Dome Collapse Driven Block-And-Ash Flows on Shiveluch, and Pyroclastic Flows on Mount St

Total Page:16

File Type:pdf, Size:1020Kb

Dome Collapse Driven Block-And-Ash Flows on Shiveluch, and Pyroclastic Flows on Mount St DOME COLLAPSE DRIVEN BLOCK-AND-ASH FLOWS ON SHIVELUCH, AND PYROCLASTIC FLOWS ON MOUNT ST. HELENS: DEPOSIT MORPHOLOGY AND DISTRIBUTION ANALYSIS USING MULTIPARAMETER REMOTE SENSING- AND FIELD-BASED METHODS by Janine Barbara Krippner Bachelor of Science, University of Waikato, 2007 Master of Science, University of Waikato, 2009 Submitted to the Graduate Faculty of The Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2017 UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Janine Barbara Krippner It was defended on July 7, 2017 and approved by John S. Pallister, Chief Volcano Disaster Assistance Program, USGS Cascades Volcano Observatory (External Examiner) Daniel Bain, Assistant Professor, University of Pittsburgh William Harbert, Professor, University of Pittsburgh Nadine McQuarrie, Associate Professor, University of Pittsburgh Dissertation Advisor: Michael S. Ramsey, Professor, University of Pittsburgh ii Copyright © by Janine Krippner 2017 iii DOME COLLAPSE DRIVEN BLOCK-AND-ASH FLOWS ON SHIVELUCH, AND PYROCLASTIC FLOWS ON MOUNT ST. HELENS: DEPOSIT MORPHOLOGY AND DISTRIBUTION ANALYSIS USING MULTIPARAMETER REMOTE SENSING- AND FIELD-BASED METHODS Janine B. Krippner, PhD University of Pittsburgh, 2017 Pyroclastic density currents are volcanic granular flows that include dome collapse-derived block-and-ash flows, and column collapse-derived pyroclastic flows. Volcanic dome-building cycles can last for years and can produce numerous collapse events that deposit block-and-ash flows up to 19 km from the dome. These impact surrounding communities and too-often result in fatalities, and populations have to be evacuated. Shiveluch in Kamchatka, Russia, is one of the world’s most active dome-building volcanoes and has produced some of the largest historical block-and-ash flows, globally. The current eruption phase of Shiveluch volcano has been ongoing since 2001 in a cycle of dome growth and collapse. Understanding these prolonged dome growth episodes and characterizing the extreme end-members in deposit size and runout range is important for investigating these hazards at Shiveluch and other similar volcanoes. This multi-spatial scale investigation links dome activity to the block-and-ash flow deposits using satellite- and field-based data. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR), shortwave infrared (SWIR), and visible-near infrared (VNIR) data are used to quantify the distribution of dome collapse events and resulting deposits through time. Small-scale deposit features are identified with field and high spatial resolution (~0.5 m) WorldView-02 and iv QuickBird-02 panchromatic data. These block-and-ash flow deposits are compared to the well- studied Mount St. Helens 1980 column collapse pyroclastic flow deposits using historic aerial photography and airborne LiDAR data. Although these deposits are composed of different material that result from the different eruption styles, they contain similarities that reflect similar depositional processes, and differences that reflect the initiation mechanisms. These remotely- identified characteristics can help with rapid identification of the eruption style and can provide a safe and rapid assessment of eruptive products at dangerous and/or remote volcanoes around the world. v TABLE OF CONTENTS PREFACE ................................................................................................................................. XXI 1.0 INTRODUCTION ........................................................................................................ 1 2.0 PARAMETRIC ANALYSIS OF LAVA DOME COLLAPSE EVENTS AND PYROCLASTIC DEPOSITS AT SHIVELUCH VOLCANO, KAMCHATKA, USING ORBITAL VISIBLE AND INFRARED DATA ......................................................................... 4 2.1 INTRODUCTION ............................................................................................... 4 2.1.1 Summary of the recent eruption history of Shiveluch ................................. 9 2.2 METHODOLOGY ............................................................................................ 13 2.3 RESULTS ........................................................................................................... 17 2.3.1 19 May 2001 ................................................................................................... 17 2.3.2 10 May 2004 ................................................................................................... 23 2.3.3 27-28 February 2005 ...................................................................................... 23 2.3.4 18-19 December 2007 ..................................................................................... 