Atacama Pacific Gold Corporation

Total Page:16

File Type:pdf, Size:1020Kb

Atacama Pacific Gold Corporation TECHNICAL REPORT on the CERRO MARICUNGA GOLD PROJECT Region III CHILE prepared for ATACAMA PACIFIC GOLD CORPORATION 330 Bay Street, Suite 1210, Toronto, Ontario Canada M5H 2S8 October 7, 2011 Prepared By: Michael Easdon, Oregon Reg. Prof. Geologist Alcántara 1128, Depto. 905, Las Condes Santiago, Chile [email protected] TABLE OF CONTENTS 1.0 SUMMARY ........................................................................................................... 1 2.0 INTRODUCTION .................................................................................................. 5 3.0 RELIANCE ON OTHER EXPERTS ...................................................................... 7 4.0 PROPERTY DESCRIPTION AND LOCATION ..................................................... 8 5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY ............................................................................................... 13 6.0 HISTORY ........................................................................................................... 15 7.0 GEOLOGICAL SETTING AND MINERALIZATION ............................................ 15 7.1 PROPERTY GEOLOGY: ............................................................................. 16 8.0 DEPOSIT TYPE ................................................................................................. 33 9.0 EXPLORATION .................................................................................................. 34 10.0 DRILLING ........................................................................................................... 42 11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY .................................. 47 12.0 DATA VERIFICATION ........................................................................................ 55 13.0 MINERAL PROCESSING AND METALLURGICAL TESTING ........................... 56 14.0 MINERAL RESOURCE ESTIMATES ................................................................. 60 14.1 Gold Mineralization Envelopes .................................................................. 63 14.2 Capping and High Yield Restrictions ......................................................... 69 14.3 Variography ............................................................................................... 71 14.4 Resource Estimation ................................................................................ 76 14.5 Validations ................................................................................................. 79 14.6 Resource Categorization ........................................................................... 81 14.7 Specific Gravity Determination .................................................................. 82 15.0 MINERAL RESERVE ESTIMATES .................................................................... 83 16.0 MINING METHODS ............................................................................................ 83 17.0 RECOVERY METHODS .................................................................................... 83 18.0 PROJECT INFRASTRUCTURE ......................................................................... 83 19.0 MARKET STUDIES AND CONTRACTS ............................................................ 83 20.0 ENVIRONMENTAL STUDIES, PERMITTING OR COMMUNITY IMPACT ........ 83 21.0 CAPITAL AND OPERATING COSTS ................................................................. 85 22.0 ECONOMIC ANALYSIS ..................................................................................... 86 23.0 MARKET STUDIES AND CONTRACTS ............................................................ 86 24.0 OTHER RELEVANT DATA AND INFORMATION .............................................. 88 25.0 INTERPRETATION AND CONCLUSIONS......................................................... 88 i 26.0 MARKET STUDIES AND CONTRACTS ............................................................ 89 27.0 REFERENCES ................................................................................................... 90 28.0 CERTIFICATE OF AUTHOR ............................................................................. 94 FIGURES Figure 1.1 Location Map of the Maricunga Gold Project and Major Mines of Chile ..... 3 Figure 4.1 Detailed Location Map of the Cerro Maricunga Gold Project ..................... 9 Figure 4.2 Cerro Maricunga Concession Map .......................................................... 10 Figure 7.1 Regional Geology and Deposits of the Maricunga Belt ............................ 19 Figure 7.2 Maricunga Property Geological Map ........................................................ 20 Figure 7.3 Legend for Figure 7.2 .............................................................................. 