The Large Eruption 4.2 Ka Cal BP in Cerro Blanco, Central
Total Page:16
File Type:pdf, Size:1020Kb
Estudios Geológicos enero-junio 2019, 75(1), e088 ISSN-L: 0367-0449 https://doi.org/10.3989/egeol.43438.515 The large eruption 4.2 ka cal BP in Cerro Blanco, Central Volcanic Zone, Andes: Insights to the Holocene eruptive deposits in the southern Puna and adjacent regions La gran erupción de hace 4.2 ka cal en Cerro Blanco, Zona Volcánica Central, Andes: nuevos datos sobre los depósitos eruptivos holocenos en la Puna sur y regiones adyacentes J.L. Fernandez-Turiel1, F.J. Perez–Torrado2, A. Rodriguez-Gonzalez2, J. Saavedra3, J.C. Carracedo2, M. Rejas1, A. Lobo1, M. Osterrieth4, J.I. Carrizo5, G. Esteban5, J. Gallardo3, N. Ratto6 1Institute of Earth Sciences Jaume Almera, ICTJA, CSIC, Sole i Sabaris s/n, 08028 Barcelona, Spain. Email: jlfernandez@ ictja.csic.es. ORCID ID: https://orcid.org/0000-0002-4383-799X, https://orcid.org/0000-0003-2356-0927, http://orcid. org/0000-0002-6689-2908 2Instituto de Estudios Ambientales y Recursos Naturales (i–UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain. ORCID ID: https://orcid.org/0000-0002-4644-0875, https://orcid.org/0000-0003- 0688-0531, https://orcid.org/0000-0002-4282-2796 3IRNASA, CSIC, Cordel de Merinas 40–52, 37008 Salamanca, Spain. ORCID ID: https://orcid.org/0000-0003-0567-5499, https://orcid.org/0000-0002-4174-3930 4Instituto de Geología de Costas y del Cuaternario, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata–IIMYC–CONICET, Argentina. ORCID ID: https://orcid.org/0000-0001-9892-9923 5Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, San Miguel de Tucumán, Tucumán, Argentina. ORCID ID: https://orcid.org/0000-0003-1615-6408, https://orcid.org/0000-0001-6788-7513 6Instituto de las Culturas (IDECU), CONICET, Facultad de Filosofía y Letras, Universidad de Buenos Aires, Moreno 350, C1091 CABA, Argentina. ORCID ID: https://orcid.org/0000-0002-6862-3330 ABSTRACT The eruption of the Cerro Blanco Volcanic Complex, in the southern Puna, NW Argentina dated at 4410–4150 a cal BP, was investigated to produce new information on stratigraphy, geomorphology, physical volcanology, radio- carbon dating, petrography, and geochemistry. Identification of pre–, syn–, and post–caldera products allowed us to estimate the distribution of the Plinian fallout during the paroxysmal syn–caldera phase of the eruption. The new results provide evidence for a major rhyolitic explosive eruption that spread volcanic deposits over an area of ~500,000 km2, accumulating >100 km3 of tephra (bulk volume). This last value exceeds the lower threshold of Volcanic Explosive Index (VEI) of 7. Ash-fall deposits mantled the region at distances >400 km from source and thick pyroclastic-flow deposits filled neighbouring valleys up to 35 km away. This eruption is the largest docu- mented during the past five millennia in the Central Volcanic Zone of the Andes, and is probably one of the largest Holocene explosive eruptions in the world. We have also identified two additional rhyolitic eruptions in the region from two other eruptive sources: one during the Early–Holocene and another in the Late–Holocene. The identi- fication and characterisation of these significant volcanic events provide new constraints into regional Holocene Recibido el 4 de diciembre de 2018 / Aceptado el 25 de febrero de 2019 / Publicado online el 8 de mayo de 2019 Citation / Cómo citar este artículo: Fernandez-Turiel, J.L. et al. (2019). The large eruption 4.2 ka cal BP in Cerro Blanco, Central Volcanic Zone, Andes: Insights to the Holocene eruptive deposits in the southern Puna and adjacent regions. Estudios Geológicos 75(1): e088. https://doi.org/10.3989/egeol.43438.515 Copyright: © 2019 CSIC. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non 4.0 International License. 2 J.L. Fernandez-Turiel et al. geological and archaeological records, and offer extensive regional chronostratigraphic markers over a wide geo- graphical area of South America. Keywords: Cerro Blanco Volcanic Complex; volcanic ash; Holocene; Central Volcanic Zone; Andes; Argentina. RESUMEN La erupción del Complejo Volcánico Cerro Blanco en el sur de la Puna, noroeste de Argentina (4410–4150 a BP) se investigó para obtener nueva información sobre estratigrafía, geomorfología, volcanología física, datacio- nes por radiocarbono, petrografía y geoquímica. La caracterización de los productos en relación a la evolución de la caldera de Cerro Blanco permitió estimar la distribución de los depósitos de ceniza de la fase paroxísmica Plineana de la erupción. Estos novedosos resultados evidencian una gran erupción explosiva riolítica que generó depósitos cineríticos en un área de aproximadamente 500.000 km2, acumulando >100 km3 de tefra (volumen total). Este último valor supera el umbral inferior del Índice de Explosividad Volcánica (IEV) de 7. Los depósitos de caída de ceniza cubrieron la región, llegando a más de 400 km desde el Complejo Volcánico de Cerro Blanco, y los potentes depósitos de flujos piroclásticos rellenaron los valles vecinos alcanzando una distancia de 35 km. Esta erupción es la más grande documentada durante los últimos cinco milenios en la Zona Volcánica Central de los Andes y es probablemente una de las mayores erupciones explosivas holocenas del mundo. Además, se han identificado otras dos erupciones riolíticas en la región procedentes de otros dos centros eruptivos: una durante el Holoceno temprano y otra en el Holoceno tardío. La identificación y caracterización de estos grandes eventos vol- cánicos proporcionan nuevas guías para los registros geológicos y arqueológicos regionales del Holoceno, siendo marcadores cronostratigráficos de aplicación a una extensa área geográfica de América del Sur. Palabras clave: Complejo Volcánico Cerro Blanco; ceniza volcánica; Holoceno; Zona Volcánica Central; Andes; Argentina. Introduction into four main volcanic zones separated from each other by volcanic gaps (Stern, 2004): the Northern Tephra is fragmental material produced by an (NVZ), the Central (CVZ), the Southern (SVZ), and explosive volcanic eruption. Larger tephra (‘blocks’ the Austral Volcanic Zone (AVZ) (Fig. 1). In this set- or ‘bombs’) follow ballistic trajectories and pose a ting, although mostly concentrated in SVZ and AVZ, local threat (usually < 5 km). However, lapilli (2 to tephrochronology studies are of critical importance 64 mm in diameter) and ash (< 2 mm in diameter) are because would help in reconstructing dispersal of convected upwards within the eruption column and ash during past explosive eruptions providing poten- dispersed by wind or buoyancy forces. Ash particles tial stratigraphic markers that contribute toward can be carried hundreds or even thousands of kilo- establishing a chronological framework for a range metres away from source, being the most frequent, of applications (e.g., palaeoenvironment, palaeocli- and often widespread, volcanic hazard (Jenkins, mate, archaeology, and rates of geomorphic change) S. F. et al., 2015). In this way, tephra deposits form (Fontijn et al., 2014; Stern, 2008). an isochron that directly links various sedimentary Several previous studies have focused on the successions and enable us to synchronize and date widespread ash-fall deposits found in the upper- geological, palaeoenvironmental or archaeological most Quaternary sequences of NW Argentina records (Lane et al., 2017; Lowe, 2011; Ponomareva (Hermanns & Schellenberger, 2008; Malamud et al., et al., 2015). This is the rationale of the develop- 1996; Montero-López et al., 2009; Ruggieri et al., ment of tephra studies and the establishment of teph- 2010; Trauth et al., 2003).). These studies attributed rostratigraphy and tephrochronology. In addition, these ash-fall deposits to eruptions from volcanoes preserved tephra deposits are frequently used in the located in the Central Volcanic Zone of the Andes reconstruction of past volcanic eruptions and the but no reliable correlation to a specific source has evaluation of volcanic hazards to prevent the impact been proposed (Hermanns & Schellenberger, 2008; of similar eruptions possibly occurring in the future Malamud et al., 1996). This is mostly due to the lack (Houghton, B. & Carey, R. J, 2015; Lowe, 2011). of adequate geochemical data (e.g., single shards In South America, the explosive Holocene vol- glass major and trace element composition, mineral canism is mainly produced by the Andean Volcanic chemistry) and reliable dating (often in contrast with Arc, along the Andean Cordillera, and is segmented each other) on proximal deposits of the potential Estudios Geológicos, 75(1), enero-junio 2019, e088, ISSN-L: 0367-0449. https://doi.org/10.3989/egeol.43438.515 The large eruption 4.2 ka cal BP in Cerro Blanco, Central Volcanic Zone, Andes 3 70º 60º W a NVZ La Paz a 20º S Altiplano-Puna Central SVZ plateau Volcanic AVZ Zone Cueros de Purulla b Nevado de Tres Cruces Cerro Blanco Volcanic Complex 30º 0 500 Santiago Buenos Aires km Sources: Esri, USGS, NOAA 68º 67º 66º 65º 64º W b Southern Puna Salta Bolsón de Fiambalá sequence Cafayate Cerro Blanco sequence 26º S Antofagasta de la Sierra Cueros de Purulla sequence Tolombón Eruptive center CdP ARGENTINA El Peñón CHILE Tucumán Santa María Tafí del Valle CBVC Calchaquí Valleys Santiago 27º San Miguel de Las Papas Tucumán del Estero NTC Catamarca Bolsón de Termas de Fiambalá Aguilares Río Hondo 050 Fiambalá Santiago del Estero La Rioja km Figure 1.—(a) Holocene volcanic centres in the Andean Central Volcanic