25 2.3.5 25-26 June 2009 .............................................................................................. 25 2.3.6 27 October 2010 ............................................................................................. 26 2.3.7 26 July 2013 .................................................................................................... 27 2.3.8 03 December 2013 .......................................................................................... 28 2.4 DISCUSSION ..................................................................................................... 29 2.5 CONCLUSIONS ................................................................................................ 38 2.6 ACKNOWLEDGEMENTS .............................................................................. 39 vi 3.0 THE 2005 AND 2010 BLOCK-AND-ASH FLOW DEPOSITS ON SHIVELUCH VOLCANO, KAMCHATKA ..................................................................................................... 40 3.1 INTRODUCTION ............................................................................................. 40 3.2 METHODOLOGY ............................................................................................ 43 3.3 RESULTS ........................................................................................................... 44 3.3.1 Shiveluch 2005 BAF deposit ......................................................................... 46 3.3.1.1 Vegetation damage .............................................................................. 54 3.3.1.2 Deposit remobilization ........................................................................ 58 3.3.1.3 Degassing Structures........................................................................... 58 3.3.1.4 Erosion and redeposition .................................................................... 59 3.3.1.5 Stratigraphic exposures ...................................................................... 61 3.3.2 Shiveluch 2010 BAF Deposit ......................................................................... 64 3.3.2.1 2010 channelized deposit .................................................................... 67 3.3.2.2 Ridges and scarps ................................................................................ 70 3.3.2.3 Erosion ................................................................................................. 72 3.3.2.4 Degassing structures ........................................................................... 72 3.3.2.5 Surface block content.......................................................................... 72 3.4 DISCUSSION ..................................................................................................... 73 3.4.1 Application to LAHARZ model ................................................................... 82 3.5 CONCLUSIONS ................................................................................................ 85 3.6 ACKNOWLEDGEMENTS .............................................................................. 86 4.0 A COMPARISON OF COLUMN COLLAPSE-DERIVED PYROCLASTIC FLOW DEPOSITS ON MOUNT ST. HELENS VOLCANO, USA, AND DOME- vii COLLAPSE-DERIVED BLOCK-AND-ASH FLOWS ON SHIVELUCH VOLCANO, KAMCHATKA ........................................................................................................................... 87 4.1 INTRODUCTION ............................................................................................. 87 4.1.1 The 1980 eruption of Mount St. Helens ....................................................... 90 4.1.2 Shiveluch 2005, 2010, and 2013 eruptions ................................................... 92 4.2 METHODS ......................................................................................................... 93 4.3 RESULTS ........................................................................................................... 96 4.3.1 Componentry and composition .................................................................... 99 4.3.2 Aerial Deposit Distributions ....................................................................... 102 4.3.3 Sheet-like deposits........................................................................................ 102 4.3.4 Composite lobate deposits ........................................................................... 104 4.3.5 Lobate morphologies ................................................................................... 106 4.3.6 Primary and secondary levees and channels ............................................. 110 4.3.7 Shallow deposit remobilization..................................................................
Recommended publications
  • COV4 Meeting Schedule Monday, 23 January, 2006
