White Grubs and Their Management
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stridulatory Organs in Asian Holotrichia Species © 2016 JEZS (Coleoptera: Melolonthidae: Melolonthinae) Received: 29-09-2016 Accepted: 30-10-2016
Journal of Entomology and Zoology Studies 2016; 4(6): 207-210 E-ISSN: 2320-7078 P-ISSN: 2349-6800 JEZS 2016; 4(6): 207-210 Stridulatory organs in Asian Holotrichia species © 2016 JEZS (Coleoptera: Melolonthidae: Melolonthinae) Received: 29-09-2016 Accepted: 30-10-2016 Sara Lariza Rivera-Gasperín Sara Lariza Rivera-Gasperín and Miguel Ángel Morón Red de Biodiversidad y Sistemática, Instituto de Ecología, A.C., Carretera antigua Abstract a Coatepec 351, El Haya, Xalapa Elytral stridulatory organs in the Asiatic genus Holotrichia Hope are described. Structure and position of 91070, Veracruz, Mexico. such organs suggest that sound is produced by males and females by rubbing the internal edge of the hind femur (plectrum) on the ridge elytral epipleura (pars stridens). Similar stridulatory structures were also Miguel Ángel Morón found in some species of the closely related genera Sebakwe Péringuey, Microtrichia Brenske, Red de Biodiversidad y Octoplasia Brenske, Heptelia Brenske, Amphitrichia Brenske, Heptophylla Motschulsky, Latipalpus Sistemática, Instituto de Moser and Eotrichia Medvedev. Ecología, A.C., Carretera antigua a Coatepec 351, El Haya, Xalapa Keywords: Scarab, stridulation, pars stridens, plectrum, morphology 91070, Veracruz, Mexico. 1. Introduction All stridulatory organs produce sound or vibration by friction and share the same basic [1] structure, consisting of two body parts moving against each other . The mechanism of stridulation involves a system that consists of two primary organs: a usually elevated fine parallel ribs (pars stridens) and a scraper (plectrum), which is essentially a mobile sharply [2] confined ridge that rubs against the pars stridens . Stridulation has been documented in many insect orders including Orthoptera, Odonata, Lepidoptera, Hymenoptera and Coleoptera. -
Integrated Pest Management Package for Maize
iv INTEGRATED PEST MANAGEMENT PACKAGE FOR MAIZE Sangit Kumar Pradyumn Kumar Jugal Kishor Bana M Shekhar S N Sushil A K Sinha Ram Asre K S Kapoor O P Sharma S Bhagat M Sehgal T Boopathi N Amaresan C Chattopadhyay K Satyagopal P Jeyakumar National Centre for Integrated Pest Management LBS Building, IARI Campus, New Delhi – 110 012 Directorate of Plant Protection, National Institute of Plant Health Quarantine & Storage (DPPQ&S) Management (NIPHM) CGO Complex, NH IV, Faridabad DAC, Min of Agri., Rajendranagar, Haryana- 121001 Hyderabad- 500030 © 2014 Directorate of Plant Protection, Quarantine & Storage CGO Complex, NH IV, Faridabad- 121001 Citation : Sangit Kumar, Pradyumn Kumar, Jugal Kishor Bana, M Shekhar, S N Sushil, A K Sinha, Ram Asre, K S Kapoor, O P Sharma, S Bhagat, M Sehgal, T Boopathi, N Amaresan, C Chattopadhyay, K Satyagopal and P Jeyakumar. 2014. Integrated Pest Management Package for Maize. Pp. 44. Cover picture : Healthy Cob Compiled by : Sangit Kumar1, Pradyumn Kumar1, Jugal Kishor Bana1, M Shekhar, S N Sushil, A K Sinha2, Ram Asre2, K S Kapoor2, O P Sharma, S Bhagat, M Sehgal, T Boopathi, N Amaresan, C C hattopadhyay, K Satyagopal3 and P Jeyakumar3. National Centre for Integrated Pest Management, LBS Building, IARI Campus, Pusa, New Delhi-110 012 1 Directorate of Maize Research, New Delhi, India 2 Directorate of Plant Protection, Quarantine & Storage, Faridabad- 121001 3 National Institute of Plant Health Management, Rajendranagar, Hyderabad 500030 Technical help : Kamlesh Kumar Published by : Director National Centre for Integrated Pest Management, LBS Building, IARI Campus New Delhi 110 012 on behalf of Directorate of Plant Protection, Quarantine & Storage, CGO Complex, NH IV, Faridabad Haryana- 121 001 Year : 2014 Copies : 500 Printed by: M/s. -