20 Figure 7.4 Cerro Maricunga – Geology of the Mineralized Zone .............................. 21 Figure 7.5 Schematic Cross Section Looking NS ..................................................... 22 Figure 9.1 Cerro Maricunga Trenching .................................................................... 36 Figure 9.2 Cerro Maricunga – Phoenix / Lynx / Crux Zones .................................... 37 Figure 9.3 Shaded Pole Reduced Ground Magnetics ............................................. 40 Figure 9.4 Interpretation of IP Results Overlain on Ground Magnetics .................... 40 Figure 9.5 IP – Resistivity Line 479000 .................................................................... 41 Figure 10.1 Maricunga Project – Drill Hole Plan ........................................................ 43 Figure 10.2 Cross Section 2011 NW – Lynx Zone .................................................... 44 Figure 10.3 Cross Section 2400 NW – Lynx Zone ..................................................... 45 Figure 10.4 Cross Section 1600 NW – Phoenix Zone ................................................ 46 Figure 11.1 DDH Sample Preparation Flow Diagram ................................................ 50 Figure 11.2 Maricunga QA/QC Geostatistics RC-DD Gold Pulp Duplicates .............. 54 Figure 14.1 Cerro Maricunga – Non scaled schematic level plan - Model ................. 64 Figure 14.2 3-D View of Cerro Maricunga’s Mineralized Zones ................................. 65 Figure 14.3 3-D Top Views – Mineralized Zones and Drillholes ................................ 66 Figure 14.4 Gold Grade Box Plot within Mineralized Envelopes ................................ 67 Figure 14.5 Gold Grade Log Probability Plot within Mineralized Envelopes .............. 67 Figure 14.6 Histogram – Au Grades – Lynx Zone ...................................................... 68 ii Figure 14.7 Box Plot – Au Grades – Lynx + Phoenix + Crux Zones, and Out ............ 69 Figure 14.8 Log Probability Plot – Lynx + Phoenix & Crux Zones and Out ................. 69 Figure 14.9 Down the hole indicator variogram – North and Central Zones (1+2) ...... 70 Figure 14.10 Down the hole indicator variogram – Outside ......................................... 71 Figure 14.11 Correlogram Map – Au-Lynx+Phoenix Zones (1+2) ............................... 72 Figure 14.12 Correlogram Map – Au-Crux Zone (3) .................................................... 72 Figure 14.13 Correlogram Map – Au-Outside Mineralization Envelopes (0) ................ 73 Figure 14.14 Down the hole correlogram – Au-Lynx + Phoenix Zones (1+2) .............. 73 Figure 14.15 Down the hole correlogram – Au-Crux Zones (3) ................................... 74 Figure 14.16 Down the hole correlogram – Au-Outside Mineralization Envelopes (0) . 74 Figure 14.17 Directional Variogram – Au-Lynx + Phoenix Zones (1+2) ....................... 75 Figure 14.18 Directional Variogram – Au-Crux Zones (3) ............................................ 75 Figure 14.19 Directional Variogram – Au-Outside Mineralization Envelopes (0) .......... 76 Figure 14.20 Lynx Zone Section .................................................................................. 79 Figure 14.21 Phoenix Zone Section ............................................................................. 80 Figure 14.22 Crux Zone Section .................................................................................. 80 Figure 20.1 Cerro Maricunga Property Location Relative to National Park ................ 85 Figure 23.1 Properties Adjacent to the Maricunga Project ......................................... 87 iii TABLES Table 1.1 Cerro Maricunga 2011-2012 Phase III Exploration Budget ........................ 2 Table 1.2 Cerro Maricunga Resource Estimate – August 2011 ................................. 4 Table 4.1 Maricunga Mining Concessions ............................................................... 11 Table 4.2 Cerro Maricunga Concessions ................................................................. 12 Table 9.1 Cerro Maricunga 2009 – 2010 Work Program Summary ......................... 34 Table 9.2 Cerro Maricunga 2010 – 2011 Work Program Summary ......................... 34 Table 11.1 Summary of QA/QC results for duplicate samples Au .............................. 54 Table 13.1 Preliminary Maricunga Bottle Roll Metallurgical Test Work (2008) ........... 56 Table 13.2 Summary of Column Leach Test Results ................................................. 57 Table 13.3 Metallurgical Test Results - 1.0 to 19.0 mm Grind Bottle Rolls ................ 58 Table 13.4 Summary of Bottle Roll Leach Test Results – August 2011 ..................... 59 Table 14.1 Maricunga Indicated and Inferred Resources..........................................