    COV4 Meeting Schedule Monday, 23 January, 2006 Sala 1 (large)† 8H15 Welcoming Statements 8H30 Invited Speaker M. Hall: LIVING WITH VOLCANOES 9H00 - 9H30 Invited Speaker A. Lavell: SOCIETY AND RISK: RISK MANAGEMENT AND VOLCANIC HAZARDS 9H30 - 10H00 Plenary Symposium IV-B: Monitoring Volcanoes J. EWERT: ASSESSING VOLCANIC THREAT AND PRIORITIZING VOLCANO MONITORING IN THE UNITED STATES 10H00 - Plenary Symposium II: Ash Falls and Aerosols 10H30 W. Rose: ASH-FALL AND AEROSOLS, AN OVERVIEW 10H30 - 11H00 Coffee Break Sala 1 (large) Sala 2 (medium) IV-B: Monitoring Volcanoes II: Ash Falls and Aerosols Chairs: J. Ewert, A. García, H. Kumagai & J. Chairs: J.-L. Le Pennec, C. Connor, T. Johnson Casadevall, D. Johnston & D. Schneider 11H00 - S. Carn: MONITORING GLOBAL VOLCANIC A. Neri: ASSESSING ASH FALL HAZARD 11H20 DEGASSING WITH OMI FROM WEAK EXPLOSIVE PLUMES 11H20 - C. Oppenheimer: NEW DEVELOPMENTS IN C. Bonadonna: PROBABILISTIC MODELLING 11H40 VOLCANIC GAS SURVEILLANCE OF TEPHRA DISPERSON 11H40 - B. Galle: DEVELOPMENT OF OPTICAL B. Houghton: PROXIMAL TEPHRA HAZARDS: 12H00 REMOTE SENSING INSTRUMENTS FOR RECENT ERUPTION STUDIES APPLIED TO VOLCANOLOGICAL APPLICATIONS VOLCANIC RISK IN THE AUCKLAND VOLCANIC FIELD, NEW ZEALAND 12H00-12H20 F. Donnadieu: ERUPTION DYNAMICS OF P. Baxter: GRAIN SIZE ANALYSIS OF ARENAL VOLCANO, COSTA RICA: INSIGHTS VOLCANIC ASH FOR THE ASSESSMENT OF FROM DOPPLER RADAR AND SEISMIC HEALTH HAZARD MEASUREMENTS 12H20 - 14H00 Lunch in the Centro Cultural Metropolitano- Plaza Grande IV-B: Monitoring-Cont. II: Ash- Cont. 14H00- A. Gerst: REAL-TIME 4D MONITORING OF D. Andronico: ASH EMISSIONS AT THE 14H20 ERUPTIVE PROCESSES WITH DOPPLER SUMMIT OF ETNA DURING THE 2004-05 RADARS- A NEW TOOL FOR HAZARDS FLANK ERUPTION MITIGATION AND VOLCANO SCIENCE 14H20-14H40 M.
    [Show full text]
  • Implications for Hazard Assessment at Mount Meager, BC
    Discrimination of hot versus cold avalanche deposits: Implications for hazard assessment at Mount Meager, B.C. M. L. Stewart, J. K. Russell, C. J. Hickson To cite this version: M. L. Stewart, J. K. Russell, C. J. Hickson. Discrimination of hot versus cold avalanche deposits: Implications for hazard assessment at Mount Meager, B.C.. Natural Hazards and Earth System Sciences, Copernicus Publ. / European Geosciences Union, 2003, 3 (6), pp.713-724. hal-00299093 HAL Id: hal-00299093 https://hal.archives-ouvertes.fr/hal-00299093 Submitted on 1 Jan 2003 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Natural Hazards and Earth System Sciences (2003) 3: 713–724 © European Geosciences Union 2003 Natural Hazards and Earth System Sciences Discrimination of hot versus cold avalanche deposits: Implications for hazard assessment at Mount Meager, B.C. M. L. Stewart1, J. K. Russell1, and C. J. Hickson2 1Igneous Petrology Laboratory, Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, Canada 2Pacific Division, Geological Survey of Canada, Vancouver B.C., Canada Received: 5 February 2003 – Revised: 26 May 2003 – Accepted: 29 May 2003 Abstract. The surficial deposits surrounding the Mount represent an obvious hazard and, in many instances, the na- Meager volcanic complex include numerous avalanche de- ture or magnitude of these volcanic hazards can be substan- posits.
    [Show full text]
  • Modeling of Pyroclastic Flows of Colima Volcano, Mexico: Implications for Hazard Assessment
    Journal of Volcanology and Geothermal Research 139 (2005) 103–115 www.elsevier.com/locate/jvolgeores Modeling of pyroclastic flows of Colima Volcano, Mexico: implications for hazard assessment R. Saucedoa,*, J.L. Macı´asb, M.F. Sheridanc, M.I. Bursikc, J.C. Komorowskid aInstituto de Geologı´a /Fac. Ingenierı´a UASLP, Dr. M. Nava No 5, Zona Universitaria, 78240 San Luis Potosı´, Mexico bInstituto de Geofı´sica, UNAM, Coyoaca´n 04510, D.F., Me´xico cGeology Department, SUNY at Buffalo, Buffalo, NY 14260, USA dInstitut de Physique du Globe de Paris, Paris, Cedex 05, France Accepted 29 June 2004 Abstract The 18–24 January 1913 eruption of Colima Volcano consisted of three eruptive phases that produced a complex sequence of tephra fall, pyroclastic surges and pyroclastic flows, with a total volume of 1.1 km3 (0.31 km3 DRE). Among these events, the pyroclastic flows are most interesting because their generation mechanisms changed with time. They started with gravitanional dome collapse (block-and-ash flow deposits, Merapi-type), changed to dome collapse triggered by a Vulcanian explosion (block-and-ash flow deposits, Soufrie`re-type), then ended with the partial collapse of a Plinian column (ash-flow deposits rich in pumice or scoria,). The best exposures of these deposits occur in the southern gullies of the volcano where Heim Coefficients (H/L) were obtained for the various types of flows. Average H/ L values of these deposits varied from 0.40 for the Merapi-type (similar to the block-and-ash flow deposits produced during the 1991 and 1994 eruptions), 0.26 for the Soufrie`re-type events, and 0.17–0.26 for the column collapse ash flows.