Ag. Ento. 3.1 Fundamentals of Entomology Credit Ours: (2+1=3) THEORY Part – I 1
Ag. Ento. 3.1 Fundamentals of Entomology Ag. Ento. 3.1 Fundamentals of Entomology Credit ours: (2+1=3) THEORY Part – I 1. History of Entomology in India. 2. Factors for insect‘s abundance. Major points related to dominance of Insecta in Animal kingdom. 3. Classification of phylum Arthropoda up to classes. Relationship of class Insecta with other classes of Arthropoda. Harmful and useful insects. Part – II 4. Morphology: Structure and functions of insect cuticle, moulting and body segmentation. 5. Structure of Head, thorax and abdomen. 6. Structure and modifications of insect antennae 7. Structure and modifications of insect mouth parts 8. Structure and modifications of insect legs, wing venation, modifications and wing coupling apparatus. 9. Metamorphosis and diapause in insects. Types of larvae and pupae. Part – III 10. Structure of male and female genital organs 11. Structure and functions of digestive system 12. Excretory system 13. Circulatory system 14. Respiratory system 15. Nervous system, secretary (Endocrine) and Major sensory organs 16. Reproductive systems in insects. Types of reproduction in insects. MID TERM EXAMINATION Part – IV 17. Systematics: Taxonomy –importance, history and development and binomial nomenclature. 18. Definitions of Biotype, Sub-species, Species, Genus, Family and Order. Classification of class Insecta up to Orders. Major characteristics of orders. Basic groups of present day insects with special emphasis to orders and families of Agricultural importance like 19. Orthoptera: Acrididae, Tettigonidae, Gryllidae, Gryllotalpidae; 20. Dictyoptera: Mantidae, Blattidae; Odonata; Neuroptera: Chrysopidae; 21. Isoptera: Termitidae; Thysanoptera: Thripidae; 22. Hemiptera: Pentatomidae, Coreidae, Cimicidae, Pyrrhocoridae, Lygaeidae, Cicadellidae, Delphacidae, Aphididae, Coccidae, Lophophidae, Aleurodidae, Pseudococcidae; 23. Lepidoptera: Pieridae, Papiloinidae, Noctuidae, Sphingidae, Pyralidae, Gelechiidae, Arctiidae, Saturnidae, Bombycidae; 24. -
Integrated Pest Management in the Global Arena
Integrated Pest Management in the Global Arena This Handbook is dedicated to all the participants of the Michigan State University’s International IPM Short Course and to the faculty members who have provided support to this course. Integrated Pest Management in the Global Arena Edited by K.M. Maredia Professor Institute of International Agriculture and Department of Entomology Michigan State University East Lansing Michigan USA D. Dakouo Senior Research Scientist INERA Bobo-Dioulasso Burkina Faso and D. Mota-Sanchez Research Associate Department of Entomology Michigan State University East Lansing Michigan USA CABI Publishing CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 44 Brattle Street Wallingford 4th Floor Oxon OX10 8DE Cambridge, MA 02138 UK USA Tel: +44 (0)1491 832111 Tel: +1 617 395 4056 Fax: +44 (0)1491 833508 Fax: +1 617 354 6875 Email: [email protected] E-mail: [email protected] Website: www.cabi-publishing.org ©CAB