Habitat Fragmentation and Its Effects on Birds and Grasshoppers in Eucalypt Remnants in the Tasmanian Midlands

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Fragmentation and Its Effects on Birds and Grasshoppers in Eucalypt Remnants in the Tasmanian Midlands Habitat fragmentation and its effects on birds and grasshoppers in eucalypt remnants in the Tasmanian Midlands. by are") Michael MacDonald, BSc (hons Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Geography and Environmental Studies Faculty of Science and Engineering University of Tasmania August, 2001 I declare that this thesis contains no material which has been accepted for a degree or diploma at the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgment is made in the text of the thesis. Michael MacDonald Date: zmo( II Authority of Access This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968 Michael MacDonald Date: V(710 ( Ill Abstract In the subhumid Midlands region of Tasmania, forty-seven remnants of eucalypt woodland and dry sclerophyll forest as well as six control sites were surveyed for birds and grasshoppers, in order to examine the responses of these groups to habitat fragmentation. A wide range of characteristics of the remnants (including position in landscape, management regime and vegetation) were related to species richness, diversity and density of the two groups as well as to the distributions of individual species. Remnant size, vegetation structure and tree health all showed significant relationships with bird species richness and diversity. Small remnants with open understorey and high levels of dieback showed radically different species composition than larger ones or those with dense understorey. Where the understorey is open the noisy miner (Manorina melanocephala) is present in colonies and is able to effectively exclude almost all other species by concerted aggressive behaviour. Noisy miner colonies were associated with small remnants but were also present at the edges of larger remnants, where proximity to open country and vegetation structure both predicted their presence. Interspecific competition is considered to be the major determinant of species richness and of many species' distributions in the study area. Analysis of remnants which are not dominated by noisy miner colonies found that area and isolation were significantly correlated with species richness and diversity,. although larger remnants did not have more species at a given point. Summer migrants and nomadic species are considered to be more sensitive to habitat fragmentation as a result of the presence of noisy miner colonies in the fragmented habitat. Interspecific competition is considered to be the driving force behind avifaunal trends in the study area. Grasshopper species richness was not related to any of the variables measured, but diversity was higher in remnants in better condition, while density was higher in remnants in poor condition. Common grasshopper species responded to a range of variables. Management of remnants for conservation of avifaunal and grasshopper values is discussed. In the context of avifauna conservation, it is suggested that although larger remnants are more likely to support a healthy suite of bird species, the presence of a dense understorey in smaller remnants can improve their conservation value. Both of these options are likely to also lead to the maintenance of forest- and woodland- dwelling grasshopper species. iv Acknowledgments I would like to thank my supervisor, Jamie Kirkpatrick, for his patience, assistance arid encouragement in this research. Peter McQuillan identified grasshoppers and provided considerable assistance in understanding the results of the grasshopper collection. All landowners involved have been helpful in allowing me access to their properties. Other postgraduate students have provided advice and help at times. In particular, Mona Loofs has helped me to maintain my sanity. I wish to thank my family for their support over the past five years. Anneli MacDonald has inspired me and enabled me to finish this and keep my promises. Contents Page Title Statement of authenticity ii Declaration iii Abstract iv Acknowledgments Table of contents vi 1 A review of the effects of habitat fragmentation 1 1.1 Introduction 1 1.2 Island biogeography and other theories 6 1.3 Forest fragmentation in Australia 11 1.4 The Tasmanian Midlands 12 1.5 Thesis aims 14 2 General methods 17 2.1 Study area 17 2.2 Bird and grasshopper surveys 19 2.3 Independent variables 21 2.4 Data analysis 22 3 Birds of eucalypt remnants in Tasmania's Midlands 27 3.1 Introduction 27 3.1.1 Birds in fragmented forests 27 3.1.2 The Australian situation 33 3.1.3 Avifauna of the Tasmanian Midlands 35 3.2 Methods 38 3.2.1 Bird assemblages 38 3.2.2 Community-level responses variables 39 3.2.3 Bird species' distributions 39 3.3 Results 40 3.3.1 Classification 41 3.3.2 Bird assemblages, independent variables and community-level responses 44 3.3.3 