Recommended publications
  • Contribución Al Conocimiento De La Zona Del Ojos Del Salado (Catamarca)
    CONTRIBUCIÓN AL CONOCIMIENTO DE LA ZONA DEL OJOS DEL SALADO (CATAMARCA) A ntecedentes Si consultamos el trabajo de Pedro O. Sánchez 1 los primeros que ievantaron mapas de la zona fueron Alcides D ’Orbigny (1 8 2 6 -3 3 ) ; José Ballivián, mandado por Bolivia (1843) ; Hoogsgaard, por el Perú (1873- 74) ; Amado Pissis, encargado por Chile de estudiar el relieve de la Repú­ blica desde 1848, quien luego trabajó con Mariano Mugía, boliviano. En 1883, dice Sánchez, Chile mandó levantar una carta a Francisco San R o­ mán, Santiago Muñoz, Alejandro Chadwick y Abelardo Pizarro, comisión que trabajó con exactitud y sembró la Puna de sugestivos nombres en ho­ menaje a los científicos que la visitaron: cordilleras D ’Orbigny, Claudio Gay, Domeyko, sierras Gorbea, Barros Arana, monte Pissis, altiplanicie F*hilippi, etc. Alejandro Bertrand, casi en la misma época, se dedicó a la Puna y a sus altas cumbres y publicó Memoria sobre el desierto de A ta- cama y sus regiones limítrofes (1 8 8 4 ). Para su trabajo se valió de cartas anteriores, especialmente las de San Román, Hugo Reck, boliviano, ( 1860- 1863) y la de Brackebusch, mandado por Argentina. El Tnte. de Navio Vicente Montes 1 2 fue encargado por el perito argentino, en el pleito de límites con Chile, de estudiar la región montañosa entre los paralelos 26 y 28 a fin de determinar con precisión qué se debía considerar como cordillera de Los Andes El 29 de abril de 1892 3 con­ vinieron los peritos en que una comisión mixta iniciaría la demarcación desde el Portezuelo de San Francisco hacia el sur, integrada por Julio Díaz, Luis Dellepiane, Fernando Dousset (Argentina) y Alejandro Bertrand, Aníbal Contreras y Alvaro Donoso (C hile).
    [Show full text]
  • Glacier Inventory and Recent Glacier Variations in the Andes of Chile, South America
    Annals of Glaciology 58(75pt2) 2017 doi: 10.1017/aog.2017.28 166 © The Author(s) 2017. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work. Glacier inventory and recent glacier variations in the Andes of Chile, South America Gonzalo BARCAZA,1 Samuel U. NUSSBAUMER,2,3 Guillermo TAPIA,1 Javier VALDÉS,1 Juan-Luis GARCÍA,4 Yohan VIDELA,5 Amapola ALBORNOZ,6 Víctor ARIAS7 1Dirección General de Aguas, Ministerio de Obras Públicas, Santiago, Chile. E-mail: [email protected] 2Department of Geography, University of Zurich, Zurich, Switzerland 3Department of Geosciences, University of Fribourg, Fribourg, Switzerland 4Institute of Geography, Pontificia Universidad Católica de Chile, Santiago, Chile 5Centre for Hydrology, University of Saskatchewan, Saskatoon, Canada 6Department of Geology, University of Concepción, Concepción, Chile 7Department of Geology, University of Chile, Santiago, Chile ABSTRACT. The first satellite-derived inventory of glaciers and rock glaciers in Chile, created from Landsat TM/ETM+ images spanning between 2000 and 2003 using a semi-automated procedure, is pre- sented in a single standardized format. Large glacierized areas in the Altiplano, Palena Province and the periphery of the Patagonian icefields are inventoried. The Chilean glacierized area is 23 708 ± 1185 km2, including ∼3200 km2 of both debris-covered glaciers and rock glaciers.
    [Show full text]
  • Download Trip Dossier
    PAGE 2 VOLCANIC SUMMITS OF CHILE Introduction There are plenty of people who want to climb the world’s highest mountain, so separate yourself out from the crowd and aim for the world’s highest volcanoes instead. The magnificent peak of Ojos Del Salado is the highest volcano in the world and one of the iconic Volcanic Seven Summits – highest volcanos on seven continents. This one-off adventure holiday offers the opportunity to stand not only on Ojos Del Salado (6893m) but also on Llullaillaco (6723m) the world’s second highest active volcano. In true KE style this adventure holiday is not only about climbing peaks, it’s also about the amazing mountaineering journey through spectacular Chilean scenery. Home to star filled dark skies and breath-taking views, the Nevado de Tres Cruces National Park is where we will spot flamingos on the lakes of Negro Francisco and Maricunga. We start in Copiapo, with its leafy plaza and historic buildings. Nestled in a narrow valley, and close to the airport, the town of Copiapo is a great location to kick-start the holiday. Is this holiday for you? On this superb Pioneer climbing holiday in Chile you will encounter a great variety of trekking conditions from easy acclimatisation trails to lush lagoons to challenging terrain across glaciers and volcanic lava fields to reach our two objectives; Ojos del Salado and Llullaillaco the world’s two highest volcanic peaks. For much of our trekking we are supported by 4WD however, our final stages of ascent to both Ojos del Salado and Llullaillaco require us to carry our equipment and work as a team to reach our goal so a high level of fitness is essential.