    [Show full text]
  • First Measurements of Gas Flux with a Low-Cost Smartphone Sensor-Based UV Camera on the Volcanoes of Northern Chile
    remote sensing Article First Measurements of Gas Flux with a Low-Cost Smartphone Sensor-Based UV Camera on the Volcanoes of Northern Chile Felipe Aguilera 1,2,3,* , Susana Layana 1,3,4 , Felipe Rojas 1 , Pilar Arratia 1, Thomas C. Wilkes 5 , Cristóbal González 1,4 , Manuel Inostroza 1,4 , Andrew J.S. McGonigle 5 , Tom D. Pering 5 and Gabriel Ureta 1,3,4 1 Núcleo de Investigación en Riesgo Volcánico—Ckelar Volcanes, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta 1270709, Chile; [email protected] (S.L.); [email protected] (F.R.); [email protected] (P.A.); [email protected] (C.G.); [email protected] (M.I.); [email protected] (G.U.) 2 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta 1270709, Chile 3 Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Av. Vicuña Mackenna 4860, Santiago 7810000, Chile 4 Programa de Doctorado en Ciencias mención Geología, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta 1270709, Chile 5 Department of Geography, The University of Sheffield, Western Bank, Sheffield S10 2TN, UK; tcwilkes1@sheffield.ac.uk (T.C.W.); a.mcgonigle@sheffield.ac.uk (A.J.S.M.); t.pering@sheffield.ac.uk (T.D.P.) * Correspondence: [email protected] Received: 25 April 2020; Accepted: 29 June 2020; Published: 2 July 2020 Abstract: UV cameras have been used for over a decade in order to remotely sense SO2 emission rates from active volcanoes, and to thereby enhance our understanding of processes related to active and passive degassing.
    [Show full text]
  • Case Studies of Taapaca and Parinacota Volcanoes, Northern Chile
    Differentiation regimes in the Central Andean magma systems: case studies of Taapaca and Parinacota volcanoes, Northern Chile DISSERTATION zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades "Doctor rerum naturalium" der Georg-August-Universität Göttingen im Promotionsprogramm Geowissenschaften / Geographie der Georg-August University School of Science (GAUSS) vorgelegt von Magdalena Banaszak aus Poznań/Polen Göttingen 2014 Betreuungsausschuss: Prof. Dr. Gerhard Wörner Abteilung Geochemie, Geowissenschaftliches Zentrum, Universität Göttingen Prof. Dr. François Holtz Institut für Mineralogie, Leibniz Universität Hannover Mitglieder der Prüfungskommission Referent: Prof. Dr. Gerhard Wörner Abteilung Geochemie, Geowissenschaftliches Zentrum, Universität Göttingen Korreferent: Prof. Dr. François Holtz Institut für Mineralogie, Leibniz Universität Hannover weitere Mitglieder der Prüfungskommission: Prof. Dr. Sharon Webb Abteilung Experimentelle und Angewandte Mineralogie, Geowissenschaftliches Zentrum, Universität Göttingen Prof. Dr. Andreas Pack Abteilung Isotopengeologie, Geowissenschaftliches Zentrum, Universität Göttingen Dr. Andreas Kronz Abteilung Geochemie, Geowissenschaftliches Zentrum, Universität Göttingen Dr. Klaus Simon Abteilung Geochemie, Geowissenschaftliches Zentrum, Universität Göttingen Tag der mündlichen Prüfung: 23. April 2014 II DEDICATION TO HANNAH AND NILS. III ACKNOWLEDGEMENTS This PhD thesis would not have been possible without the never-ending support and patience of my Doctor Father Gerhard Wörner.