Community-level responses 48 3.3.4 Community-level responses in the absence of noisy miner colonies 49 3.3.5 Species' distributions and abundances and independent variables 54 3.4 Discussion 69 3.4.1 Species observed 69 3.4.2 Bird assemblages 71 3.4.3 Community-level responses 76 3.4.4 Species' responses 81 3.4.5 Conclusion 83 4 Dieback in eucalypt remnants in Tasmania's Midlands 87 4.1 Introduction 87 4.2 Methods 93 4.2.1 Dieback measures 94 4.2.2 Data analysis 94 4.3 Results 94 4.4 Discussion 98 5 Seasonal movements of birds in eucalypt remnants in Tasmania's Midlands 103 5.1 Introduction 103 5.2 Methods 107 vi Contents (cont.) Page 5.3 Results 109 5.3.1 Climatic data 109 5.3.2 Between-year variation 112 5.3.3 Similarity index 113 5.3.4 Seasonal variation 114 5.3.5 Migratory guilds and independent variables 116 5.4 Discussion 119 5.4.1 Between-year differences 119 5.4.2 Seasonal differences 120 5.4.3 Migratory guilds and independent variables 122 5.4.4 Conclusion 124 6 Edge-interior differences in the avifauna of eucalypt remnants in Tasmania's Midlands 126 6.1 Introduction 126 6.2 Methods 128 6.3 Results 129 6.3.1 Community-level responses and independent variables 130 6.3.2 Species' responses 133 6.4 Discussion 134 7 Grasshoppers of eucalypt remnant in Tasmania's Midlands 138 7.1 Introduction 138 7.2 Methods 141 7.2.1 Grasshopper surveys 141 7.2.2 Data analysis 143 7.3 Results 143 7.3.1 Species observed 143 7.3.2 Community-level responses and independent variables 144 7.3.3 Species distributions and independent variables 145 7.4 Discussion 149 7.4.1 Community-level responses 150 7.4.2 Species distributions 151 7.4.3 Comparison with avifaunal trends 152 7.4.4 Conclusion 153 8 Conclusion 155 8.1 Introduction 155 8.2 Theories of species richness 155 8.3 Comparisons between birds and grasshoppers 158 8.4 Management implications 158 9 References 165 Appendix One: Remnant details 187 Appendix Two: Bird species recorded 189 Appendix Three: Grasshopper species recorded 193 vii Contents (cont.) Page Figures Figure 2.1 Location of remnant- study sites 18 Figure 3.1 Classification of remnants into avifaunal assemblages 43 Figure 3.2 Ordination of remnants according to avifauna 43 Figure 5.1 Mean maximum a-ir temperatures for 1996-1998 and long term averages for Launceston Airport 110 Figure 5.2 Monthly rainfall for 1996-1998 and long term averages for Oadands Post Office 111 Figure 6.2 Classification of 200 m segments in avifaunal assemblages 129 Tables Page Table 2.1 A complete list of independent variables 25 Table 3.1 Summary statistics for bird species richness, diversity and density 41 Table 3.2 Contingency tables for variables which differed significantly from expected values 45 Table 3.3 Means and standard deviations of continuous variables and chi-squared analysis of ordinal variables for bird assemblages 46 Table 3.4 Significant relationships between independent variables and bird community-level responses 50 Table 3.5 Significant relationships between independent variables and bird community-level responses (excluding noisy miner colonies) 52 Table 3.6 Bird species and those variables which differ according to their distribution and abundance 55 Table 4.1 Values and standard deviation of measures of tree health for remnants dominated by noisy miner colonies and other remnants 95 Table 4.2 Significant relationships between independent variables and measures of tree health 96 Table 4.3 Values and standard deviations of independent variables which differed significantly according to floristic group 97 Table 4.4 Values and standard deviations of mean dieback score for eucalypt species and dbh classes using amalgamated data set 97 Table 5.1 Between-year differences for community-level responses, bird species, and migratory, foraging and food preference guilds 112 Table 5.2 Significant relationships between similarity index and independent variables 113 Table 5.3 Between-season differences for community-level responses, bird species, and migratory, foraging and food preference guilds • 114 Table 5.4 Significant relationships between migratory guilds and independent variables 117 Table 6.1 Contingency tables for the distribution of noisy miner colonies in edge and interior segments for (A) whole data set and (B) remnants - supporting miner colonies as well as other assemblages 130 viii Contents (cont.) Tables Page Table 6.2 Values and standard deviations for independent variables and community-level responses between edge and interior segments 131 Table 6.3 Values and standard deviations for independent variables between miner dominated segments and other segments within the same remnants 132 Table 6.4 Abundance values and standard deviations for species which differed significandy between edge and interior segments 133 Table 7.1 Significant relationships between independent variables and grasshopper community-level responses 147 Table 7.2 Grasshopper species and those variables which differ according to their presence or abundance 148 ix 1.