International 2003. All rights reserved. No part of this publication may be reproduced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Integrated pest management in the global arena /edited by K.M. Maredia, D. Dakouo, D. Mota-Sanchez p. cm. Includes bibliographical references. ISBN 0-85199-652-3 1. Pests--Integrated control. I. Maredia, Karim M. II. Dakouo, D. (Dona), 1951- III. Mota-Sanchez, D. (David), 1960- SB950.I4575 2003 632′.9--dc21 2002154965 ISBN 0 85199 652 3 Typeset by AMA DataSet, UK Printed and bound in the UK by Cromwell Press, Trowbridge Contents Contributors ix Preface xv Acknowledgments xvii Foreword xix Acronyms and Abbreviations xxi 1Introduction and Overview 1 K.M. -
Research Article STUDY on BIODIVERSITY of PHOTOTACTIC HARMFUL INSECT FAUNA COLLECTED in LIGHT TRAP in CHICKPEA (Cicer Arietinum Linn.) ECOSYSTEM
International Journal of Agriculture Sciences ISSN: 0975-3710&E-ISSN: 0975-9107, Volume 9, Issue 12, 2017, pp.-4037-4040. Available online at http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000217 Research Article STUDY ON BIODIVERSITY OF PHOTOTACTIC HARMFUL INSECT FAUNA COLLECTED IN LIGHT TRAP IN CHICKPEA (Cicer arietinum Linn.) ECOSYSTEM SHARMA A.K., MANDLOI R.* AND PACHORI R. Department of Entomology, College of Agriculture, Jawaharlal Nehru Agricultural University, Adhartal, Jabalpur, 482004, Madhya Pradesh, India *Corresponding Author: [email protected] Received: February 17, 2017; Revised: March 01, 2017; Accepted: March 02, 2017; Published: March 12, 2017 Abstract- The present experiment was conducted under the study on scope and use of light trap as IPM tool in chickpea ecosystem. Docume ntation of information was done on biodiversity of harmful insect fauna in chickpea ecosystem collected in light trap at Jabalpur. Standard design of Jawahar light trap with 80 W mucury vapor lamp was used to record the insect catches in chickpea crop from September 2012 to April 2013. Data was classified on taxonomic and economic aspect as crop pests. In all 51 species of insects were collected during the cropping season of chickpea. These insect species belongs to 6 insect orders and 23 families. Lepidoptera was the largest order with 30 species. Other major orders were Hemiptera (9 species), Coleoptera (4 species) and Orthoptera (6 species). Isoptera (1 species) & Diptera, (1 species)were the other orders of minor significance. Based on economic importance this collection was represented by 51 species of harmful insects. Keywords- Chick pea, Light trap, Bio diversity, and Insect Fauna Citation: Sharma A.K., et al., (2017) Study on Biodiversity of Phototactic Harmful Insect Fauna Collected in Light Trap in Chickpea (Cicer arietinum Linn.) Ecosystem. -
Entomology) Onwards Google Meet) on 15Th May, 2021 at 10 Am Participants: I
Board of Studies Meeting (Department of Organised virtually (on Entomology) onwards google meet) on 15th May, 2021 at 10 am Participants: I. Prof. Nand Lal, Deppt. of life 2. Prof. C. P. science, CSJM Srivastav, Professor of University, Kanpur 3. Prof.Y. P. Entomology, B.H.U. Malik, Professor Varanasi of Entomology, CSA Kanpur Univ. of Agri. and Tech. 4. Dr. Dev Narayan Singh, Associate Professor, of College, Bakewar (Etawah) Deptt. Entomology, Janta 5. Dr. B. B. Singh, Assistant Professor, Mahavidyalay, Ajitmal (Auraiya) Deptt. of Entomology, Janta 6. Dr. Mahesh Prasad Yadav, Convenor and Associate Horticulture, Janta professor, Deptt. of College, Bakewar (Etawah) Minutes Of Meeting: BOS mecting of of deptt. Entomology was held to New Education adapt syllabus as under Policy (NEP 2020) with the suggested the presence of various renowed subjects. The outcomes of experts of meetings are as under. 