    [Show full text]
  • Porosity and Permeability Variations in Volcanic Conduits
    Final Report on EQC Grant for project: Porosity and Permeability variations in volcanic conduits Paul Ashwell, PhD candidate, University of Canterbury Collaborators: Dr. Ben Kennedy & Prof. Jim Cole 1 | P a g e Abstract Porosity and permeability variations in high viscosity lava domes are the result of collapse and shear processes during eruption. In depth field mapping of Ngongotaha Dome (Rotorua Caldera) and Ruawahia Dome (Tarawera Volcanic Centre) has produced eruption models that can help explain these variations from styles of eruption of the domes. In addition, high temperature, low stress experiments have been used to quantify the affect of compression on both crystalline and non-crystalline rocks. These experiments have shown that while porosity collapses in a predictable fashion (based upon initial vesicularity and crystal content), permeability will be highly variable during compression as bubbles close (acting to reduce permeability) and cracks open (acting to increase permeability). Both Ngongotaha and Ruawahia Domes have erupted in a fashion that previous modelling cannot adequately explain. Flow band variations suggest that instead of a simple flow-like eruption, both domes erupted from a series of lobes and sheets that erupted from a fissure- controlled conduit. In particular, Ngongotaha exhibits obsidian sheets bounded by meter scale breccia zones indicating that the sheets moved laterally relative to each other, producing thick breccia zones between them. These breccia zones provided pathways for gas escape, leading to the formation of minerals that have annealed the breccia. The orientation of flow bands in each dome can be linked back to the shape and orientation of the conduit, which in turn is controlled by the regional structure of the host caldera and the overall structure of the rifting of the Taupo Volcanic Zone.
    [Show full text]
  • Volcano Evolution and Eruptive Flux on the Thick Crust of the Andean
    Volcano evolution and eruptive fl ux on the thick crust of the Andean Central Volcanic Zone: 40Ar/39Ar constraints from Volcán Parinacota, Chile John M. Hora† Brad S. Singer Department of Geology and Geophysics, University of Wisconsin–Madison, 1215 W. Dayton Street, Madison, Wisconsin 53706, USA Gerhard Wörner Geowissenschaftliches Zentrum der Universität Göttingen, Abteilung Geochemie, Goldschmidtstrasse 1, 37077 Göttingen, Germany ABSTRACT the distributed basaltic volcanism prevalent to crust across their compositional spectrum. in those other arcs is virtually absent both However, other factors, including the presence The 163 k.y. history as well as the chemi- at Parinacota and elsewhere in the Central of the volcanic edifi ce itself (Pinel and Jaupart, cal and 46 km3 volumetric evolution of Vol- Volcanic Zone. This suggests that while the 2000), may also contribute to crustal “fi ltering” cán Parinacota are described in detail by hydrous, calc-alkaline magmas that make of ascending magmas, even on thick Andean new mapping, stratigraphy, and 57 40Ar/39Ar up the central volcanoes are not signifi cantly crust where edifi ce loading is <5% relative to ages determined from groundmass or sani- retarded by thick crust, primitive, dry basalts total crustal thickness. dine crystals in basaltic andesitic to rhyolitic might be. For those magmas that do erupt, there exists lavas. A more precise chronology of eruptions a broad spectrum of eruptive styles, indicating and associated eruptive volumes of this cen- Keywords: Andes, Central Volcanic Zone, Pari- a variety of storage and transport regimes in tral Andean volcano, which was built upon nacota, 40Ar/39Ar geochronology, eruptive rates.