Recommended publications
  • The Transcriptomic and Genomic Architecture of Acrididae Grasshoppers
    The Transcriptomic and Genomic Architecture of Acrididae Grasshoppers Dissertation To Fulfil the Requirements for the Degree of “Doctor of Philosophy” (PhD) Submitted to the Council of the Faculty of Biological Sciences of the Friedrich Schiller University Jena by Bachelor of Science, Master of Science, Abhijeet Shah born on 7th November 1984, Hyderabad, India 1 Academic reviewers: 1. Prof. Holger Schielzeth, Friedrich Schiller University Jena 2. Prof. Manja Marz, Friedrich Schiller University Jena 3. Prof. Rolf Beutel, Friedrich Schiller University Jena 4. Prof. Frieder Mayer, Museum für Naturkunde Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin 5. Prof. Steve Hoffmann, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena 6. Prof. Aletta Bonn, Friedrich Schiller University Jena Date of oral defense: 24.02.2020 2 Table of Contents Abstract ........................................................................................................................... 5 Zusammenfassung............................................................................................................ 7 Introduction ..................................................................................................................... 9 Genetic polymorphism ............................................................................................................. 9 Lewontin’s paradox ....................................................................................................................................... 9 The evolution
    [Show full text]
  • Ecological Considerations for Development of the Wildlife Lake, Castlereagh
    Ecological considerations for development of the Wildlife Lake, Castlereagh Total Catchment Management Services Pty Ltd August 2009 Clarifying statement This report provides strategic guidance for the site. Importantly this is an informing document to help guide the restoration and development of the site and in that respect does not contain any matters for which approval is sought. Disclaimer The information contained in this document remains confidential as between Total Catchment Management Services Pty Ltd (the Consultant) and Penrith Lakes Development Corporation (the Client). To the maximum extent permitted by law, the Consultant will not be liable to the Client or any other person (whether under the law of contract, tort, statute or otherwise) for any loss, claim, demand, cost, expense or damage arising in any way out of or in connection with, or as a result of reliance by any person on: • the information contained in this document (or due to any inaccuracy, error or omission in such information); or • any other written or oral communication in respect of the historical or intended business dealings between the Consultant and the Client. Notwithstanding the above, the Consultant's maximum liability to the Client is limited to the aggregate amount of fees payable for services under the Terms and Conditions between the Consultant and the Client. Any information or advice provided in this document is provided having regard to the prevailing environmental conditions at the time of giving that information or advice. The relevance and accuracy of that information or advice may be materially affected by a change in the environmental conditions after the date that information or advice was provided.