    [Show full text]
  • Metal(Loid)S Distribution in Northern Atacama Region
    Metal(loid)s distribution in northern Atacama Region METAL(LOID)S DISTRIBUTION IN NORTHERN ATACAMA REGION HYDROLOGICAL BASINS Tapia, J. 1, Verdejo, F. 2 1Departamento de Ingeniería en Minas, Universidad de Antofagasta, Chile 2Departamento de Geología, Universidad Católica del Norte, Chile Introduction The Atacama desert corresponds to the driest desert on Earth and is located in the Atacama Region, northern Chile (). The El Salado River is the only water system that drains into the Pacific Ocean in northern Atacama Region, and is one of the most susceptible water systems in this area. Indeed, two highly sensitive ecosystems are present close to this river, the Nevado Tres Cruces in the Andes, and the Pan de Azúcar , on the coast (Earle et al., 2003; Thompson et al., 2003; ). Northern Atacama Region has been historically affected by mining activities because of the richness of ores in the Andes mountains. In fact, during the early 1900s this area was affected by the Potrerillos mining operations, and afterwards, by the El Salvador mining operations, a porphyry copper deposit (Gustafson and Hunt, 1975). Between 1938 and 1975 mine wastes from the El Salvador operations were dumped into El Salado River, and therefore into the Chañaral Bay () without any treatment (Paskoff and Petiot, 1990). In this work a preliminary survey of the concentration of 8 metal(loid)s in waters of El Salado River are presented and compared to international water recommendation values and regulations. Study area Geology and ore deposits The current geology in this area is controlled by the Central Volcanic Zone (CVZ) in which <60 Ma Nazca plate lithosphere is subducting bellow Southamerican plate at 7-9 cm·year -1, in this zone continental crust is ≥ 70 km thick and basement ages range from Late Pre-Cambrian to Paleozoic (Stern, 2004).
    [Show full text]
  • Average Pleistocene Climatic Patterns in the Southern Central Andes: Controls on Mountain Glaciation and Paleoclimate Implications
    Average Pleistocene Climatic Patterns in the Southern Central Andes: Controls on Mountain Glaciation and Paleoclimate Implications Kirk Haselton, George Hilley, and Manfred R. Strecker1 Institut fu¨ r Geowissenschaften, Universita¨ t Potsdam, Postfach 60 15 53, D-14415 Potsdam, Germany ABSTRACT Despite elevations of 5000–6800 m, modern glaciers occur along the southern Puna Plateau and the northern Sierras Pampeanas in the southern central Andes. The modern snowline rises from 5100 m in Sierra Aconquija to 5800 m in the Puna as a result of a westward decrease in precipitation from 450 to less than 100 mm/yr. During the Pleistocene these arid highlands experienced multiple cirque and valley glaciation that likely postdate the last interglacial period, although lack of age control prevents an absolute chronology. Glaciation in the Puna and along the eastern Puna edge produced a 300-m Pleistocene snowline (PSL) depression, while in the Sierras Pampeanas the PSL depression was at least 900 m. The greater PSL depression in the Sierras Pampeanas is best explained by a combination of cooling and increase of easterly moisture, whereas the PSL depression in the Puna appears more sensitive to moisture increases than temperature. Previously, glaciations in this region have been explained by increased precipitation, with a west- ward depression of the snowline caused by a northward shift of the Pacific anticyclone and equatorward shift of the westerlies. However, these PSL results require an increase of moisture from the east rather than from the west. Further, analysis of topographic data indicates that drainage-basin relief decreases north of 28ЊS. The regional landscape response suggests that the circulation patterns currently observed have persisted at least during the Pleistocene and perhaps during the past several million years.