    [Show full text]
  • The Large Eruption 4.2 Ka Cal BP in Cerro Blanco, Central
    Estudios Geológicos enero-junio 2019, 75(1), e088 ISSN-L: 0367-0449 https://doi.org/10.3989/egeol.43438.515 The large eruption 4.2 ka cal BP in Cerro Blanco, Central Volcanic Zone, Andes: Insights to the Holocene eruptive deposits in the southern Puna and adjacent regions La gran erupción de hace 4.2 ka cal en Cerro Blanco, Zona Volcánica Central, Andes: nuevos datos sobre los depósitos eruptivos holocenos en la Puna sur y regiones adyacentes J.L. Fernandez-Turiel1, F.J. Perez–Torrado2, A. Rodriguez-Gonzalez2, J. Saavedra3, J.C. Carracedo2, M. Rejas1, A. Lobo1, M. Osterrieth4, J.I. Carrizo5, G. Esteban5, J. Gallardo3, N. Ratto6 1Institute of Earth Sciences Jaume Almera, ICTJA, CSIC, Sole i Sabaris s/n, 08028 Barcelona, Spain. Email: jlfernandez@ ictja.csic.es. ORCID ID: https://orcid.org/0000-0002-4383-799X, https://orcid.org/0000-0003-2356-0927, http://orcid. org/0000-0002-6689-2908 2Instituto de Estudios Ambientales y Recursos Naturales (i–UNAT), Universidad de Las Palmas de Gran Canaria (ULPGC), 35017 Las Palmas de Gran Canaria, Spain. ORCID ID: https://orcid.org/0000-0002-4644-0875, https://orcid.org/0000-0003- 0688-0531, https://orcid.org/0000-0002-4282-2796 3IRNASA, CSIC, Cordel de Merinas 40–52, 37008 Salamanca, Spain. ORCID ID: https://orcid.org/0000-0003-0567-5499, https://orcid.org/0000-0002-4174-3930 4Instituto de Geología de Costas y del Cuaternario, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata–IIMYC–CONICET, Argentina. ORCID ID: https://orcid.org/0000-0001-9892-9923 5Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Miguel Lillo 205, 4000, San Miguel de Tucumán, Tucumán, Argentina.
    [Show full text]
  • Origin and Dynamics of Volcanic Debris Avalanches : Surface Structure Analysis of Tutupaca Volcano (Peru) Patricio Valderrama Murillo
    Origin and dynamics of volcanic debris avalanches : surface structure analysis of Tutupaca volcano (Peru) Patricio Valderrama Murillo To cite this version: Patricio Valderrama Murillo. Origin and dynamics of volcanic debris avalanches : surface structure analysis of Tutupaca volcano (Peru). Earth Sciences. Université Blaise Pascal - Clermont-Ferrand II, 2016. English. NNT : 2016CLF22731. tel-01487051 HAL Id: tel-01487051 https://tel.archives-ouvertes.fr/tel-01487051 Submitted on 10 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No d’Ordre : D.U : 2731 UNIVERSITÉ BLAISE PASCAL-CLERMONT II U.F. R. Sciences et Technologies ÉCOLE DOCTORALE DES SCIENCES FONDAMENTALES No 877 THÈSE présentée par PATRICIO VALDERRAMA MURILLO Titulaire d’un Master pour obtenir le grade de DOCTEUR D’UNIVERSITÉ Spécialité : Volcanologie ORIGINE ET DYNAMIQUE DES AVALANCHES DES DÉBRIS VOLCANIQUES : ANALYSE DES STRUCTURES DE SURFACE AU VOLCAN TUTUPACA (PÉROU) Soutenue publiquement le 30 septembre 2016 devant le jury : M. Georges BOUDON Rapporteur Mme Lucia CAPRA Rapporteur
    [Show full text]
  • Volcanic Hazard Mapping for Development Planning
    TECHNICAL REPORT WC/00/20 Overseas Geology Series DFID Project No. R5563 Volcanic hazard mapping for development planning P N Dunkley and S R Young BGS International® British Geological Survey Keyworth Nottingham NG12 5GG United Kingdom TECHNICAL REPORT WC/00/20 Overseas Geology Series DFID Project No. R5563 Volcanic hazard mapping for development planning P N Dunkley and S R Young With contributions by R A Nicholson A report prepared for the Department for International Development (DFID) under the Knowledge and Research Programme as part of the UK provision of technical assistance to developing countries. The views expressed are not necessarily those of DFID. DFID classification : Subsector: Geoscience Theme: G2 - Improve geological, geochemical and geotechnical hazard avoidance strategies in development planning Project title: Volcanic hazard mapping for development planning Project reference: R5563 Bibliographic reference: Dunkley, P N and Young, S R. 2000 Volcanic hazard mapping for development planning. BGS Technical Report WC/00/20 Keywords: volcanic hazards, risk mitigation, hazard mapping Front cover illustration: Perspective view of a digital terrain model of volcán Villarrica draped with volcanic hazard zones © NERC 2000 Keyworth, Nottingham, British Geological Survey, 2000 BGS Technical Report WC/00/20 Volcanic Hazard Mapping for Development Planning _________________________________________________________________________________________________________________ EXECUTIVE SUMMARY It is estimated that more than 500 million people are at risk from the hazards posed by volcanoes. The potential therefore exists for major loss of life and damage to property in a number of regions, especially where large urban areas occur in proximity to dangerous volcanoes. As population pressures intensify, hazardous areas are likely to become increasingly developed, so raising the level of risk.