1. Syllabus under suggested NEP 2020 is and implementation. accepted recommended for 2. Prof. Suggestions given by C. P. Srivastav and Prof. Y. minor P. Malik regarding ammendments and corrections have been 3. incorporated. Website names as well as books names have also been syllabus adapted by board. suggested in the 4. Board also that as the suggested per norms of ICAR the name of should be "Entomology". Department 5. Board also that master suggested degree in subject will be "M. Sc. Entomology" (Ag.) Enclosures: Corrected final of syllabus Entomology for B. Sc. (Ag.) programme. Prepared by: Dr. Dev Narayan Singh Convenor Dr. M. P. Yadav Department of Entomology Sr. Course semester No. code Name of papers AG-203 II Credit hrs. -
IDENTIFICATION of the SEX PHEROMONE of Holotrichia Reynaudi
P1: GDX/GDP Journal of Chemical Ecology [joec] pp414-joec-368127 February 19, 2002 16:44 Style file version Nov. 19th, 1999 Journal of Chemical Ecology, Vol. 28, No. 3, March 2002 (C 2002) CORE Metadata, citation and similar papers at core.ac.uk Provided by ICRISAT Open Access Repository IDENTIFICATION OF THE SEX PHEROMONE OF Holotrichia reynaudi ANDREW WARD,1,6 CHRIS MOORE,2,* V. ANITHA,3 JOHN WIGHTMAN,4 and D. JOHN ROGERS5 1Farming Systems Institute Department of Primary Industries PO Box 23, Kingaroy, Qld 4610, Australia 2Farming Systems Institute Department of Primary Industries 665 Fairfield Road, Yeerongpilly, Qld 4105, Australia 3International Crops Research Institute for the Semi-Arid Tropics Patancheru, Andhra Pradesh 502 324, India 4International Pest Management Conondale Cottage, Lot 7 Stanley River Road Maleny Qld 4552, Australia 5Farming Systems Institute Department of Primary Industries Meiers Road, Indooroopilly, Qld 4068, Australia 6Current address: Department of Primary Industries and Fisheries PO Box 1346, Katherine, NT 0851, Australia (Received December 20, 2000; accepted October 27, 2001) Abstract—The male attractant pheromone of the scarab beetle Holotrichia reynaudi, an agricultural pest native to southern India, was extracted from ab- dominal glands of females with hexane and analyzed by gas chromatography– mass spectrometry. Field testing of the candidate chemicals, indole, phenol, and anisole, both alone and as binary mixtures, led us to conclude that anisole was the major component of the sex pheromone. Neither male nor female beetles were attracted to indole or phenol on their own. Similarly, when indole and anisole were combined, the attractiveness of the solution did not increase over that obtained with anisole alone. -
Microbial Pesticides
Facilitating Microbial Pesticide Use in Agriculture in South Asia Editors W.A.R.T. Wickramaarachchi SAARC Agriculture Centre (SAC) Dhaka, Bangladesh Malvika Chaudhary Plantwise Asia, CABI-South Asia New Delhi, India Jagadeesh Patil ICAR-National Bureau of Agricultural Insect Resources (NBAIR), Bengaluru, India SAARC Agriculture Centre (SAC) South Asian Association for Regional Cooperation (SAARC) i Facilitating Microbial Pesticide Use in Agriculture in South Asia SAARC Regional Expert Consultation on Facilitating Microbial Pesticide Use in Agriculture in South Asia, 21-23 August 2017, ICAR-National Bureau of Agricultural Insect Resources (NBAIR), Bengaluru, India