    [Show full text]
  • ORTHOPTERA in the Swedish Museum of Natural History
    ORTHOPTERA in the Swedish Museum of Natural History As of August 2003 Abisares azurea Sjöstedt Type Acrida turrita Linnaeus, 1758 Abisares viridipennis Burmeister Acridella nasuta Linnaeus, 1758 Ablectia rufescens Sjöstedt Type Acridella pharaonis Klug, 1830 Acanthacris citrina Serville Acridella serrata Thunberg, 1815 Acanthacris elgonensis Sjöstedt Acridium australiensis Sjöstedt Type Acanthacris fulva Sjöstedt Acridium basale Walker Acanthacris gyldenstolpi Sjöstedt Acridium eximia Sjöstedt Type Acanthacris lineata Stoll Acridium irregularis Walker Acanthacris ruficornis Fabricius Acridium irregularis Walker Acanthalobus bispinosus Dalman, 1818 Acridium maculicollis Walker Acanthalobus inornatus Walker, 1871 Acridium meleager Sjöstedt Type Acanthodis aquilina Linnaeus, 1758 Acridium modesta Sjöstedt Type Acanthodis curvidens Stål, 1876 Acridium papuasica Finot Acanthodis longicauda Stål, 1895 Acridium pulchripes Sjöstedt Type Acanthoplus jallae Griffini, 1897 Acridium rubripes Sjöstedt Type Acanthoplus longipes Charpentier, 1845 Acridium rubrispinarum Sjöstedt Type Acanthoproctus militaris White, 1846 Acridium signata Sjöstedt Type Acanthoxia ensator Walker Acridium sjöstedti Uvarov Type Acanthoxia gladiator Westwood Acridium vittata Sjöstedt Type Achurum acridodes Stål, 1873 Acridoderes aequalis Mill. Acicera fusca Thunberg, 1815 Acridoderes crassus Bolivar Acidacris violacea Gerstäcker, 1889 Acridoxena hewaniana Smith, 1865 Acinipe algerica Brunner, 1882 Acridoxena macrocephalus Sjöstedt Acinipe crassicornis Bolivar Acripeza reticulata
    [Show full text]
  • The Cytology of Tasmanian Short-Horned Grasshoppers ( Orthoptera: Acridoidea)
    PAP. & PROC. ROY. Soc. TASMANIA. VOL. 86. (15TH SEPTEMBER. 1952.) The Cytology of Tasmanian Short-Horned Grasshoppers ( Orthoptera: Acridoidea) By G. B. SHARMAN Department of Botany, University of Tasmania* WITH 1 PLATE AND 57 TEXT FIGURES SUMMARY The cytology of twenty-six of the twenty-nine species of short-horned grass­ hoppers (superfamily Acridoidea) recorded from Tasmania is described. Intra­ specific cytological polymorphism is described in some species. Cytological evidence of phylogenetic relationships has been indicated where possible. INTRODUCTION Mainly because of their large size, and general suitability for cyto­ logical study the chromosomes of the short-horned grasshoppers (super­ family Acridoidea) have been the subject of wide research. In the largest and most widely studied family, the Acrididae, early workers (McClung, 1905; Davis, 1908) reported the male number as being uniformly twenty­ three rod-shaped chromosomes, but Granata (1910) showed that Pam­ phagus possessed nineteen rod-shaped chromosomes. With few exceptions an XO sex chromosome sy~tem is found. Later work has shown that one group of subfamilies of the Acrididae is characterised by the male diploid number of· nineteen rod-shaped chromosomes, whilst another and larger group is characterised by the male diploid number of twenty-three. These are usually called the ten and twelve chromosome groups, and correspond to the Chasmosacci and Cryptosacci groups of subfamilies (Roberts, 1941). Cytologically the Chasmosacci is a very uniform group as has been shown by Rao (1937) and Powers (1942). The twelve chromosome group, how­ ever, has some cytological variability. In more than forty genera the characteristic male diploid chromosome number of twenty-three is found (White, 1945) ; but" centric fusions" (White, 1945) have been responsible for lowering the chromosome number of some species, although the characteristic twenty-three arms are still found.