    [Show full text]
  • Geology and Eruptive History of the Late Oligocene Nathrop Volcanics, Central
    GEOLOGY AND ERUPTIVE HISTORY OF THE LATE OLIGOCENE NATHROP VOLCANICS, CENTRAL COLORADO VOLCANIC FIELD William D. Emery A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of Master of Science May 2011 Committee: Dr. Kurt Panter, Advisor Dr. Charles Onasch Dr. Jeff Snyder ii ABSTRACT Dr. Kurt Panter, Advisor The Nathrop Volcanics consist of rhyolite lava and pyroclastic deposits located on the eastern shoulder of the upper Arkansas Graben in south-central Colorado and are part of the extensive late Eocene-Oligocene Central Colorado Volcanic Field. Deposits of the Nathrop Volcanics at Ruby Mountain consist of a lower lithic-rich lapilli tuff (ca. 3 m thick) with multiple layers that are reversely graded with respect to pumice clasts and are overlain by an approximately 30 m thick lithic-poor tuff breccia containing pumice blocks up to 1 m in diameter. The upper portion of the tuff breccia transitions up into a 5 m thick, moderately to densely welded tuff (vitrophyre), which in turn is overlain by a 20 m thick flow-banded rhyolite. A similar stratigraphic sequence is found at Sugarloaf Mountain (<1 km to the NNE), and also portions of the sequence crop out as faulted and eroded blocks in the valley between the two mountains. These deposits have been interpreted as being formed by exogenic lava dome growth; pyroclastic facies (fall overlain by flow) followed by lava extrusion. This study considers three possible scenarios to explain the origin and geometry of these deposits. Pivotal to these scenarios is the explanation for the cause of welding and stratigraphic position of the vitrophyre.
    [Show full text]
  • 1997 Sector Collapse and Debris Avalanche at Soufriere Hills Volcano, Montserrat
    The 26 December (Boxing Day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat B. VOIGHT1, J-C KOMOROWSKI2, G. E. NORTON15, A. B. BELOUSOV4. M. BELOUSOVA4, G. BOUDON5, P. W. FRANCIS6, W. FRANZ7, P. HEINRICH8, R. S. J. SPARKS4 & S. R. YOUNG1" 1 Geosciences, Penn State University, University Park, PA 16802, USA (e-mail: [email protected]) 2Observatoire Volcanologique de la Soufriere (IPGP), Le Houelmont, Gourbeyre 971113, Guadeloupe 3 British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK 4Institute of Volcanic Geology and Geochemistry, Petropavlovsk-Kamchatsky, 683006, Russia 5 Institut de Physique du Globe de Paris (IPGP), 4 Place Jussieu, B 89, 75252 Cedex 05 Paris, France 6 Department of Earth Sciences, Open University, Milton Keynes MK7 6 A A, UK (deceased) 7 Gannett-Fleming Engineers, Harrisburg, PA 17110, USA 8 Laboratoire de Detection et de Geophysique, Commisariat a l'Energie Atomique, BP 12, 91680 Bruyeres-le-Chatel, France 9 Department of Earth Sciences, Bristol University, Bristol, BS8 1RJ, UK 10 Montserrat Volcano Observatory, Montserrat, West Indies Abstract: The southern sector of Soufriere Hills Volcano failed on 26 December 1997 (Boxing Day), after a year of disturbance culminating in a devastating eruptive episode. Sector collapse produced a c. 50 x l06m3 volcanic debris avalanche, and depressurized the interior of the lava dome, which exploded to generate a violent pyroclaslic density current. The south-directed growth of a lava lobe and build-up of lava-block talus, since early November 1997. brought the hydrothermally weakened sector to a condition of marginal stability. Limit-equilibrium stability analyses and finite-difference stress-deformation analyses, constrained by geomechanical testing of edifice and debris avalanche materials, suggest that the sector collapse was triggered by a pulse of co-seismic exogenous lava shear-lobe emplacement.
    [Show full text]