Editors W.A.R.T. Wickramaarachchi SAARC Agriculture Centre (SAC), Dhaka, Bangladesh Malvika Chaudhary Plantwise Asia, CABI-South Asia, New Delhi, India Jagadeesh Patil ICAR-National Bureau of Agricultural Insect Resources (NBAIR) Bengaluru, India December 2017 @ 2017 SAARC Agriculture Centre Published by the SAARC Agriculture Centre (SAC), South Asian Association for Regional Cooperation, BARC Complex, Farmgate, New Airport Road, Dhaka -1215, Bangladesh (www.sac.org.bd) All rights reserved No part of this publication may be reproduced, stored in retrieval system or transmitted in any form or by any means electronic, mechanical, recording or otherwise without prior permission of the publisher Citation Wickramaarachchi, W.A.R.T., Chaudhary, M. and Patil, J. (Eds). 2017. Facilitating Microbial Pesticide Use in Agriculture in South Asia. SAARC Agriculture Centre, Dhaka, Bangladesh, 226 pp Available online through www.sac.org.bd This book contains the papers and proceedings of the SAARC Regional Expert Consultation on Facilitating microbial pesticides use in agriculture in South Asia jointly organized by SAARC Agriculture Centre (SAC), ICAR-National Bureau of Agricultural Insect Resources (NBAIR) and The Centre for Agriculture and Bioscience International (CABI) at National Bureau of Agricultural Insect Resources (NBAIR), Bengaluru, India from 21-23 August 2017. -
Diversity and Population Dynamics of Phytophagous Scarabaeid Beetles (Coleoptera: Scarabaeidae) in Different Landscapes of Himachal Pradesh, India
Arthropods, 2015, 4(2): 46-68 Article Diversity and population dynamics of phytophagous scarabaeid beetles (Coleoptera: Scarabaeidae) in different landscapes of Himachal Pradesh, India Mandeep Pathania1,2, RS Chandel1, KS Verma1, PK Mehta1 1Department of Entomology, College of Agriculture, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India 176062 2Punjab Agricultural University, Regional Research Station, Abohar, Punjab, India 152116 E-mail: [email protected] Received 9 December 2014; Accepted 15 January 2015; Published online 1 June 2015 Abstract Scarabaeid beetles constitute a major group of defoliators of cultivated and wild plants. Therefore, it is important to understand their diversity, abundance and distribution for planning effective pest management programmes. We surveyed scarabaeid beetles from 8 landscapes from different zones in Himachal Pradesh (N 32o 29' and E 75o 10'), India. In 2011 and 2012, surveys were conducted during 4 months period (May-August) by using UV light traps. A total of 13,569 scarabaeid adults of 20 genera and 56 species belonging to subfamilies Melolonthinae, Rutelinae, Cetoniinae and Dynastinae were recorded. The five most common species were Brahmina coriacea, Adoretus lasiopygus, Anomala lineatopennis, Maladera insanabilis and Holotrichia longipennis. They comprised 9.88-10.05, 7.18-7.76, 7.13-7.27, 6.80-7.62 and 5.22-5.30% during 2011-12, respectively. Anomala (10 species) was the most dominant genus in the present study, whereas Melolonthinae was the most dominant subfamily accounting 53.23% of total scarabs collected from the study sites. Among different landscapes, Palampur had maximum diversity and abundance, while Shillaroo had least diversity but more abundance of single species B. -
The Entomologist's Record and Journal of Variation