    [Show full text]
  • An Illustrated Key of Pyrgomorphidae (Orthoptera: Caelifera) of the Indian Subcontinent Region
    Zootaxa 4895 (3): 381–397 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4895.3.4 http://zoobank.org/urn:lsid:zoobank.org:pub:EDD13FF7-E045-4D13-A865-55682DC13C61 An Illustrated Key of Pyrgomorphidae (Orthoptera: Caelifera) of the Indian Subcontinent Region SUNDUS ZAHID1,2,5, RICARDO MARIÑO-PÉREZ2,4, SARDAR AZHAR AMEHMOOD1,6, KUSHI MUHAMMAD3 & HOJUN SONG2* 1Department of Zoology, Hazara University, Mansehra, Pakistan 2Department of Entomology, Texas A&M University, College Station, TX, USA 3Department of Genetics, Hazara University, Mansehra, Pakistan �[email protected]; https://orcid.org/0000-0003-4425-4742 4Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA �[email protected]; https://orcid.org/0000-0002-0566-1372 5 �[email protected]; https://orcid.org/0000-0001-8986-3459 6 �[email protected]; https://orcid.org/0000-0003-4121-9271 *Corresponding author. �[email protected]; https://orcid.org/0000-0001-6115-0473 Abstract The Indian subcontinent is known to harbor a high level of insect biodiversity and endemism, but the grasshopper fauna in this region is poorly understood, in part due to the lack of appropriate taxonomic resources. Based on detailed examinations of museum specimens and high-resolution digital images, we have produced an illustrated key to 21 Pyrgomorphidae genera known from the Indian subcontinent. This new identification key will become a useful tool for increasing our knowledge on the taxonomy of grasshoppers in this important biogeographic region. Key words: dichotomous key, gaudy grasshoppers, taxonomy Introduction The Indian subcontinent is known to harbor a high level of insect biodiversity and endemism (Ghosh 1996), but is also one of the most poorly studied regions in terms of biodiversity discovery (Song 2010).
    [Show full text]
  • Orthopteren Aus Australien Und Dem Malayischen Archipel, Gesammelt Von Professor Dr
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Orthopteren aus Australien und dem Malayischen Archipel, gesammelt von Professor Dr. Richard Semon. Bearbeitet von Hermann August Krauss in Tübingen. Mit Tafel LXVII. © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at ! © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at -L'ie Orthopteren, die Professor Dr. Richard Semon auf seiner zoologischen Forschungsreise in Australien und dem Malayischen Archipel in den Jahren 1891 — 1893 gesammelt hat, stammen vom Gebiet des Burnett-Flusses in Queensland (Australien), wo sich der Forscher vom September 1891 bis Januar 1892, sowie vom Juli bis October 1892 aufhielt, von der Thursday-Insel in der Torres-Strasse (Februar bis April 1892), von Britisch Neu-Guinea (April bis Mai 1892), von der Insel Ambon (Molukken, Januar bis März 1893) und von West-Java (Buitenzorg und Tjibodas, November, December 1892). Am ergiebigsten war die Ausbeute im botanischen Berggarten von Tjibodas (1425 m über dem Meere) und in dessen Umgebung, wo 39 Arten (darunter 10 neue) gesammelt wurden. 37 Arten (4 neu) stammen aus dem Küstengebiet von Britisch Neu-Guinea, 30 Arten (3 neu) vom Burnett-Fluss, wo sich Semon im Gebiet der beiden Farmen Coonambula und Cooranga, sowie der Nebenflüsse Boyne und Auburn aufhielt, 28 Arten (1 neu) von Buitenzorg (-265 m über dem Meere), 14 Arten von Ambon, 9 Arten (2 neu) von der kleinen Thursday-Insel zwischen Australien und Neu-Guinea, Im Ganzen besteht die Sammlung aus 132 Arten (darunter 20 neue), die sich in folgender Weise auf die Familien vertheilen : Forficulidae 1 Art, Blattidae 25 Arten (7 neu), Mantidae 16 Arten, Phasmidae 13 Arten (5 neu), Acridiidae 35 Arten (3 neu), Locustidae 24 Arten (4 neu), Gryllidae 18 Arten (1 neu).