    [Show full text]
  • Mitochondrial Phylogeography and Demographic History of the Vicun˜A: Implications for Conservation
    Heredity (2007) 99, 70–80 & 2007 Nature Publishing Group All rights reserved 0018-067X/07 $30.00 www.nature.com/hdy ORIGINAL ARTICLE Mitochondrial phylogeography and demographic history of the Vicun˜a: implications for conservation JC Marı´n1,2,7, CS Casey3,7, M Kadwell3, K Yaya4, D Hoces4, J Olazabal4,5, R Rosadio4,5, J Rodriguez6, A Spotorno2, MW Bruford3 and JC Wheeler4 1Laboratorio de Geno´mica y Biodiversidad, Departamento de Ciencias Ba´sicas, Facultad de Ciencias, Universidad del Bio-Bio, Chilla´n, Chile; 2Laboratorio de Geno´mica Evolutiva de Mamı´feros, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile; 3Cardiff School of Biosciences, Cardiff University, Cardiff, UK; 4CONOPA, Coordinadora de Investigacio´n y Desarrollo de Came´lidos Sudamericanos, Lima, Peru; 5Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Peru; 6Private Veterinary Practice, Lima, Peru The vicun˜a(Vicugna vicugna; Miller, 1924) is a conservation Vicugna vicugna mensalis comprise separate mitochondrial success story, having recovered from near extinction in the lineages. The current population distribution appears to be 1960s to current population levels estimated at 275 000. the result of a recent demographic expansion associated with However, lack of information about its demographic history the last major glacial event of the Pleistocene in the northern and genetic diversity has limited both our understanding of its (18 to 221S) dry Andes 14–12 000 years ago and the recovery and the development of science-based conserva- establishment of an extremely arid belt known as the ‘Dry tion measures. To examine the evolution and recent Diagonal’ to 291S.
    [Show full text]
  • Estudios Económicos
    SERVICIO NACIONAL DE TURISMO ATRACTIVOS TURISTICOS 2012 CODIGO ATRACTIVO REGION DE ATACAMA R03001 NOMBRE DEL ATRACTIVO REGION SALAR DE PEDERNALES REGIÓN DE ATACAMA JERARQUIA PROVINCIA CHAÑARAL NACIONAL CATEGORIA DIRECCION 71 KM AL ESTE DE EL SALVADOR SITIO NATURAL COMUNA DIEGO DE ALMAGRO TIPO DE ATRACTIVO PLANICIE LOCALIDAD O SECTOR SALAR DE PEDERNALES TIPO DE PROPIEDAD PÚBLICA-PRIVADA SUBTIPO DEL ATRACTIVO ESTACIONALIDAD DE USO SALINA DICIEMBRE A MARZO ADMINISTRACION PÚBLICA-PRIVADA DOTACION SERVICIOS BASICOS LOCALIDAD URBANA MAS CERCANA EL SALVADOR DEMANDA TURISTICA LOCAL, REGIONAL, NACIONAL TELEFONO INFORMACION DISTANCIA CAPITAL REGIONAL 284 56-52-441763 EN KMS CAPITAL COMUNAL 71 USO TURISTICO POTENCIAL ESTADO DE CONSERVACION BUENA DESCRIPCION GENERAL Enclavado en medio de las cordilleras de Domeyko y Claudio Gay, a 3.346 metros de altitud. Corresponde a una vasta extensión de salares ubicada en una depresión entre montañas, formando en sus márgenes interiores lagunas con aguas de color azul turquesa. En el sector habita fauna como los flamencos rosados y patos silvestres. Se caracteriza por estar rodeado de cerros donde se han encontrado restos de fósiles marinos, entre los que cuentan el cerro Doña Inés, Los Gemelos y Blanco. Se pueden realizar actividades como la excursión, fotografía, observación de la flora y fauna y turismo aventura. SERVICIO NACIONAL DE TURISMO ATRACTIVOS TURISTICOS 2012 CODIGO ATRACTIVO REGION DE ATACAMA R03002 NOMBRE DEL ATRACTIVO REGION SALAR PIEDRA PARADA REGIÓN DE ATACAMA JERARQUIA PROVINCIA CHAÑARAL REGIONAL
    [Show full text]