. JVASV^iX ^ N^ {/) lSNrNVIN0SHilWS*^S3ldVaan^LIBRARIES SMITHSONIAN INSTITUTION Ni <n - M ^^ <n 5 CO Z ^ ^ 2 ^—^ _j 2 -I RIES SMITHSONIAN INSTITUTION NOIinillSNI NVINOSHilWS S3iyVdan U r- ^ ^ 2 CD 4 A'^iitfwN r: > — w ? _ ISNI NVINOSHilWS SBiyVdan LIBRARIES'SMITHSONIAN INSTITUTION f^ <rt .... CO 2 2 2 s;- W to 2 C/J • 2 CO *^ 2 RIES SMITHSONIAN_INSTITUTlON NOIiniliSNI_NVINOSHilWS S3liiVyan_L; iiSNi"^NViNOSHiiNS S3iyvaan libraries smithsonian'^institution i^ 33 . z I/' ^ ^ (^ RIES SMITHSONIAN INSTITUTION NOIiniliSNI NVINOSHilWS S3lbVHan Li CO — -- — "> — IISNI NVINOSHimS S3IMVHan LIBRARIES SMITHSONIAN INSTITUTION N' 2 -J 2 _j 2 RIES SMITHSONIAN INSTITUTION NOIifllliSNI NVINOSHIIWS SSIMVyail L! MOTITI IT I f\t _NviN0SHiiws'^S3iMvaan libraries'^smithsonian^institution NOlin z \ '^ ^—s^ 5 <^ ^ ^ ^ '^ - /^w\ ^ /^^\ - ^^ ^ /^rf^\ - /^ o ^^^ — x.ii:i2Ji^ o ??'^ — \ii Z ^^^^^""-^ o ^^^^^ -» 2 _J Z -J , ; SMITHSONIAN INSTITUTION NOIXniliSNI NVINOSHillMS $3 I M VH 8 !!_ LI BR = C/> ± O) ^. ? CO I NVINOSHimS S3iaVHan libraries SMITHSONIAN INSTITUTION NOIlf CO ..-. CO 2 Z z . o .3 :/.^ C/)o Z u. ^^^ i to Z CO • z to * z > SMITHS0NIAN_1NSTITUTI0N NOIiniliSNI_NVINOSHimS S3 I d ViJ 8 n_LI B R UJ i"'NViNOSHiiws S3ibvyan libraries smithsonian"^institution Noiir r~ > z r- Z r- 2: . CO . ^ ^ ^ ^ ; SMITHSONIAN INSTITUTION NOIiniliSNI NVINOSHillNS SSiyVMail LI BR CO . •» Z r, <^ 2 z 5 ^^4ii?^^ ^' X^W o ^"^- x life ^<ji; o ^'f;0: i >^ _NVIN0SHiIlMs'^S3iyVdan^LIBRARIEs'^SMITHS0NlAN INSTITUTION NOlif Z \ ^'^ ^-rr-^ 5 CO n CO CO o z > SMITHSONIAN INSTITUTION NOIiniliSNI NVINOSHimS S3 I ^Vd 8 11 LI BR >" _ . z 3 ENTOMOLOGIST'S RECORD AND Journal of Variation Edited by P.A. SOKOLOFF fre s Assistant Editors J.A. -
Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4. -
Diagnostics of Major White Grub Species Associated with Potato Crop Ecosystem in Himachal Pradesh, India
Int.J.Curr.Microbiol.App.Sci (2017) 6(9): 2545-2555 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 9 (2017) pp. 2545-2555 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.609.313 Diagnostics of Major White Grub Species Associated with Potato Crop Ecosystem in Himachal Pradesh, India Padala Vinod Kumar, K. Sreedevi* and Sukhwinder Singh Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India *Corresponding author ABSTRACT The major white grub species associated with potato crop were surveyed in Himachal Pradesh, India during April to August, 2015. Adults were collected in the vicinity of potato K e yw or ds ecosystem by using light traps with black, mercury light sources and manual collection Melolonthinae, from trees on which they settled for feeding and mating. The survey revealed nine major Rutelinae, species of Scarabaeidae of which, four species are melolonthines viz., Brahmina coriacea Dynastinae, Potato, (Hope, 1837), Holotrichia longipennis (Blanchard, 1850), Holotrichia sikkimensis Himachal Pradesh. (Brenske, 1892), Holotrichia seticollis Moser, 1912, four species are rutelines viz., Article Info Anomala polita (Blanchard, 1851), Anomala lineatopennis Blanchard, 1851, Anomala dimidiata (Hope, 1831), Anomala propinqua Arrow, 1912 and one species of Dynastinae Accepted: i.e Phyllognathus dionysius (Fabricius, 1792). Of these, Anomala propinqua Arrow, 1912 26 August 2017 is reported for the first time in potato ecosystem. Present studies have brought out Available Online: illustrative diagnostic keys of white grub species associated with potato crop ecosystem 10 September 2017 that can be used at field level, where the identification of the species is very important from management point of view.