    [Show full text]
  • Taxonomy and Systematics of the Australian Sarcophaga S.L. (Diptera: Sarcophagidae) Kelly Ann Meiklejohn University of Wollongong
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2012 Taxonomy and systematics of the Australian Sarcophaga s.l. (Diptera: Sarcophagidae) Kelly Ann Meiklejohn University of Wollongong Recommended Citation Meiklejohn, Kelly Ann, Taxonomy and systematics of the Australian Sarcophaga s.l. (Diptera: Sarcophagidae), Doctor of Philosophy thesis, School of Biological Sciences, University of Wollongong, 2012. http://ro.uow.edu.au/theses/3729 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Taxonomy and systematics of the Australian Sarcophaga s.l. (Diptera: Sarcophagidae) A thesis submitted in fulfillment of the requirements for the award of the degree Doctor of Philosophy from University of Wollongong by Kelly Ann Meiklejohn BBiotech (Adv, Hons) School of Biological Sciences 2012 Thesis Certification I, Kelly Ann Meiklejohn declare that this thesis, submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the School of Biological Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Kelly Ann Meiklejohn 31st of August 2012 ii Table of Contents List of Figures ..................................................................................................................................................
    [Show full text]
  • Grasshoppers
    Grasshoppers Orthoptera: Acrididae Plains Lubber Pictured grasshoppers Great crested grasshopper Snakeweed grasshoppers Primary Pest Grasshoppers • Migratory grasshopper • Twostriped grasshopper • Differential grasshopper • Redlegged grasshopper • Clearwinged grasshopper Twostriped Grasshopper, Melanoplus bivittatus Redlegged Grasshopper, Melanoplus femurrubrum Differential Grasshopper, Melanoplus differentialis Migratory Grasshopper, Melanoplus sanguinipes Clearwinged Grasshopper Camnula pellucida Diagram courtesy of Alexandre Latchininsky, University of Wyoming Photograph courtesy of Jean-Francoise Duranton, CIRAD Grasshoppers lay pods of eggs below ground Grasshopper Egg Pods Molting is not for wimps! Grasshopper Nymphs Some grasshoppers found in winter and early spring Velvet-striped grasshopper – a common spring species Grasshopper Controls • Weather (rainfall mediated primarily) • Natural enemies – Predators, diseases • Treatment of breeding areas • Biological controls • Row covers Temperature and rainfall are important mortality factors Grasshoppers and Rainfall Moisture prior to egg hatch generally aids survival – Newly hatched young need succulent foliage Moisture after egg hatch generally reduces problems – Assists spread of diseases – Allows for plenty of food, reducing competition for rangeland and crops Grasshopper predators Robber Flies Larvae of many blister beetles develop on grasshopper egg pods Blister beetle larva Fungus-killed Grasshoppers Pathogen: Entomophthora grylli Mermis nigrescens, a nematode parasite of grasshoppers
    [Show full text]
  • Tetrigidae (Orthoptera) with Partly Exposed Wings
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 1990 Tetrigidae (Orthoptera) With Partly Exposed Wings R. E. Blackith Trinity College, Dublin, Ireland Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Blackith, R. E., "Tetrigidae (Orthoptera) With Partly Exposed Wings" (1990). Insecta Mundi. 391. https://digitalcommons.unl.edu/insectamundi/391 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Vol. 4, No. 1-4, March-December 1990 87 Tetrigidae (Orthoptera) With Partly Exposed Wings R. E Blackith Zoology Department Trinity College Dublin-2 Ireland Abstract in this respect, and it is no longer reasonable to be satisfied with putative alary polymorphism Long series of some species of Tetrigidae as an explanation of the phenomenon of exposed from south Asia show that the wings regularly wings. Where alary polymorphism exits, as in project beyond the pronotal shield by some 15- Hedotettix gracilis Bolivar, we still need to 35 percent of their leilgth, depending on the address the question of why such exposed wings species. There is little intraspecific variation are built in as one pole of the polymorphism. and alary polymorphism is not normally detect- For instance, 119 Taiwanese specimens of able. The role of such exposed wings is dis- Paratettix cingalensis (Walker) from the Lyman cussed and one new species is described.