  • Plan De Uso Público Parque Nacional Nevado De Tres Cruces Iii Región
    DEPARTAMENTO DE AREAS SILVESTRES PROTEGIDAS CONAF ATACAMA PLAN DE USO PÚBLICO PARQUE NACIONAL NEVADO DE TRES CRUCES III REGIÓN GASP Nº10 SIGI 2014 2014 CORPORACIÓN NACIONAL FORESTAL – DEPTO. AREAS SILVESTRES PROTEGIDAS ATACAMA MINISTERIO DE AGRICULTURA CORPORACIÓN NACIONAL FORESTAL DEPARTAMENTO DE AREAS SILVESTRES PROTEGIDAS REGIÓN DE ATACAMA PLAN DE USO PÚBLICO PARQUE NACIONAL NEVADO DE TRES CRUCES EQUIPO DE TRABAJO Formulación del Plan de Uso Público: Sr. Jorge Carabantes Ahumada, Administrador Turístico, Licenciado en Turismo. Jefe Sección Administración de Áreas Silvestres Protegidas Conaf Atacama Equipo de Apoyo: Sr. Max Zeller Barros, Ingeniero en Medioambiente Jefe Departamento de Áreas Silvestres Protegidas, Conaf, Región de Atacama. Sr. Eric Díaz Vergara, Administrador Parque Nacional Nevado de Tres Cruces, Conaf, Región de Atacama. Revisado por: Sr. Ángel Lazo Álvarez, Encargado Nacional Uso Público Áreas Silvestres Protegidas Responsable Nacional del Indicador SIGI Gasp Nº10. Sr. Max Zeller Barros, Ingeniero en Medioambiente Jefe Departamento de Áreas Silvestres Protegidas, Conaf, Región de Atacama. Plan de Uso Público del Parque Nacional Nevado de Tres Cruces 2 CORPORACIÓN NACIONAL FORESTAL – DEPTO. AREAS SILVESTRES PROTEGIDAS ATACAMA INDICE PRESENTACIÓN ........................................................................................................................... 5 INTRODUCCIÓN .......................................................................................................................... 6 DISEÑO DE
    [Show full text]
  • Salar De Maricunga
    Salar de Maricunga Antecedentes Generales del Sistema Salino: Región: Atacama Provincia: Copiapó Comuna: Copiapó UTM 19S HUSO Este: 491.753 UTM 19S HUSO Norte: 7.021.187 Proyección: PSAD 56 Altura: 3.760 m s.n.m Descripción General: Salar preandino que se compone de costras salinas de cloruros en la parte noroeste y de sulfatos en la parte sureste, separadas por lagunas salobres orientadas NE-SW. También contiene un depósito de boratos en forma de ulexita en el sur. El salar alimenta la laguna Santa Rosa ubicada en el extremo sur, por medio de un canal con un caudal de entre 200 a 300 l/s. La cuenca del salar está rodeada por dacitas y andesitas y rocas sedimentarias intercaladas con rocas volcánicas. Se le agrega una sub cuenca con 845 km2 de superficie al este del salar y su límite pasa por el Volcán Nevado Tres Cruces, el Portezuelo Tres Cruces y la Cordillera Claudio Gay. Esta sub-cuenca alimenta supuestamente el salar. 1 MARICUNGA Datos Morfológicos y Climáticos del Sistema Salino: Morfología: Ovalada con un apéndice creciendo hacia el sur, lo cual llega a una serie de humedales separados unos 13 km de la estructura central, con un eje mayor de 17 km de largo y un eje menor de 10 km de largo. Superficie del Sistema Salino: 145 km2 Superficie de la Cuenca: 3.045 km2 Superficie de Lagunas: 6 (0,15 Laguna Santa Rosa) km2 Precipitación: 120 (Salar) y 200 (Sub-cuenca Oriental) mm/año Evaporación Potencial: 1.200 (Salar) mm/año Observaciones: La Laguna Santa Rosa del salar pertenece al Parque Nacional Nevado Tres Cruces y fue incorporado en la lista internacional de humedales Ramsar en el año 1996, bajo el nombre de “Complejo Lacustre Laguna del Negro Francisco y Laguna Santa Rosa”, junto con la Laguna del Negro Francisco.
