwarf planets, but Europa's inferred thin ice shell, potentially active surface- ocean and ocean-silicate mantle exchange, and chemical resources from surface irradiation elevate its priority for astrobiological exploration. A Europa mission is the first step in understanding the potential for icy satellites as abodes for life. Many unanswered questions remain following the Galileo mission. How thick is the ice shell? Is Europa currently geologically active? How does the ocean interact with the ice shell and with the underlying rocky layer? What is the composition of Europa’s surface and ocean? Are there organic or inorganic biosignatures? These questions can only be answered by a new mission to Europa and the Jupiter system.