    [Show full text]
  • Sequential Analysis of Meiotic Prophase in Grasshoppers
    Cytologia 45:641-649, 1980 Sequential Analysis of Meiotic Prophase in Grasshoppers A. M. Vazquez, C. Martinez and J. R. Lacadena Departamentode Genetica,Facultad de Biologia UniversidadComplutense, Madrid, Spain ReceivedJanuary 9, 1979 Prophase meiotic stages of difficult interpretation, namely synizesis and diffuse stage, have been noted since early descriptions of meiosis (Wilson 1925 , Inouye 1929). The lack of chronology criteria which might establish a proper sequence of the observed phases has been, perhaps, one of the reasons which have made the under standing difficult. It has also made difficult to locate both stages within the meiotic cycle. In recent years, several criteria of chronology have come to be used which per mit the real establishment of the prophase meiotic stages. Moens (1964) was the first to give a new interpretation to the prophase I in which he included some atypi cal stages, namely synizesis, schizonema and diffuse stage. The synizesis, described as a stage in which homologous chromosomes appear paired forming a compact tangle, has been placed at the beginning of the prophase (Moens 1964, Nagl 1969, Lacadena and Vazquez 1971, Owens and Molder 1971). The diffuse stage is a period of apparent decondensation of the chromosomes previously paired and contracted. This stage has been reported by several authors and generally placed close to pachytene or diplotene (see review by Klasterska 1976). Its significance is still to be explained being connected with crossing over by some authors (Rossen and Westergaard 1966, Barry 1969, Peacock 1970) or with special periods of genetic activity by others (Lu and Raju 1970, Klasterska 1971, 1976, Owens and Molder 1971).
    [Show full text]
  • Edible Insects and Other Invertebrates in Australia: Future Prospects
    Alan Louey Yen Edible insects and other invertebrates in Australia: future prospects Alan Louey Yen1 At the time of European settlement, the relative importance of insects in the diets of Australian Aborigines varied across the continent, reflecting both the availability of edible insects and of other plants and animals as food. The hunter-gatherer lifestyle adopted by the Australian Aborigines, as well as their understanding of the dangers of overexploitation, meant that entomophagy was a sustainable source of food. Over the last 200 years, entomophagy among Australian Aborigines has decreased because of the increasing adoption of European diets, changed social structures and changes in demography. Entomophagy has not been readily adopted by non-indigenous Australians, although there is an increased interest because of tourism and the development of a boutique cuisine based on indigenous foods (bush tucker). Tourism has adopted the hunter-gatherer model of exploitation in a manner that is probably unsustainable and may result in long-term environmental damage. The need for large numbers of edible insects (not only for the restaurant trade but also as fish bait) has prompted feasibility studies on the commercialization of edible Australian insects. Emphasis has been on the four major groups of edible insects: witjuti grubs (larvae of the moth family Cossidae), bardi grubs (beetle larvae), Bogong moths and honey ants. Many of the edible moth and beetle larvae grow slowly and their larval stages last for two or more years. Attempts at commercialization have been hampered by taxonomic uncertainty of some of the species and the lack of information on their biologies.
    [Show full text]
  • Resolution of Respect
    Announcements Resolution of Respect Charles Birch 1918–2009 On 19 December 2009, ecology lost the last of its great pioneers—Charles Birch died in a Sydney Hospital almost two months after suffering a bad fall. Louis Charles Birch, who was known by everyone as Charles, was born in Sydney on 8 February 1918. He went into biology because his mother encouraged his interest in nature, and in particular, because she gave him Possible Worlds, a wonderful book by J. B. S. Haldane (Haldane 1927),1 and because of an early fascination with the diversity and beauty of insects. Many influences in his childhood, including an evangelical religion, gave him a life goal of trying to help people. An early experience on a farm in the course of studying agriculture convinced Charles that he was not cut out to be a farmer. But he did go to the Waite Institute in Adelaide and investigated the dynamics of locust plagues, which started him in the direction of his life’s work in ecology, and which he followed up with sojourns with leading ecologists and statisticians at the University of Chicago and Oxford (where he worked with Charles Elton), before settling at Sydney University in 1948. Charles was one of the great figures in the development of modern ecology, known to all ecologists for his pioneering research in population biology, in which he sought to understand the dynamics of populations (i.e., how populations changed through time in terms of numbers, age structure, and for other reasons), and what factors controlled or “regulated” the sizes of populations (Birch 1948).
    [Show full text]