    [Show full text]
  • The Major Eruption of the Cerro Blanco Volca
    EGU2020-5038 The 4.2 ka cal BP major eruption of Cerro Blanco, Central Andes ICTJA J.L. Fernandez-Turiel1, F.J. Perez-Torrado2, A. Rodriguez-Gonzalez2, N. Ratto3, M. Rejas1, A. Lobo1 ¹Institute of Earth Sciences Jaume Almera, ICTJA, CSIC, Barcelona, Spain ([email protected], [email protected], [email protected]) 2 Instituto de Estudios Ambientales y Recursos Naturales (i–UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain ([email protected], [email protected]) 3 QUECA Universidad de Buenos Aires, Instituto de las Culturas (UBA-CONICET), Facultad de Filosofía y Letras, Buenos Aires, Argentina ([email protected]) Introduction Results Conclusions CdP CB BdF The major eruption of Stratigraphic summary Bimodal particle size Geochemistry ● These results change the paradigm of Holo- CB23 the Cerro Blanco Volca- cene volcanism of southern Puna in the Cen- Sub- Sequence Unit Lithofacies and interpretation Mineralogy unit 4410-4150 a cal BP CB 3 nic Complex (CBVC), in Bolsón de BdF1 Alternating layers of moderate-poorly sorted, dacitic glass >> plagioclase, biotite, amphiboles, 2 tral Volcanic Zone of the Andes (CVZ). Fiambalá pumice lapilli and ash. Plinian fall deposit. quartz >> magnetite, ilmenite, apatite, the Central Volcanic titanite BdF Cerro Blanco CB3 4 Alternating layers, 3-30 cm thick, of siliceous sinter. amorphous silica (postcaldera) Deposits of hot springs. ● CBVC generated the largest documented Zone of the Andes, NW ca. b 7820 AP 3 Poorly defined decimetric-scale stratified deposits, poorly glass >> feldspars, quartz, biotite, to very poorly sorted, with decimetric angular rhyolitic magnetite, ilmemite >> apatite, allanite- eruption during the past five millennia in the ca.
    [Show full text]
  • Ficha De Solicitud ZOIT Salar De Maricunga Ojos Del Salado
    Ficha de Solicitud de Declaración Zonas de Interés Turístico (ZOIT) Subsecretaría de Turismo 2019 Ficha de Solicitud Declaración Zona de Interés Turístico (ZOIT) “Salar de Maricunga Ojos del Salado” Septiembre 2019 Ficha de Solicitud de Declaración Zonas de Interés Turístico (ZOIT) Subsecretaría de Turismo 2019 Tabla de contenido 1. Lineamientos Estratégicos Turísticos ....................................................................................... 1 1.1. Visión y Misión .................................................................................................................................................... 1 1.1. Estrategias, políticas, y/o instrumentos de planificación .................................................................... 1 2. Oferta y Demanda...................................................................................................................... 6 2.1 Oferta Turística ..................................................................................................................................................... 6 2.2 Demanda Turística ............................................................................................................................................ 12 3. Propuesta Polígono ZOIT ........................................................................................................ 16 3.1. Mapa de polígono ZOIT ................................................................................................................................ 16 3.2. Fundamentos de
    [Show full text]
  • The Evolution of Hydrothermal Fluids from the Deep Porphyry
    THE EVOLUTION OF HYDROTHERMAL FLUIDS FROM THE DEEP PORPHYRY ENVIRONMENT TO THE SHALLOW EPITHERMAL ENVIRONMENT by Subaru Tsuruoka Copyright by Subaru Tsuruoka 2017 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology). Golden, Colorado Date Signed: Subaru Tsuruoka Signed: Dr. Thomas Monecke Thesis Advisor Golden, Colorado Date Signed: Dr. M. Stephen Enders Research Professor and Interim Department Head of Geology and Geological Engineering ii ABSTRACT The current understanding of magmatic-hydrothermal processes resulting in the formation of porphyry and epithermal deposits is based on case studies that focused on deposits such as Santa Rita porphyry copper deposit in New Mexico, the Refugio porphyry gold deposit in Chile, and the Summitville high-sulfidation epithermal deposit in Colorado. The present study re-examines these classical study sites to constrain the physical nature of the mineralizing hydrothermal fluids and to test recent models suggesting that metal transport can occur in the vapor phase. Careful petrographic investigations involving a combination of microanalytical techniques were performed to unravel paragenetic relationships in the three deposits. Based on fluid inclusion research on quartz closely associated with mineralization, it is shown that ore formation at Santa Rita occurred from a near-critical single-phase hydrothermal fluid under hydrostatic conditions. Observed fluid inclusion assemblages have salinities of ~11 wt% NaCl equiv. and homogenize at ~350–450°C. At Refugio, gold mineralization postdated the formation of banded quartz veins and appears to also have formed from a near-critical single-phase fluid at hydrostatic load.
    [Show full text]